[go: up one dir, main page]

JP3995228B2 - Hollow fiber membrane for blood purification - Google Patents

Hollow fiber membrane for blood purification Download PDF

Info

Publication number
JP3995228B2
JP3995228B2 JP11515499A JP11515499A JP3995228B2 JP 3995228 B2 JP3995228 B2 JP 3995228B2 JP 11515499 A JP11515499 A JP 11515499A JP 11515499 A JP11515499 A JP 11515499A JP 3995228 B2 JP3995228 B2 JP 3995228B2
Authority
JP
Japan
Prior art keywords
filtrate
membrane
blood
hollow fiber
protein concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11515499A
Other languages
Japanese (ja)
Other versions
JP2000300973A (en
Inventor
憲幸 玉村
基樹 京
秀彦 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11515499A priority Critical patent/JP3995228B2/en
Publication of JP2000300973A publication Critical patent/JP2000300973A/en
Application granted granted Critical
Publication of JP3995228B2 publication Critical patent/JP3995228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は血液透析等に用いられる血液浄化膜に関する。さらに詳しくは慢性腎不全の治療に用いられる際に安定して効率よくβ2-ミクログロブリン(以下、β2Mと称する)に代表される分子量の尿毒症物質を除去でき、有用タンパクであるアルブミンの漏出を抑制することが可能な血液浄化用中空糸膜に関する。
【0002】
【従来の技術】
近年、長期透析患者の増加に伴う透析合併症が注目されており尿素、クレアチニンなどの低分子量物質だけでなく、中高分子量物質(低分子タンパク)まで除去対象が拡大してきている。また掻痒、疼痛等の臨床症状の改善や脂質代謝の改善効果が分子量2 万程度の物質の除去にあることが示唆されている。痒みやいらいら感の減少に効果があるとして報告されている膜(腎と透析別冊36ハイパフォーマンスメンブレン'94 :70,1994、腎と透析別冊36ハイパフォーマンスメンブレン'94 :132 ,1994)もある。
【0003】
しかし、これらの膜は一治療あたりのアルブミ漏出が多すぎるため、長期にわたって使用すると低タンパク血症を引き起こし逆に患者の予後を悪化させてしまうことがある。またポリスルフォンに代表される合成高分子系の膜はアルブミン漏出量が一治療あたり1g以下でかつβ2Mの除去性能に優れていると報告されているが、痒みやいらいら感に対する効果はβ2M除去性能は低いがアルブミン漏出量の低い前記膜に比べ劣っていた。すなわち患者の安全性を確保するためアルブミン漏出量が少なく且つ痒みやいらいら感の減少に繋がるような分子量2 万程度の物質の除去性能に優れた膜はこれまで得られていなかった。
【0004】
【発明が解決しようとする課題】
本発明は、上記の欠点を解決しようとするものであり、その目的はβ2Mに代表される分子量1 万程度の透析合併症誘因物質の除去性に優れるだけでなく臨床症状の改善効果がある分子量2 万程度の物質の除去性に優れ、かつ有用タンパクであるアルブミンの漏出を極力抑制した血液浄化用中空糸膜を提供することにある。
【0005】
痒みやいらいら感の原因物質とされる分子量2 万程度の物質を効率的に除去するためには、通常の透析膜より大きな細孔径が必要である。しかし現在の膜製造技術では、分子量2 万程度の物質と人体にとって必要なタンパク質であるアルブミンを完全に分離することは不可能であり、痒みやいらいら感などの臨床症状を改善するためにはかなりの量のアルブミンリークが同時に起こってしまう。具体的な数字として血液をろ過した際のろ液中タンパク濃度(ほとんどをアルブミンが占める)が200mg/dl以上の時に痒みやいらいら感等の臨床症状の改善が特によく認められている。しかしながらろ液中のタンパク濃度が200mg/dl以上の場合、通常の透析では1 治療あたり3L程度のろ過を行うので1 回の治療で漏出するアルミンが6g以上となり前述したように低タンパク血症を引き起こす恐れがある。このため痒みやいらいら感の臨床症状改善とアルブミン漏出が少ない安全性を両立することは不可能なことと思われた。
【0006】
ところがさらに検討を加えた結果、血液ろ過初期のろ液中タンパク濃度が200mg/dl以上の膜で、かつ血液ろ過により経時的にろ液中タンパク濃度が減少しても一定の範囲内であれば、分子量2 万程度の物質の除去性能が治療時間全体に渡って高く保たれることがわかり本発明に到達した。
【0007】
【課題を解決するための手段】
すなわち本発明は下記の血液浄化用中空糸膜を提供するものである。膜面積1.5mのモジュールにヘマトクリット30±3%、タンパク濃度6.5±0.5g/dlの牛血液を流速200ml/minで流しろ過流速15ml/minで血液ろ過を行った際の15分後のろ液中タンパク濃度が200mg/dl以上600mg/dl以下、120分後のろ液中タンパク濃度が50mg/dl以上200mg/dl以下で、かつろ過開始15分後のβ2−ミクログロブリンの篩い係数が0.85以上、分子量2万のデキストランの篩い係数が0.5以上、透水性が10ml/m/hr/mmHg以上であるセルローストリアセテートからなる血液浄化用中空糸膜。
【0008】
本発明において15分後のろ液中タンパク濃度は200mg/dl以上1000mg/dl 以下が必要である。好ましくは300 〜800mg/dl、より好ましくは400 〜600mg/dlである。200mg/dl以上とすることで分子量2 万程度の分子量物質が効率的に除去されうる。200mg/dl未満でも分子量1 万程度までの物質であれば比較的効率よく除去されるものの痒みやいらいら感といった臨床症状は改善されにくい。一方15分後のろ液中タンパク濃度は1000mg/dl 以下が好ましい。1000mg/dl を超えるとその後いく ら経時的にろ液中タンパク濃度が低下しても治療中の総タンパク除去量を安全範囲に抑えることが困難となる。
【0009】
本発明において血液ろ過開始直後のろ液中タンパク濃度の測定を15分後としているのは以下の理由による。
本発明において発明の目的から明らかなように血液ろ過直後の膜の細孔径がある値以上を取ることが必要であり、そのため血液ろ過開始後出来るだけ早い時間のろ液中タンパク濃度を正確に測定することが望ましい。しかしながら膜は血液と接触する前に予め生理食塩水でプライミング処理を施してあり膜中およびモジュール中のろ液側は生理食塩水で満たされている。このため血液を流しろ過を始めても最初に得られるろ液は生理食塩水で希釈された状態になっており、正確なろ液中タンパク濃度を得ることは困難である。ろ液流量が15ml/min程度の場合、生理食塩水による希釈の影響を無視できる最短時間はろ過開始後15分である。
【0010】
本発明において120 分後のろ液中タンパク濃度は50mg/dl 以上200mg/dl以下が必要である。120 分後のろ液中タンパク濃度が50mg/dl 以上であれば分子量2 万程度の分子量物質の除去が治療時間全域にわたって効率的に行われる。50mg/dl 未満の場合には治療開始初期の物質除去性能は高いが治療時間全域にわたって除去効果が持続できず好ましくない。また120 分後のろ液中タンパク濃度が200mg/dlを超えると治療時間全域にわたってタンパク質の漏出が多くなり低タンパク血症を引き起こしやすくなる。
【0011】
痒みやいらいら感の原因物質は分子量2 万程度と推定されているが、まだ特定されていない。また分子量は同じでも分子の形が異なると膜で濾過した時の除去特性は一概に定義できない。われわれの研究では15分後のろ液中タンパク濃度が200mg/dl以上のとき分子量2 万の蛍光標識デキストランの篩い係数が0.5 以上となることが認められている。われわれは実験室的に臨床効果を客観的に判断できる基準として、分子量2 万の蛍光標識デキストランの篩い係数を導入し、この篩い係数が0.5 以上のときに痒みやいらいら感を解消できると考えた。
【0012】
本発明はろ液中のタンパク濃度を適正な範囲に調節することにより、高い除去効率と安全性を兼ね備えた中空糸膜を提供するものであるが、本発明の中空糸膜は一般にハイフラックス透析膜と呼ばれる範疇に属する。すなわち除去効率は透析膜の透水性と相関を有するので本発明の中空糸膜の透水性は10ml/m2 /hr/mmHg以上が好ましく20ml/m2 /hr/mmHg以上がより好ましい。このような高い透水性を持ち、上記ろ液タンパク濃度範囲に設定することにより優れた治療効果が期待できる。
【0013】
本発明の中空糸膜は5wt%アルブミン含有リン酸緩衝液(pH7.4 )を用いて測定したアルブミンの篩い係数が0.15〜0.6 であることが必要である。アルブミンの篩い係数が0.15未満の場合には実際に血液浄化を行う場合にβ2M等の除去が不十分となる。またアルブミンに対する篩い係数が0.6 を超える場合には人体にとって必要なアルブミンの漏出量が多くなってしまう。すなわち水溶液中でのアルブミンの篩い係数が0.15〜0.6 の範囲にある必要性は実際の血液浄化時に形成されるタンパクゲル層により低下する分の孔径を上乗せした大きさであるといえる。
【0014】
本発明における中空糸膜素材としては再生セルロース、改質セルロース、ポリスルフォン、アクリロニトリル等が挙げられるが、タンパク質の吸着量が少ないものであれば何でも良く透水性、溶質透過性に優れるセルロースアセテートが好ましく、生体適合性の面からセルローストリアセテートが特に好ましい。
【0015】
本発明の中空糸膜の紡糸法は特に限定されるものではなく溶融、乾式、湿式、乾湿式等公知の紡糸方法によって得ることができるが、相分離制御の幅を広げる意味から中空形成剤を用いる乾湿式紡糸法で製膜されることが好ましい。中空形成剤としては紡糸原液に対して不活性であれば良く、例えば液体のものは流動パラフィンやミリスチン酸イソプロピル、気体としては乾燥空気、窒素、ヘリウム、アルゴン等を用いることができる。
【0016】
本発明の中空糸膜は例えば以下のように製造することができるが、本発明は何ら以下に限定されるものではない。セルロースアセテート16〜25重量部、溶媒45〜75.6重量部、非溶媒8.4 〜39重量部からなる紡糸原液を130 〜190 ℃に加熱して溶解し、二重管紡糸口金の外側から押し出し、内側からは中空形成剤を押し出す。押し出した紡糸原液は気体雰囲気中を通過した後0 〜50℃の凝固性液体中で凝固され水洗浴で過剰の溶媒、非溶媒を洗浄する。本発明の中空糸膜を得るためには、セルローストリアセテート等の膜素材、溶媒、非溶媒からなる紡糸原液をチューブインオリフィス型の紡糸口金から気体雰囲気中に吐出し次いで凝固浴に導いて中空糸膜を製造する際に外径1000μm 以上の紡糸口金を用いることおよび気体通過時間を0.5 秒以上に調整するのが好ましい。ここで気体通過時間とは紡糸口金より吐出された紡糸原液の線速度と気体雰囲気通過長さにより計算する。紡糸速度にもよるがAG長は50mm以上、さらには100mm 以上とることが望ましい。また凝固浴出口のローラー速度と紡糸口金より吐出される紡糸原液の線速度の比で表されるドラフト比を10〜30の間に調整するのが好ましい。さらに凝固浴の温度を30℃以上に調整することが好ましい。これらの組み合わせを用いることにより、得られる中空糸膜は非晶領域と結晶領域が適度なバランスを取り、水透過性と溶質透過性が良好で本発明のパラメータを満足する血液浄化用膜を得ることが可能となることを見い出した。
【0017】
以降は常法により中空糸を30〜70重量%のグリセリン水溶液中に通すことにより膜孔中にグリセリンを含浸させ、乾燥工程を経て巻取る。上記溶媒としてはセルロースアセテートを溶解するものであれば特に限定されないが、N、N- ジメチルアセトアミド、N、N- ジメチルホルムアミド、γ- ブチロラクトン、N- チルピロリドン、ジメチルスルフォキシド、N、N- ジメチルイミダゾリジノンなどの極性溶媒を用いるのが好ましい。これらは単独または混合して用いることもできる。非溶媒としてはエチレングリコール、トリエチレングリコール、ポリエチレングリコール、グリセリン等の多価アルコールあるいはそれらの低級アルキルエーテル誘導体等が挙げられ、単独あるいは混合して使用することができる。
【0018】
このような方法により製造された血液浄化用中空糸膜は、孔径と孔数のバランスが良好であり低分子溶質〜中分子溶質(低分子タンパク)の透過性と有用タンパクであるアルブミンのカットオフ性に優れるので限外ろ過、透析、透析ろ過用に好適に使用され具体的には血液透析、血液ろ過透析等に使用される。
本発明の理論的根拠は確認されていないが、発明者は以下のように考える。
すなわち痒みやいらいら感の原因物質の除去には通常の透析膜よりも細孔径を大きくする必要が有り、このため5wt%アルブミン含有リン酸緩衝液を用いて測定したアルブミンの篩い係数とろ過開始15分後のろ液タンパク濃度をある一定範囲内に設定する必要があることは明かであろう。
上記範囲内の細孔径を持ち、かつ非晶領域と結晶領域が適度なバランスをとることで血液と膜が接触した時に膜の血液接触表面に血漿タンパクがある特定の吸着形態をもち、これが2 次的な分離膜として作用し現状の製膜技術では達成し得ない優れた分離効率、すなわち分子量2 万程度の物質とアルブミンの高度な分離を発揮していると考えられる。
【0019】
【実施例】
以下、本発明を実施例を挙げてより詳細に説明するが本発明は実施例により何ら限定されるものではない。
【0020】
〔実施例1〕
セルローストリアセテート19重量部、N- メチルピロリドン56.7重量部、トリエチレングリコール24.3重量部を170 ℃にて加熱溶解し、さらに真空脱泡してセルローストリアセテートの紡糸原液を得た。これを孔径20μmの焼結フィルターでろ過し不純物を除去した後、外径1400μm の二重管構造の口金の外側から吐出線速度321cm/min で吐出し同時に口金の内側から流動パラフィンを吐出した。中空糸状の紡糸原液は気体雰囲気中7.5cm を1.4 秒間通過した後、N- メチルピロドン/トリエチレングリコール/水=10.5/4.5 /85からなる40℃の凝固浴に導き、凝固浴出口ローラー速度73.8m/min で凝固浴より引出した。この時のドラフト比を紡糸原液吐出線速度と凝固浴出口ローラー速度より計算すると23.0であった。次いで水洗浴、60%グリセリン水浴、乾燥工程を経てワインダーにてチーズ状に巻取った。
【0021】
このようにして得られた内径200 μm 、膜厚15μm の中空糸10400 本を束にしプラスチックケースに充填し有効長23cmの性能評価用モジュール(有効膜面積1.5m2
作製した。
【0022】
測定方法
1. 限外ろ過係数の測定
上記作製したモジュールを純水で十分洗浄し、37℃に調整した純水を中空糸膜に流し膜間圧力差(TMP )50、100 、150 、200mmHg における透水量を測定した。
得られた透水量より下記式を用いて各TMP での限外ろ過係数を算出した。
UFR (ml/m2 ・hr・mmHg)=透水量×60/TMP /膜面積
モジュールの限外ろ過係数は上記4 点のTMP および限外ろ過係数より得られる回帰直線の傾きより平均の限外ろ過係数として求めた。
【0023】
2. アルブミンの篩い係数の測定
アルブミンをリン酸緩衝液に溶解し生理食塩水を加えてアルブミン濃度5wt%、pH7.4 、37℃に調製する。この溶液を膜面積1.5m2 のモジュールに流速200ml/min 、ろ過流速15ml/minで流し15分後のモジュール入り口と出口およびろ液のアルブミン濃度を市販の測定キットを用いて測定した。下記式によりアルブミンの篩い係数(SC)を計算した。
SC=ろ液濃度/ ((入り口濃度+出口濃度)/2)
【0024】
3. 蛍光標識(FITC)- デキストランの篩い係数の測定
ヘマトクリット30±3%、タンパク濃度6.5 ±0.5g/dl に調製した牛血液にFITC- デキストラン(分子量20,000)を濃度1.9mg/dlとなるように溶解し、流速200ml/min で膜面積1.5m2 のモジュールに流す。血液を流し始めてから5 分後にろ過速度15ml/minで血液ろ過を開始し15、30、60、120 分後のモジュールの入り口、出口の血液およびろ液をサンプリングしFITC- デキストラン濃度を蛍光分光光度計を用いて測定した。得られた各測定値を用いて下記式よりデキストランの篩い係数を計算した。
SC=ろ液濃度/ ((入り口濃度+出口濃度)/2)
【0025】
4. β2 ミクログロブリン(β2M)の篩い係数の測定
ヘマトクリット30±3%、タンパク濃度6.5 ±0.5g/dl に調製した牛血液を200ml/min で膜面積1.5m2 のモジュールに流す。血液を流しはじめてから5 分後にろ過速度15ml/minで血液ろ過を開始し15、30、60、120 分後のモジュールの入り口、出口の血液およびろ液をサンプリングし、酵素免疫測定法(例えばグラザイムβ2-Microglobulin-EIA Test 和光純薬工業製)等によりβ2M濃度を測定する。
なお当該測定でモジュールに流す牛血液には適量のヒト由来β2Mを添加して行い、サンプリングした血液は必要に応じて遠心分離してβ2Mの測定に供する。測定したβ2M濃度から下記式に従って篩い係数を算出した。
SC=ろ液濃度/ ((入り口濃度+出口濃度)/2)
【0026】
5. ろ液中タンパク濃度の測定
ヘマトクリット30±3%、タンパク濃度6.5 ±0.5g/dl に調製した牛血液を200ml/min でモジュールに流しろ過速度15ml/minで血液ろ過開始後15、30、60、120 分後のモジュールの入り口、出口の血液およびろ液をサンプリングし、比色法(マイクロTPテストワコー等)によりタンパク濃度を測定した。3L除水時のタンパク漏出量は15分〜120 分の平均値より算出した。
【0027】
〔比較例1〕
セルローストリアセテート17重量部、N- メチルピロリドン49.8重量部、トリエチレングリコール33.2重量部を170 ℃にて加熱溶解し、さらに真空脱泡してセルローストリアセテートの紡糸原液を得た。これを孔径20μmの焼結フィルターでろ過し不純物を除去した後、外径540 μm の二重管口金の外側から吐出線速度1064cm/minで吐出し同時に口金の内側から流動パラフィンを吐出した。中空糸状の紡糸原液は空気中25mmを0.14秒間通過した後N- メチルピロリドン/トリエチレングリコール/水=18/12/70からなる55℃の凝固浴に導き、実施例1 と同様に7 3.8m/minで凝固浴から引出した。この場合のドラフト比は7.0 であった。次いで水洗浴、60%グリセリン水浴、乾燥工程を経てワインダーにてチーズ状に巻取った。
【0028】
〔実施例2〕
セルローストリアセテート17.5重量部、N- メチルピロリドン66.0重量部、トリエチレングリコール16.5重量部を170 ℃にて加熱溶解し、さらに真空脱泡してセルローストリアセテートの紡糸原液を得た。これを孔径20μmの焼結フィルターでろ過し不純物を除去した後、外径1200μm の二重管口金の外側から吐出線速度364cm/min で吐出し同時に口金の内側から流動パラフィンを吐出した。中空糸状の紡糸原液は空気中60mmを0.99秒間通過した後N- メチルピロリドン/トリエチレングリコール/水=40/10/50からなる36℃の凝固浴に導き、実施例1 と同様73.8m/min で凝固浴から引出した。このときのドラフト比は20.6であった。次いで水洗浴、60%グリセリン水浴、乾燥工程を経てワインダーにてチーズ状に巻取った。
【0029】
〔比較例2〕
市販のモジュール(フレゼニウス社製、製品名F60 、膜面積1.25m2)を用いて同様に性能評価を行い比較した。
【表1】

Figure 0003995228
【0030】
【発明の効果】
以上の説明で明らかなように、本発明によれば透析合併症誘因物質の除去性や臨床症状の改善効果があるとされる分子量2 万程度の物質の除去性に優れ、かつアルブミンの漏出の少ないシャープなカットオフ性を有する血液浄化用中空糸膜が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blood purification membrane used for hemodialysis and the like. More particularly chronic renal failure in efficiency stable when used in the treatment often beta 2 - microglobulin can be removed the molecular weight of the uremic substances represented by (hereinafter, beta 2 referred to as M), albumin, a useful protein The present invention relates to a hollow fiber membrane for blood purification capable of suppressing leakage of blood.
[0002]
[Prior art]
In recent years, dialysis complications associated with an increase in long-term dialysis patients have attracted attention, and the removal targets are expanding not only to low molecular weight substances such as urea and creatinine but also to medium high molecular weight substances (low molecular weight proteins). It has also been suggested that the removal of substances with a molecular weight of about 20,000 has the effect of improving clinical symptoms such as pruritus and pain, and improving lipid metabolism. There are also membranes reported to be effective in reducing itching and irritation (kidney and dialysis separate volume 36 high performance membrane '94: 70, 1994, kidney and dialysis separate volume 36 high performance membrane '94: 132, 1994).
[0003]
However, these membranes have too much albumi leakage per treatment, and long-term use can cause hypoproteinemia and conversely worsen the patient's prognosis. Synthetic polymer membranes typified by polysulfone have been reported to have an albumin leakage of 1 g or less per treatment and excellent β 2 M removal performance. Although the 2 M removal performance was low, it was inferior to the membrane with low albumin leakage. In other words, in order to ensure the safety of patients, no membrane has been obtained that has an excellent ability to remove a substance having a molecular weight of about 20,000 that has a small amount of albumin leakage and leads to a reduction in itchiness and irritation.
[0004]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned drawbacks, and its purpose is not only excellent in the removal of a dialysis complication inducer having a molecular weight of about 10,000 represented by β 2 M but also an effect of improving clinical symptoms. An object of the present invention is to provide a hollow fiber membrane for blood purification that is excellent in the removal of a substance having a molecular weight of about 20,000 and that suppresses leakage of albumin, which is a useful protein, as much as possible.
[0005]
In order to efficiently remove a substance having a molecular weight of about 20,000, which is a causative substance of itchiness and irritation, a pore size larger than that of a normal dialysis membrane is required. However, with the current membrane manufacturing technology, it is impossible to completely separate albumin, which is a protein necessary for the human body, from a substance with a molecular weight of about 20,000, and it is quite difficult to improve clinical symptoms such as itchiness and irritation. An amount of albumin leak occurs at the same time. As a specific figure, improvement of clinical symptoms such as itchiness and irritation is particularly well recognized when the protein concentration in the filtrate (mostly albumin occupies) when blood is filtered is 200 mg / dl or more. However, if the protein concentration in the filtrate is 200 mg / dl or more, about 3 L of filtration is performed per treatment in normal dialysis, so that the amount of aluminium leaking out in one treatment becomes 6 g or more, and as described above, hypoproteinemia occurs. May cause. Therefore, it seemed impossible to achieve both the improvement of clinical symptoms such as itching and irritation and the safety of albumin leakage.
[0006]
However, as a result of further investigation, if the protein concentration in the filtrate at the initial stage of blood filtration is 200 mg / dl or more, and the protein concentration in the filtrate decreases with time due to blood filtration, it remains within a certain range. As a result, it was found that the removal performance of a substance having a molecular weight of about 20,000 was kept high throughout the treatment time.
[0007]
[Means for Solving the Problems]
That is, the present invention provides the following hollow fiber membrane for blood purification. 15 when a hematocrit 30 ± 3%, protein concentration 6.5 ± 0.5 g / dl was flowed into a module with a membrane area of 1.5 m 2 at a flow rate of 200 ml / min and blood filtration was performed at a filtration flow rate of 15 ml / min. The protein concentration in the filtrate after 200 minutes / min is 600 mg / dl or less , the protein concentration in the filtrate after 120 minutes is 50 mg / dl or more and 200 mg / dl or less, and β2-microglobulin 15 minutes after the start of filtration. A blood purification hollow fiber membrane comprising cellulose triacetate having a sieving coefficient of 0.85 or more, a dextran having a molecular weight of 20,000 and a sieving coefficient of 0.5 or more, and a water permeability of 10 ml / m 2 / hr / mmHg or more.
[0008]
In the present invention, the protein concentration in the filtrate after 15 minutes should be 200 mg / dl or more and 1000 mg / dl or less. Preferably it is 300-800 mg / dl, More preferably, it is 400-600 mg / dl. By setting it to 200 mg / dl or more, a molecular weight substance having a molecular weight of about 20,000 can be efficiently removed. Even if it is less than 200 mg / dl, a substance with a molecular weight of up to about 10,000 can be removed relatively efficiently, but clinical symptoms such as itching and irritation are difficult to improve. On the other hand, the protein concentration in the filtrate after 15 minutes is preferably 1000 mg / dl or less. If it exceeds 1000 mg / dl, it will be difficult to keep the total protein removal during treatment within the safe range even if the protein concentration in the filtrate decreases with time.
[0009]
In the present invention, the measurement of the protein concentration in the filtrate immediately after the start of blood filtration is 15 minutes later for the following reason.
In the present invention, as apparent from the object of the invention, the pore diameter of the membrane immediately after blood filtration must be greater than a certain value, so that the protein concentration in the filtrate is accurately measured as early as possible after the start of blood filtration. It is desirable to do. However, the membrane is pre-primed with physiological saline before coming into contact with blood, and the filtrate side in the membrane and the module is filled with physiological saline. For this reason, even if blood is flowed and filtration is started, the filtrate obtained first is diluted with physiological saline, and it is difficult to obtain an accurate protein concentration in the filtrate. When the filtrate flow rate is about 15 ml / min, the shortest time in which the influence of dilution with physiological saline can be ignored is 15 minutes after the start of filtration.
[0010]
In the present invention, the protein concentration in the filtrate after 120 minutes should be 50 mg / dl or more and 200 mg / dl or less. If the protein concentration in the filtrate after 120 minutes is 50 mg / dl or more, removal of molecular weight substances with a molecular weight of about 20,000 can be efficiently performed over the entire treatment time. If it is less than 50 mg / dl, the substance removal performance at the beginning of the treatment is high, but the removal effect cannot be maintained over the entire treatment time, which is not preferable. Also, if the protein concentration in the filtrate after 200 minutes exceeds 200 mg / dl, protein leakage increases throughout the treatment time, and hypoproteinemia tends to occur.
[0011]
The causative agent for itching and irritation is estimated to have a molecular weight of about 20,000, but has not yet been identified. Also, if the molecular weight is the same but the molecular shape is different, the removal characteristics when filtered through a membrane cannot be defined unconditionally. In our study, when the protein concentration in the filtrate after 15 minutes is 200 mg / dl or more, the sieving coefficient of fluorescently labeled dextran having a molecular weight of 20,000 is recognized to be 0.5 or more. We introduced the sieving coefficient of fluorescently labeled dextran with a molecular weight of 20,000 as a standard for objectively judging clinical effects in the laboratory, and thought that it was possible to eliminate itchiness and irritability when this sieving coefficient was 0.5 or more. .
[0012]
The present invention provides a hollow fiber membrane having both high removal efficiency and safety by adjusting the protein concentration in the filtrate to an appropriate range. However, the hollow fiber membrane of the present invention is generally a high flux dialysis membrane. It belongs to the category called. That is, since the removal efficiency has a correlation with the water permeability of the dialysis membrane, the water permeability of the hollow fiber membrane of the present invention is preferably 10 ml / m 2 / hr / mmHg or more, more preferably 20 ml / m 2 / hr / mmHg or more. With such a high water permeability, an excellent therapeutic effect can be expected by setting the above filtrate protein concentration range.
[0013]
The hollow fiber membrane of the present invention requires that the sieving coefficient of albumin measured using a 5 wt% albumin-containing phosphate buffer (pH 7.4) is 0.15 to 0.6. When the sieving coefficient of albumin is less than 0.15, β 2 M and the like are not sufficiently removed when blood purification is actually performed. If the sieving coefficient for albumin exceeds 0.6, the amount of albumin leakage necessary for the human body increases. That is, it can be said that the necessity that the sieving coefficient of albumin in the aqueous solution is in the range of 0.15 to 0.6 is the size added with the pore diameter that is reduced by the protein gel layer formed during actual blood purification.
[0014]
Examples of the hollow fiber membrane material in the present invention include regenerated cellulose, modified cellulose, polysulfone, acrylonitrile and the like, and any cellulose acetate that is excellent in water permeability and solute permeability is preferable as long as the amount of protein adsorption is small. From the viewpoint of biocompatibility, cellulose triacetate is particularly preferable.
[0015]
The spinning method of the hollow fiber membrane of the present invention is not particularly limited and can be obtained by a known spinning method such as melting, dry, wet, and dry wet, but a hollow forming agent is used in order to widen the range of phase separation control. It is preferable to form a film by the dry and wet spinning method used. The hollow forming agent may be inert to the spinning solution. For example, liquid paraffin or isopropyl myristate can be used as the liquid, and dry air, nitrogen, helium, argon, or the like can be used as the gas.
[0016]
The hollow fiber membrane of the present invention can be produced, for example, as follows, but the present invention is not limited to the following. A spinning stock solution consisting of 16 to 25 parts by weight of cellulose acetate, 45 to 75.6 parts by weight of solvent, and 8.4 to 39 parts by weight of non-solvent is heated to 130 to 190 ° C. to dissolve and extruded from the outside of the double-tube spinneret. Extrudes the hollow forming agent. The extruded spinning dope passes through a gas atmosphere and is then coagulated in a coagulating liquid at 0 to 50 ° C., and the excess solvent and non-solvent are washed in a water washing bath. In order to obtain the hollow fiber membrane of the present invention, a spinning stock solution composed of a membrane material such as cellulose triacetate, a solvent, and a non-solvent is discharged from a tube-in-orifice type spinneret into a gas atmosphere, and then guided to a coagulation bath. It is preferable to use a spinneret with an outer diameter of 1000 μm or more and adjust the gas passage time to 0.5 seconds or more when manufacturing the membrane. Here, the gas passage time is calculated from the linear velocity of the spinning dope discharged from the spinneret and the gas atmosphere passage length. Although it depends on the spinning speed, the AG length is preferably 50 mm or more, more preferably 100 mm or more. Moreover, it is preferable to adjust the draft ratio represented by the ratio of the roller speed at the coagulation bath outlet and the linear speed of the spinning dope discharged from the spinneret between 10-30. Furthermore, it is preferable to adjust the temperature of the coagulation bath to 30 ° C. or higher. By using these combinations, the obtained hollow fiber membrane has an appropriate balance between the amorphous region and the crystalline region, and obtains a blood purification membrane satisfying the parameters of the present invention with good water permeability and solute permeability. I found it possible.
[0017]
Thereafter, the hollow fiber is passed through a 30 to 70% by weight glycerin aqueous solution by a conventional method to impregnate the membrane pores with glycerin, and wound through a drying step. The solvent is not particularly limited as long as it dissolves cellulose acetate, but N, N-dimethylacetamide, N, N-dimethylformamide, γ-butyrolactone, N-butylpyrrolidone, dimethylsulfoxide, N, N- It is preferable to use a polar solvent such as dimethylimidazolidinone. These can be used alone or in combination. Examples of the non-solvent include polyhydric alcohols such as ethylene glycol, triethylene glycol, polyethylene glycol, and glycerin, or lower alkyl ether derivatives thereof, which can be used alone or in combination.
[0018]
The hollow fiber membrane for blood purification produced by such a method has a good balance between the pore size and the number of pores, the permeability of low-molecular solute to medium-molecular solute (low-molecular protein), and the cutoff of albumin, which is a useful protein. Since it has excellent properties, it is suitably used for ultrafiltration, dialysis, diafiltration, and specifically used for hemodialysis, hemodiafiltration, and the like.
Although the theoretical basis of the present invention has not been confirmed, the inventor thinks as follows.
In other words, it is necessary to make the pore size larger than that of a normal dialysis membrane in order to remove the causative agent of itchiness and irritation. Therefore, the sieving coefficient of albumin measured using a 5 wt% albumin-containing phosphate buffer and the start of filtration 15 It will be clear that the filtrate protein concentration after the minute must be set within a certain range.
It has a specific adsorption form with plasma protein on the blood contact surface of the membrane when the blood and the membrane come into contact with each other by having a pore size within the above range and having an appropriate balance between the amorphous region and the crystalline region. It is considered that it acts as the next separation membrane and exhibits an excellent separation efficiency that cannot be achieved with the current membrane production technology, that is, a high degree of separation between albumin and a substance having a molecular weight of about 20,000.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by an Example.
[0020]
[Example 1]
19 parts by weight of cellulose triacetate, 56.7 parts by weight of N-methylpyrrolidone and 24.3 parts by weight of triethylene glycol were dissolved by heating at 170 ° C., and vacuum degassed to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged from the outside of the double-tube structure having an outer diameter of 1400 μm at a discharge linear velocity of 321 cm / min, and at the same time, liquid paraffin was discharged from the inside of the base. The hollow fiber spinning dope passes 7.5 cm in a gas atmosphere for 1.4 seconds, and then led to a coagulation bath at 40 ° C. consisting of N-methylpyrodon / triethylene glycol / water = 10.5 / 4.5 / 85, and the coagulation bath outlet roller speed is 73.8 m. Withdrawn from the coagulation bath at / min. The draft ratio at this time was 23.0 when calculated from the spinning solution discharge linear velocity and the coagulation bath outlet roller velocity. Subsequently, it was wound in a cheese shape with a winder through a water washing bath, a 60% glycerin water bath, and a drying step.
[0021]
10400 hollow fibers having an inner diameter of 200 μm and a film thickness of 15 μm thus obtained were bundled and filled into a plastic case to produce a performance evaluation module (effective membrane area 1.5 m 2) having an effective length of 23 cm.
[0022]
Measurement method 1. Measurement of ultrafiltration coefficient The above-prepared module was thoroughly washed with pure water, and pure water adjusted to 37 ° C was poured into the hollow fiber membrane, and the pressure difference (TMP) between membranes was 50, 100, 150 and 200mmHg. The water permeability was measured.
The ultrafiltration coefficient at each TMP was calculated from the obtained water permeability using the following formula.
UFR (ml / m 2 · hr · mmHg) = Permeability x 60 / TMP / Membrane area module's ultrafiltration coefficient is the average limit based on the slope of the regression line obtained from the above 4 points TMP and ultrafiltration coefficient The filtration coefficient was obtained.
[0023]
2. Measurement of sieving coefficient of albumin Dissolve albumin in phosphate buffer and add saline to adjust the albumin concentration to 5 wt%, pH 7.4, 37 ° C. This solution was passed through a module having a membrane area of 1.5 m 2 at a flow rate of 200 ml / min and a filtration flow rate of 15 ml / min. After 15 minutes, the concentrations of albumin at the module inlet and outlet and the filtrate were measured using a commercially available measurement kit. The sieving coefficient (SC) of albumin was calculated according to the following formula.
SC = filtrate concentration / ((entrance concentration + outlet concentration) / 2)
[0024]
3. Fluorescence labeling (FITC)-Determination of dextran sieving coefficient FITC-dextran (molecular weight 20,000) to a concentration of 1.9 mg / dl in bovine blood prepared with hematocrit 30 ± 3% and protein concentration 6.5 ± 0.5 g / dl And flow into a module with a membrane area of 1.5 m 2 at a flow rate of 200 ml / min. After 5 minutes from the start of blood flow, blood filtration starts at a filtration rate of 15 ml / min, and after 15, 30, 60 and 120 minutes, the blood and filtrate at the inlet and outlet of the module are sampled and the FITC-dextran concentration is measured by fluorescence spectrophotometry. Measured using a meter. The sieving coefficient of dextran was calculated from the following formula using each obtained measurement value.
SC = filtrate concentration / ((entrance concentration + outlet concentration) / 2)
[0025]
4. beta 2 microglobulin (β 2 M) sieve measured hematocrit 30 ± 3% of the factor, flow protein concentration 6.5 ± 0.5 g / dl in the prepared bovine blood film area 1.5 m 2 module 200 ml / min. After 5 minutes from the start of blood flow, blood filtration is started at a filtration rate of 15 ml / min. After 15, 30, 60 and 120 minutes, the blood and filtrate at the inlet and outlet of the module are sampled, and an enzyme immunoassay (eg, Glazyme) is sampled. measuring a beta 2 M concentration with β 2 -Microglobulin-EIA Ltd. Test Wako Pure Chemical Industries) and the like.
In addition, an appropriate amount of human-derived β 2 M is added to the bovine blood flowing into the module in this measurement, and the sampled blood is centrifuged as necessary to be used for β 2 M measurement. A sieve coefficient was calculated from the measured β 2 M concentration according to the following formula.
SC = filtrate concentration / ((entrance concentration + outlet concentration) / 2)
[0026]
5. Measurement of protein concentration in the filtrate Bovine blood prepared to a hematocrit of 30 ± 3% and protein concentration of 6.5 ± 0.5g / dl was poured into the module at 200ml / min, and after starting blood filtration at a filtration rate of 15ml / min, 15, 30, After 60 and 120 minutes, the blood and filtrate at the inlet and outlet of the module were sampled, and the protein concentration was measured by a colorimetric method (Micro TP Test Wako, etc.). The amount of protein leakage at the time of 3L water removal was calculated from the average value of 15 minutes to 120 minutes.
[0027]
[Comparative Example 1]
17 parts by weight of cellulose triacetate, 49.8 parts by weight of N-methylpyrrolidone, and 33.2 parts by weight of triethylene glycol were dissolved by heating at 170 ° C., and vacuum degassing was performed to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore size of 20 μm to remove impurities, and then discharged from the outside of the double tube cap having an outer diameter of 540 μm at a discharge linear velocity of 1064 cm / min, and at the same time, liquid paraffin was discharged from the inside of the cap. The hollow fiber-shaped spinning dope is passed through 25 mm in air for 0.14 seconds and then led to a 55 ° C. coagulation bath consisting of N-methylpyrrolidone / triethylene glycol / water = 18/12/70, and 7 3.8 m as in Example 1. Withdrawn from the coagulation bath at / min. In this case, the draft ratio was 7.0. Subsequently, it was wound in a cheese shape with a winder through a water washing bath, a 60% glycerin water bath, and a drying step.
[0028]
[Example 2]
17.5 parts by weight of cellulose triacetate, 66.0 parts by weight of N-methylpyrrolidone and 16.5 parts by weight of triethylene glycol were heated and dissolved at 170 ° C., and vacuum degassed to obtain a spinning solution of cellulose triacetate. This was filtered through a sintered filter having a pore diameter of 20 μm to remove impurities, and then discharged from the outside of the double-tube base having an outer diameter of 1200 μm at a discharge linear velocity of 364 cm / min. At the same time, liquid paraffin was discharged from the inside of the base. The hollow fiber spinning stock solution passed through 60 mm in the air for 0.99 seconds, then led to a coagulation bath at 36 ° C. consisting of N-methylpyrrolidone / triethylene glycol / water = 40/10/50, and 73.8 m / min as in Example 1. Withdrawn from the coagulation bath. The draft ratio at this time was 20.6. Subsequently, it was wound in a cheese shape with a winder through a water washing bath, a 60% glycerin water bath, and a drying step.
[0029]
[Comparative Example 2]
Performance evaluation was similarly performed using a commercially available module (manufactured by Fresenius, product name F60, membrane area 1.25 m 2 ) and compared.
[Table 1]
Figure 0003995228
[0030]
【The invention's effect】
As is apparent from the above explanation, according to the present invention, the removal of substances causing dialysis complications and the removal of substances with a molecular weight of about 20,000, which are said to have an effect of improving clinical symptoms, are excellent. A blood purification hollow fiber membrane having a small sharp cut-off property is obtained.

Claims (1)

膜面積1.5mのモジュールにヘマトクリット30±3%、タンパク濃度6.5±0.5g/dlの牛血液を流速200ml/minで流し、ろ過流速15ml/minで血液ろ過を行った際の15分後のろ液中タンパク濃度が200mg/dl以上600mg/dl以下、120分後のろ液中タンパク濃度が50mg/dl以上200mg/dl以下で、かつろ過開始15分後のβ2−ミクログロブリンの篩い係数が0.85以上、分子量2万のデキストランの篩い係数が0.5以上、透水性が10ml/m/hr/mmHg以上であるセルローストリアセテートからなる血液浄化用中空糸膜。When a hematocrit 30 ± 3%, protein concentration 6.5 ± 0.5 g / dl was passed through a module with a membrane area of 1.5 m 2 at a flow rate of 200 ml / min, and blood filtration was performed at a filtration flow rate of 15 ml / min. Protein concentration in the filtrate after 15 minutes is 200 mg / dl to 600 mg / dl , protein concentration in the filtrate after 120 minutes is 50 mg / dl to 200 mg / dl and β2-microglobulin 15 minutes after the start of filtration A hollow fiber membrane for blood purification comprising cellulose triacetate having a sieving coefficient of 0.85 or more, a dextran having a molecular weight of 20,000 and a sieving coefficient of 0.5 or more, and a water permeability of 10 ml / m 2 / hr / mmHg or more.
JP11515499A 1999-04-22 1999-04-22 Hollow fiber membrane for blood purification Expired - Lifetime JP3995228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11515499A JP3995228B2 (en) 1999-04-22 1999-04-22 Hollow fiber membrane for blood purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11515499A JP3995228B2 (en) 1999-04-22 1999-04-22 Hollow fiber membrane for blood purification

Publications (2)

Publication Number Publication Date
JP2000300973A JP2000300973A (en) 2000-10-31
JP3995228B2 true JP3995228B2 (en) 2007-10-24

Family

ID=14655672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11515499A Expired - Lifetime JP3995228B2 (en) 1999-04-22 1999-04-22 Hollow fiber membrane for blood purification

Country Status (1)

Country Link
JP (1) JP3995228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220108A (en) * 2012-03-22 2014-12-17 旭化成医疗株式会社 Method for evaluating albumin leakage quantity from blood purifier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821428B1 (en) * 2002-03-28 2004-11-23 Nalco Company Method of monitoring membrane separation processes
JP2004231650A (en) * 2003-01-09 2004-08-19 Toray Ind Inc Mastocyte stimulatory factor-containing composition and blood depurator for removing the same
WO2007102528A1 (en) 2006-03-09 2007-09-13 Toyo Boseki Kabushiki Kaisha Hollow fiber membrane with excellent performance stability and blood purifier and method for producing hollow fiber membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220108A (en) * 2012-03-22 2014-12-17 旭化成医疗株式会社 Method for evaluating albumin leakage quantity from blood purifier

Also Published As

Publication number Publication date
JP2000300973A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
US4874522A (en) Polysulfone hollow fiber membrane and process for making the same
JPH0554373B2 (en)
JPWO2007102528A1 (en) Hollow fiber membrane excellent in performance stability, blood purifier, and method for producing hollow fiber membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
AU672856B2 (en) High flux hollow fiber membrane
JP4940576B2 (en) Hollow fiber membrane and blood purifier
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3253861B2 (en) Permselective hollow fiber membrane
JP3424807B2 (en) Hollow fiber membrane
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3424810B2 (en) High performance blood purification membrane
JP3020016B2 (en) Hollow fiber membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP2000107577A (en) Production of permselective hollow fiber membranes
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
JP4381022B2 (en) Hollow fiber blood purification membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPH09308684A (en) Selective separating membrane
JP3236233B2 (en) Method for producing selectively permeable hollow fiber membrane
JP2002186667A (en) Hollow fiber type hemodialyzer
JP3295314B2 (en) Permselective hollow fiber membrane

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term