[go: up one dir, main page]

JP4190361B2 - Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them - Google Patents

Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them Download PDF

Info

Publication number
JP4190361B2
JP4190361B2 JP2003175933A JP2003175933A JP4190361B2 JP 4190361 B2 JP4190361 B2 JP 4190361B2 JP 2003175933 A JP2003175933 A JP 2003175933A JP 2003175933 A JP2003175933 A JP 2003175933A JP 4190361 B2 JP4190361 B2 JP 4190361B2
Authority
JP
Japan
Prior art keywords
bundle
hollow fiber
fluid treatment
treatment device
body fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175933A
Other languages
Japanese (ja)
Other versions
JP2005007004A (en
Inventor
正哉 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP2003175933A priority Critical patent/JP4190361B2/en
Publication of JP2005007004A publication Critical patent/JP2005007004A/en
Application granted granted Critical
Publication of JP4190361B2 publication Critical patent/JP4190361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、中空糸型の体液処理器、これに用いる中空糸束およびそれらの製造方法に関するものである。
【0002】
【従来の技術】
従来、血液浄化用の中空糸膜として、セルロース系、セルロースアセテート系、ポリアミド系、ポリアクリロニトリル系、ポリメチルメタクリレート系、ポリスルホン系などのポリマーを主体とする膜素材が使用されてきたが、中でも近年では、生体適合性にすぐれ、分子量分画性にも優れたポリスルホン系の中空糸膜が急速に普及してきた。そして、血液浄化用のポリスルホン系中空糸膜の製造方法については数多くの技術が知られており、例えば、特許文献1〜3に製造方法が記載されている。
一方、近年、長期間透析療法を受けている患者の合併症の原因として、β2ミクログロブリン等の低分子蛋白の体内蓄積が問題視され、これら低分子蛋白を血液中から効率よく除去できる高性能な血液処理器が望まれている。
従来の技術ではβ2ミクログロブリンのような低分子蛋白をよく除去でき、アルブミンのような有用蛋白は除去しない、という血液処理器の分画特性に対する十分な検討がなされておらず、必ずしも満足のいくものではなかった。すなわち、低分子蛋白の除去をよくしようと中空糸膜の透過性能を上げると、アルブミンなどの有用蛋白のリークが問題となるからである。
【0003】
【特許文献1】
特公平2−18695号公報
【特許文献2】
特公平5−54373号公報
【特許文献3】
特開平6−165926号公報
【0004】
【発明が解決しようとする課題】
本発明は、前記従来技術の問題点に鑑み、分子量分画特性に優れる体液処理器、そのうちでも特にβ2ミクログロブリンのような低分子蛋白をよく除去でき、アルブミンのような有用蛋白は除去しないという分子量分画特性に優れる体液処理器、これに用いる中空糸束およびそれらの製造方法を提供する事を目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意検討した結果、PVP-UFRを束外周部より束中心部に向かって大きくした体液処理器とすることで、従来に比べて非常に分子量分画特性の優れた血液浄化膜を提供できる事を見出した。
すなわち本発明は、
(1) 容器に中空糸束が装填され、中空糸内側空間と中空糸外側−容器内壁間に形成される空間とに仕切られている体液処理器であって、
PVP-UFRが束外周部よりも束中心部の方が大きい事を特徴とする体液処理器。
(2) さらに、中空糸束中心部に存在する中空糸のβ2ミクログロブリンの篩係数が0.85以上、アルブミンの篩係数が0.01以下である事を特徴とする上記(1)記載の体液処理器。
(3) 束外周部と束中心部におけるPVP-UFRの差が2以上13以下である事を特徴とする上記(1)又は(2)に記載の体液処理器。
(4) PVP-UFRが束外周部から束中心部へ向けて連続的に大きくなっていることを特徴とする上記(1)〜(3)のいずれかに記載の体液処理器。
(5) 容器に中空糸束が装填され、中空糸内側空間と中空糸外側−容器内壁間に形成される空間とに仕切られている体液処理器であって、
湿潤状態の中空糸束を、束長手方向前後の差圧が100Pa以上800Pa以下になるように束長手方向に熱風を流して乾燥することにより得られる体液処理器。
(6) 束外周部に存在する中空糸のβ2ミクログロブリンの篩係数が0.7以上、アルブミンの篩係数が0.003以下であることを特徴とする上記(1)〜(5)のいずれかに記載の体液処理器。
(7) 体液処理器のβ2ミクログロブリンのクリアランスが25ml/min以上、アルブミンの篩係数が0.05以下である上記(1)〜(6)の何れかに記載の体液処理器。
(8) 中空糸がポリスルホン系ポリマーからなる上記(1)〜(7)のいずれかに記載の体液処理器。
(9) 上記(1)〜(8)の何れかに記載の体液処理器の製造方法であって、
湿潤状態の中空糸束の長手方向前後の差圧が100Pa以上800Pa以下になるように長手方向に熱風を流して乾燥することを特徴とする体液処理器の製造方法。
(10) 熱風を流す前に、マイクロウェーブにより湿潤状態の中空糸束の含水率を10%〜90%にすることを特徴とする上記(9)に記載の製造方法。
【0006】
本発明により、β2ミクログロブリンのような低分子蛋白をよく除去でき、アルブミンのような有用蛋白は除去しない、という体液処理器の分画特性が改善される作用機序については必ずしも明らかになっていない。しかし、本発明者らは、中空糸束の外周部の篩係数を小さめにし、中心部の篩係数を大きくし、PVP-UFRを束外周部より中心部に向かって大きくしたことにより、分画特性が改善されたものと考えている。すなわち、束外周、内周の血液流速分布および透析液流量分布との兼ね合いから、束中心部では積極的な濾過が行なわれ束外周部では積極的な拡散が行なわれるものと考えている。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の体液処理器とは、血液透析器、血液濾過透析器のように血液を濾過および/または透析により血液を浄化する為のモジュール(血液浄化器)であり、容器に中空糸束が装填され、中空糸内側空間と中空糸外側と容器内壁との間に形成される空間とに仕切られているものをいう。例えば、乾燥した中空糸束を樹脂製の円筒容器に挿入し、ポリウレタン等のポッティング剤を用いて中空糸束端と容器端とを接着し、その後接着端面を切断して中空糸内部を中空糸外部に開口し、ヘッダーを装着することにより得られる。
また、血液の浄化以外に血漿成分の分離器としても使用できる。例えば、血液を一旦血漿成分と血球成分に分離し、この血漿成分を本発明の体液処理器によってさらに分離するものである。この場合、アルブミンの篩係数は高く、イムノグロブリン−Mの篩係数は低いことが望ましいものが一例としてあげられる。
以下、体液処理器の一例として血液浄化器をあげて説明する。
【0008】
本発明においては、束外周部より束中心部に向かってPVP-UFRが大きくなっている必要がある。好ましくはPVP-UFRが連続的に大きくなっていることが望ましい。さらに、必要に応じて所定の物質の篩係数が所定の範囲内であること、PVP-UFRが所定の範囲内であることが望ましい。
本発明で言うPVP-UFRとは、以下に示す方法によって測定できる数値であり、PVP-UFRの大小は中空糸膜の孔径の大小に対応し、またβ2ミクログロブリンの篩係数と正の相関を有しており、中空糸膜の孔径を簡易的に知る指標として有用である。
【0009】
[PVP-UFRの測定方法]
乾燥状態の中空糸を中心部、外周部、または中間部から約200本サンプリングしてミニモジュールを作成し、これに重量平均分子量約4万のポリビニルピロリドン(PVP:K−30:ISP社製)を1/15(mol/L)の燐酸緩衝溶液に3重量%の濃度で溶解した溶液を通液しながら、膜間差圧200mmHgにてフロー法で中空糸内側から外側へ向けて濾過を行った際に得られる限外濾液速度(単位:ml/Hr/m/mmHg)を求め、この値をPVP-UFRとする。
【0010】
また、ここで言う束外周部とは中空糸本数が千本程度になるように束の外周のみから均一に中空糸を採取できる範囲の束の外周部分を言い、束中心部とは束の中心より千本程度中空糸を採取できる範囲の束の中心部分を言う。
束外周部より束中心部に向かってPVP-UFRが大きくなっていることを確認するためには、束外周部と束中心部の他に両者の中間に位置する束中間部のPVP-UFRも測定し、少なくとも3個所の位置のPVP-UFRを比較して確かめることが好ましい。
【0011】
ここで、β2ミクログロブリンを効率良く除去するためには、PVP-UFRが15ml/Hr/m/mmHg以上であることが好ましいが、反対に、PVP-UFRが高すぎると有用蛋白であるアルブミンの漏洩が臨床上問題となるレベルになる恐れがあるため、従来の製膜技術では35ml/Hr/m/mmHg程度が上限であり、15〜35ml/Hr/m/mmHgの間でバランスを取って膜の設計をすることが大切である。
PVP-UFRの外周部と中心部では、中心部の方が大きいことが必要であり、その差は2以上13以下であることが望ましい。さらに好ましくは4以上10以下である。
【0012】
[β2ミクログロブリンおよびアルブミンの篩係数の測定方法]
乾燥状態の中空糸を中心部、外周部、または中間部から約200本サンプリングしてミニモジュールを作成し、これに、生理食塩水を加えて総タンパク濃度を6.5g/dlに調整した人血清にβ2-ミクログロブリン を5mg/Lの濃度になるように添加した溶液を線速0.4cm/秒で通液し、膜間差圧25mmHgをかけて濾液を採取し、濾液中のβ2-ミクログロブリンおよびアルブミンの濃度を測定し、次式(1)から篩係数を算出した。
篩係数=濾液の濃度/元液の濃度 ・・・(1)
β2-ミクログロブリンおよびアルブミンの濃度はそれぞれ酵素免疫分析(EIA)法、ブロムクレゾールグリーン(BCG)法によって求めた。
【0013】
本発明では、中空糸束中心部に存在する中空糸のβ2ミクログロブリンの篩係数が0.85以上、アルブミンの篩係数が0.01以下である必要がある。
β2ミクログロブリンの篩係数が0.85未満であると血液浄化器としてのβ2ミクログロブリンの除去効率が低くなってしまい、またアルブミンの篩係数が0.01より大きいと血液浄化器からのアルブミンの漏れが増えてしまう。
本発明において、中空糸束中心部に存在する中空糸のβ2ミクログロブリンの篩係数は0.85以上であることが必要であるが、0.90以上が好ましく、0.95以上がさらに好ましい。またアルブミンの篩係数は0.01以下である必要があるが、0.008以下が好ましく、0.005以下がさらに好ましい。
【0014】
本発明においては、束外周部に存在する中空糸のβ2ミクログロブリンの篩係数が0.7以上、アルブミンの篩係数が0.003以下であることが好ましい。本発明においては、束中心部に存在する中空糸に比べて、束外周部に存在する中空糸のβ2ミクログロブリンの篩係数およびアルブミンの篩係数はどちらも小さい値を示す。これは束外周部より束中心部に向かってPVP-UFRが大きくなっている事に起因する。これによってアルブミンの過剰な損失を抑えることができる。束外周部に存在する中空糸のβ2ミクログロブリンの篩係数は0.74以上が好ましく、0.79以上がさらに好ましい。またアルブミンの篩係数は0.002以下が好ましく、0.001以下がさらに好ましい。
【0015】
本発明では、中空糸の素材として特に限定されるものではないが、例示するとセルロース系、セルロースアセテート系、ポリアミド系、ポリアクリロニトリル系、ポリメチルメタクリレート系、ポリスルホン系などのポリマーを主体とする中空糸膜素材を挙げることができる。これらの中でも分子量分画特性の調整の容易さ、膜の安定性、血液適合性の調整のし易さ、等を鑑みると、ポリスルホン系ポリマーからなる中空糸であることが好ましく、特にポリスルホンとポリビニルピロリドンからなる中空糸が好ましい。
【0016】
[血液浄化器のβ2ミクログロブリンのクリアランスおよびアルブミンの篩係数の測定方法]
乾燥して得られた中空糸束を樹脂製円筒容器に挿入し、ポリウレタン系のポッティング剤を用いて中空糸束端と容器端との接着を行う。この時、膜面積を1.5m2となるように中空糸の本数をそろえる。中空糸は9,000〜10,000本位充填された。接着後、端面を切断し、中空糸を開口させ、ヘッダーを装着して、モジュール化した血液浄化器を得た。
生理食塩水にて総蛋白濃度を6.5±0.5g/dLに調整した牛血漿にβ2ミクログロブリン(栄研化学社製)を1ppmの濃度になるように添加し、流速200ml/minで1時間血液浄化器の血液側を循環させる。1時間後、透析液側に透析液を500ml/minの流速でワンパスで流し、サンプリングを行い、下式(2)によりβ2ミクログロブリンのクリアランスを算出し、下式(3)によりアルブミンの篩係数を算出する。
β2ミクログロブリンクリアランス=(QBin×CBin―QBout×CBout)/CBin (2)
QBin:血液浄化器血液側入口流量
CBin:血液浄化器血液側入口β2ミクログロブリン濃度
QBout:血液浄化器血液側出口流量
CBout:血液浄化血液側出β2ミクログロブリン口濃度
β2ミクログロブリン濃度はβ2LX試薬(栄研化学)にて測定した。
アルブミンの篩係数=濾液のアルブミン濃度/元液のアルブミン濃度 (3)
アルブミンの濃度はレーザーネフェロメーター(栄研化学社製)にて測定した。
【0017】
本発明の血液浄化器は、β2ミクログロブリンのクリアランスが25ml/min以上、アルブミンの篩係数が0.05以下であることが好ましい。
本発明の構成をとることにより、β2ミクログロブリンのクリアランスが25ml/min以上という高い値を示すにも拘らず、アルブミンの篩係数が0.05以下であるという低いアルブミン透過率を達成できる血液浄化器が得られる。これは、本発明の血液浄化器が束外周部より束中心部に向かってPVP-UFRが大きくなる構造になっているため、束外周部向かってβ2ミクログロブリンに比して分子量の大きいアルブミンの篩係数が小さくなる度合いがより大きくなり、アルブミンが殆ど漏出しなくなることによるためと考えられる。
本発明において血液浄化器のβ2ミクログロブリンのクリアランスは35ml/min以上が好ましく、45ml/min以上がさらに好ましい。また血液浄化器のアルブミンの篩係数は0.04以下が好ましく、0.03以下がさらに好ましい。
【0018】
次に、ポリスルホンとポリビニルピロリドンよりなる中空糸を例に挙げ、本発明血液浄化器の主要な製造方法について説明する。
中空糸は、ポリスルホンとポリビニルピロリドンおよび溶剤を含む紡糸原液を中空内液とともに紡糸口金から吐出する工程、吐出した原液を凝固させる工程、凝固した中空糸膜を乾燥する工程を少なくとも含む。
本発明で言うポリスルホンポリマー(以下、PSf)とは、スルホン結合を有する高分子結合物の総称であり特に限定されるものではないが、例を挙げると
【化1】

Figure 0004190361
または
【化2】
Figure 0004190361
に示される繰り返し単位をもつポリスルホン系ポリマー樹脂が広く市販されており、入手も容易なため好ましく用いられる。前者の構造を持つポリスルホン樹脂はソルベイ社より「ユーデル」の商標名で、またビー・エー・エス・エフ社より「ウルトラゾーン」の商標名で市販されており、重合度等によっていくつかの種類が存在する。
また、本発明で言うポリビニルピロリドン(以下、PVP)は、N−ビニルピロリドンをビニル重合させた水溶性の高分子化合物であり、アイ・エス・ピー社より「プラスドン」の商標名で、また、ビー・エー・エス・エフ社より「コリドン」の商標名で市販されており、それぞれいくつかの分子量のものがある。
【0019】
中空糸膜の製造方法は、従来一般的に知られている技術である乾湿式製膜技術を利用できる。すなわち、まず、PSfとPVPを両方に共通の溶媒に溶解し、均一な紡糸原液を調整する。このようなPSf及びPVPを共に溶解する共通溶媒としては、例えば、ジメチルアセトアミド(以下、DMAC)、ジメチルスルホキシド、N−メチル−2−ピロリドン、ジメチルホルムアミド、スルホラン、ジオキサン等の溶媒、あるいは上記溶媒2種以上の混合液からなる溶媒が挙げられる。なお、孔径制御のため、紡糸原液には水などの添加物を加えても良い。
中空糸を製膜するに際しては、チューブインオリフィス型の紡糸口金を用い、該紡糸口金のオリフィスから紡糸原液を、チューブから該紡糸原液を凝固させる為の中空内液とを同時に空中に吐出させる。
中空内液は水、または水を主体とした凝固液が使用でき、目的とする中空糸の膜性能に応じてその組成等は決めていけば良く一概には決められないが、一般的には紡糸原液に使った溶剤と水との混合溶液が好適に使用される。例えば、0〜60重量%のDMAC水溶液などが用いられる。
紡糸口金から中空内液とともに吐出された紡糸原液は、空走部を走行させ、紡糸口金下部に設置した水を主体とする凝固浴中へ導入、浸漬して凝固を完了させ、洗浄工程等を経て、湿潤状態の中空糸膜巻き取り機で巻き取り、中空糸膜の束を得る。
【0020】
次に、この中空糸を乾燥し、容器内に配置するが、本発明でいうPVP-UFRが束外周部より束中心部に向かって大きくなる中空糸束を作成するには、大きく2つの方法がある。
1つには、PVP-UFRの大きさが異なる中空糸を作成してこれらを順に配置する方法である。例えば大、中、小の中空糸を作成しておき、容器の中心部にPVP-UFRが大のものを、外周部に小のものを、その中間に中のものを配することによって作成できる。
また、2つ目の方法としては、湿潤状態の中空糸束の乾燥工程において、束長手方向に熱風が流れるように乾燥機内に設置し、熱風乾燥を行う。これにより、束外周部より束中心部に向かってPVP-UFRが間断なく連続的に大きくなった中空糸束を作成することができる点および作成が簡易である点でより望ましい。そして、この時束前後の差圧を100Pa以上800Pa以下にする事がβ2ミクログロブリン透過性、アルブミン非透過性の点で重要である。
差圧が100Pa以下では乾燥に時間がかかり、また、束外周部から束中心部に向けてのPVP-UFRの変化が小さくなること、また、800Pa以上では束が乱れ、実用的でない事に加え、束内外のPVP-UFRの差がつきすぎて、逆にこれらの分子量分画特性が低下するからである。これは、束中心部のアルブミン篩係数をアルブミンが十分透過できる程大きくしなければ血液浄化器として所定のβ2ミクログロブリンクリアランスを出せなくなるからである。
【0021】
この時、熱風乾燥前の中空糸の含水率を10%〜90%にしておくとより効果的である。通常、熱水洗浄後の中空糸の含水率は300%程度であるが、10%〜90%の含水率にする事で熱風乾燥時における束内外の乾燥速度の勾配を緩やかにする事ができるため、よりPVP-UFRを制御しやすくなる。中空糸の含水率を10%〜90%にする方法はマイクロウェーブの照射、遠赤外線の照射、熱処理等あるが、束内外の含水率を均一に保ちながら含水率を制御することができるマイクロウェーブ照射が好ましい。
ここでいう含水率とは下式(4)で示される。
含水率=100×{(乾燥前束重量)−(乾燥後束重量)}/乾燥後束重量(4)
【0022】
熱風乾燥時の束長手方向の束前後の差圧(熱風の上流側と下流側の差圧)が大きい程、束外周部から束中心部に向けてのPVP-UFRの変化が大きくなるが、これは、束の乾燥が束外周部より起こり、徐々に束中心部に向けて乾燥していく事による、乾燥速度の違いがPVP-UFRに影響するためと考えられる。
ここで、乾燥とはそれ以上乾燥を継続してもその乾燥工程の雰囲気下ではそれ以上重量変化を起こさなくなるまで水分を除去した状態であると定義しておく。また、乾燥時には、束の形状保持のため、シート等で束を覆って支えても構わない。
【0023】
【実施例】
以下に実施例及び比較例を用いて本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。
【実施例1】
ポリスルホン樹脂(ソルベイ社製、P−1700)18重量部、ポリビニルピロリドン(アイ・エス・ピー社製、K−90)3.6重量部、ジメチルアセトアミド(以下、DMAC)78.4重量部からなる均一な紡糸原液を作成した。中空内液にはDMAC52%水溶液(中空内液濃度は52%となる)を用い、スリット幅50μmの紡糸口金から吐出させた。80cm下方に設けた水を主体とした凝固浴に浸漬し、60.0m/分の速度で巻き取った。尚、膜厚を45μm、内径を200μmに合わせるように紡糸原液、中空内液の吐出量を調製た。9200フィラメント巻き取ったところで、束を35cmの長さに切り出し、90℃の熱水シャワーで洗浄し、湿潤状態の中空糸束を得た。0.3kWのマイクロウェーブを14min照射し、含水率を測定したところ、11.5%であった。この中空糸束を熱風乾燥器に挿入し、85℃、300Paの束前後の差圧で1時間乾燥し、乾燥束を得た。乾燥束は図1に示すようにサンプリングし、ミニモジュールを作成して、PVP−UFRの測定および、人血清を用いた篩係数の測定を行った。結果を表1に示す。また、同様の方法で作成した束をスチレン樹脂のケースに挿入し、ポリウレタン系のポッティング剤を用いて、遠心接着を行って血液浄化器を得、モジュール評価を行った。測定結果を表1に示す。
【0024】
【表1】
Figure 0004190361
【0025】
【実施例2】
マイクロウェーブ照射時間を11minにした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。この時、マイクロウェーブ照射後の含水率は85%であった。測定結果を表1に示す。
【0026】
【実施例3】
マイクロウェーブ照射を行わず、熱風乾燥時間を8時間にした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。この時、熱風乾燥前含水率は265%であった。測定結果を表1に示す。
【0027】
【実施例4】
熱風乾燥時の束前後の差圧を700Paにした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。測定結果を表1に示す。
【0028】
【実施例5】
熱風乾燥時の束前後の差圧を100Paにした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。測定結果を表1に示す。
【0029】
【実施例6】
中空内液濃度を50wt%にした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。測定結果を表1に示す。
【0030】
【比較例1】
熱風乾燥時の束前後の差圧を50Paとした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。測定結果を表1に示す。
【0031】
【比較例2】
熱風乾燥時の束前後の差圧を900Paとした以外は実施例1と同様の方法で中空糸膜及び血液浄化器を得た。測定結果を表1に示す。
【0032】
【比較例3】
実施例1で巻き取った中空糸を単糸にして85℃で3時間乾燥し、乾燥後再び束としてミニモジュール評価及び血液浄化器のモジュール評価を行った。なお、マイクロウェーブ照射は行っていない。測定結果を表1に示す。
【0033】
【比較例4】
DMAC54%水溶液(中空内液濃度は54wt%となる)とした以外は実施例1と同様の方法で巻き取り、巻き取った中空糸を単糸にて85℃で3時間乾燥し、乾燥後再び束としてミニモジュール評価及び血液浄化器のモジュール評価を行った。なお、マイクロウェーブ照射は行っていない。測定結果を表1に示す。
【0034】
【発明の効果】
本発明により、従来では達成できなかったβ2ミクログロブリンのような低分子蛋白をよく除去でき、アルブミンのような有用蛋白は除去しない、という分子量分画特性に優れる血液浄化器、これに用いる中空糸束、それらの製造方法を提供する事ができた。
【図面の簡単な説明】
【図1】実施例、比較例における中空糸のサンプリング位置を示す模式図である。
【符号の説明】
1:束外周部
2:束中間部
3:束中心部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hollow fiber type body fluid treatment device, a hollow fiber bundle used therefor, and a method for producing them.
[0002]
[Prior art]
Conventionally, membrane materials mainly composed of polymers such as cellulose, cellulose acetate, polyamide, polyacrylonitrile, polymethyl methacrylate, and polysulfone have been used as hollow fiber membranes for blood purification. Then, polysulfone-based hollow fiber membranes, which are excellent in biocompatibility and excellent in molecular weight fractionation properties, have rapidly spread. And many techniques are known about the manufacturing method of the polysulfone type | system | group hollow fiber membrane for blood purification, For example, the manufacturing method is described in patent documents 1-3.
On the other hand, in recent years, as a cause of complications in patients undergoing long-term dialysis therapy, accumulation of low molecular weight proteins such as β2 microglobulin is regarded as a problem, and it is possible to efficiently remove these low molecular weight proteins from blood. Blood processor is desired.
The conventional technology has not been sufficiently examined for the fractionation characteristics of blood processing devices that can remove low molecular weight proteins such as β2 microglobulin well, and that useful proteins such as albumin are not removed. It was not a thing. That is, if the permeation performance of the hollow fiber membrane is improved to improve the removal of low molecular weight proteins, leakage of useful proteins such as albumin becomes a problem.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2-18695 [Patent Document 2]
Japanese Patent Publication No. 5-54373 [Patent Document 3]
JP-A-6-165926
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention is a body fluid treatment device excellent in molecular weight fractionation characteristics, among which low molecular proteins such as β2 microglobulin can be well removed, and useful proteins such as albumin are not removed. It is an object of the present invention to provide a body fluid treatment device excellent in molecular weight fractionation characteristics, a hollow fiber bundle used therefor, and a method for producing them.
[0005]
[Means for Solving the Problems]
As a result of diligent studies to achieve the above-mentioned problems, the inventors of the present invention have achieved a much higher molecular weight fraction than in the past by using a body fluid treatment device in which the PVP-UFR is enlarged from the outer periphery of the bundle toward the center of the bundle. It has been found that a blood purification membrane having excellent characteristics can be provided.
That is, the present invention
(1) A body fluid treatment device in which a hollow fiber bundle is loaded in a container and partitioned into a hollow fiber inner space and a space formed between a hollow fiber outer side and a container inner wall,
Body fluid treatment device characterized in that PVP-UFR is larger in the center of the bundle than in the outer periphery of the bundle.
(2) Furthermore, the sieve coefficient of β2 microglobulin of the hollow fiber existing in the hollow fiber bundle center is 0.85 or more, and the sieve coefficient of albumin is 0.01 or less. Body fluid processor.
(3) The body fluid treatment device according to (1) or (2) above, wherein the difference in PVP-UFR between the outer periphery of the bundle and the center of the bundle is 2 or more and 13 or less.
(4) The body fluid treatment device according to any one of (1) to (3) above, wherein PVP-UFR is continuously increased from the outer periphery of the bundle toward the center of the bundle.
(5) A body fluid treatment device in which a hollow fiber bundle is loaded in a container and partitioned into a hollow fiber inner space and a space formed between a hollow fiber outer side and an inner wall of the container,
A body fluid treatment device obtained by drying a wet hollow fiber bundle by flowing hot air in the longitudinal direction of the bundle so that the differential pressure before and after the longitudinal direction of the bundle is 100 Pa or more and 800 Pa or less.
(6) Any of the above (1) to (5), wherein the sieve coefficient of β2 microglobulin of the hollow fiber existing on the outer periphery of the bundle is 0.7 or more and the sieve coefficient of albumin is 0.003 or less The body fluid treatment device according to claim 1.
(7) The body fluid treatment device according to any one of (1) to (6), wherein the clearance of β2 microglobulin in the body fluid treatment device is 25 ml / min or more and the sieve coefficient of albumin is 0.05 or less.
(8) The body fluid treatment device according to any one of (1) to (7), wherein the hollow fiber is made of a polysulfone-based polymer.
(9) The method for manufacturing a body fluid treatment device according to any one of (1) to (8) above,
A method for producing a bodily fluid treatment device, characterized by drying by flowing hot air in a longitudinal direction so that a differential pressure before and after the longitudinal direction of a hollow fiber bundle in a wet state is 100 Pa or more and 800 Pa or less.
(10) The production method according to (9), wherein the moisture content of the hollow fiber bundle in a wet state is set to 10% to 90% by microwave before flowing hot air.
[0006]
According to the present invention, it is not always clear about the mechanism of action that improves the fractionation characteristics of a body fluid treatment device, such that low molecular weight proteins such as β2 microglobulin can be removed well and useful proteins such as albumin are not removed. Absent. However, the present inventors reduced the sieving coefficient at the outer periphery of the hollow fiber bundle, increased the sieving coefficient at the center, and increased PVP-UFR from the outer periphery of the bundle toward the center. We believe that the characteristics have been improved. That is, in view of the balance between the blood flow velocity distribution and the dialysate flow rate distribution on the outer periphery and inner periphery of the bundle, it is considered that positive filtration is performed at the center of the bundle and active diffusion is performed at the outer periphery of the bundle.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The bodily fluid treatment device of the present invention is a module (blood purifier) for filtering blood and / or purifying blood by dialysis like a hemodialyzer and hemofiltration dialyzer, and a hollow fiber bundle is loaded in the container And a space partitioned between a hollow fiber inner space, a hollow fiber outer space, and a container inner wall. For example, the dried hollow fiber bundle is inserted into a cylindrical container made of resin, the end of the hollow fiber bundle is bonded to the end of the container using a potting agent such as polyurethane, and then the bonded end surface is cut so that the inside of the hollow fiber is hollow fiber. It is obtained by opening to the outside and mounting a header.
In addition to blood purification, it can also be used as a plasma component separator. For example, blood is once separated into a plasma component and a blood cell component, and this plasma component is further separated by the body fluid treatment device of the present invention. In this case, it is desirable that albumin has a high sieving coefficient and immunoglobulin-M has a low sieving coefficient.
Hereinafter, a blood purifier will be described as an example of the body fluid treatment device.
[0008]
In the present invention, PVP-UFR needs to increase from the outer periphery of the bundle toward the center of the bundle. Preferably, PVP-UFR is continuously increased. Furthermore, it is desirable that the sieve coefficient of a predetermined substance is within a predetermined range as required, and that PVP-UFR is within a predetermined range.
PVP-UFR as used in the present invention is a numerical value that can be measured by the following method. The size of PVP-UFR corresponds to the pore size of the hollow fiber membrane, and has a positive correlation with the sieve coefficient of β2 microglobulin. It is useful as an index for easily knowing the pore diameter of the hollow fiber membrane.
[0009]
[Measurement method of PVP-UFR]
A mini-module is made by sampling about 200 hollow fibers in the dry state from the center, outer periphery, or middle part. Polyvinylpyrrolidone having a weight average molecular weight of about 40,000 (PVP: K-30: manufactured by ISP) Is filtered from the inside to the outside of the hollow fiber by the flow method at a transmembrane differential pressure of 200 mmHg while passing a solution of 3% by weight in a 1/15 (mol / L) phosphate buffer solution. The ultrafiltration rate (unit: ml / Hr / m 2 / mmHg) obtained at this time is determined, and this value is defined as PVP-UFR.
[0010]
In addition, the bundle outer peripheral portion referred to here means the outer peripheral portion of the bundle in a range in which hollow fibers can be collected uniformly only from the outer periphery of the bundle so that the number of hollow fibers is about 1,000, and the bundle central portion refers to the center of the bundle. This refers to the central part of a bundle where about a thousand hollow fibers can be collected.
In order to confirm that the PVP-UFR increases from the outer periphery of the bundle toward the center of the bundle, in addition to the outer periphery of the bundle and the central portion of the bundle, the PVP-UFR of the intermediate portion of the bundle located between both It is preferable to measure and confirm by comparing PVP-UFR at at least three positions.
[0011]
Here, in order to efficiently remove β2 microglobulin, PVP-UFR is preferably 15 ml / Hr / m 2 / mmHg or more, but conversely, if PVP-UFR is too high, albumin which is a useful protein since leakage may become level clinically relevant, in the conventional film formation techniques the upper limit of about 35ml / Hr / m 2 / mmHg , balance between 15~35ml / Hr / m 2 / mmHg It is important to take the film and design the film.
It is necessary that the central portion is larger between the outer peripheral portion and the central portion of the PVP-UFR, and the difference is desirably 2 or more and 13 or less. More preferably, it is 4 or more and 10 or less.
[0012]
[Method for measuring sieve coefficient of β2 microglobulin and albumin]
A person who sampled about 200 dry hollow fibers from the center, outer periphery, or middle to make a mini module and added physiological saline to it to adjust the total protein concentration to 6.5 g / dl A solution in which β2-microglobulin was added to serum to a concentration of 5 mg / L was passed at a linear velocity of 0.4 cm / sec, and a filtrate was collected by applying a transmembrane differential pressure of 25 mmHg, and β2- The microglobulin and albumin concentrations were measured, and the sieve coefficient was calculated from the following equation (1).
Sieve coefficient = concentration of filtrate / concentration of original solution (1)
The concentrations of β2-microglobulin and albumin were determined by enzyme immunoassay (EIA) method and bromcresol green (BCG) method, respectively.
[0013]
In the present invention, the sieve coefficient of β2 microglobulin in the hollow fiber bundle at the center of the hollow fiber bundle needs to be 0.85 or more, and the sieve coefficient of albumin needs to be 0.01 or less.
If the β2 microglobulin sieving coefficient is less than 0.85, the removal efficiency of β2 microglobulin as a blood purifier will be low, and if the albumin sieving coefficient is greater than 0.01, albumin from the blood purifier will not be removed. Leakage will increase.
In the present invention, the β2 microglobulin sieve coefficient of the hollow fiber existing at the center of the hollow fiber bundle needs to be 0.85 or more, preferably 0.90 or more, and more preferably 0.95 or more. The sieve coefficient of albumin needs to be 0.01 or less, preferably 0.008 or less, and more preferably 0.005 or less.
[0014]
In the present invention, it is preferable that the sieve coefficient of β2 microglobulin in the hollow fiber existing on the outer periphery of the bundle is 0.7 or more and the sieve coefficient of albumin is 0.003 or less. In the present invention, both the β2 microglobulin sieve coefficient and the albumin coefficient of albumin of the hollow fiber present in the bundle outer peripheral portion are smaller than the hollow fiber present in the bundle central portion. This is because the PVP-UFR increases from the outer periphery of the bundle toward the center of the bundle. This can suppress excessive loss of albumin. The sieving coefficient of β2 microglobulin in the hollow fiber existing on the outer periphery of the bundle is preferably 0.74 or more, and more preferably 0.79 or more. The sieve coefficient of albumin is preferably 0.002 or less, and more preferably 0.001 or less.
[0015]
In the present invention, the material of the hollow fiber is not particularly limited, but for example, a hollow fiber mainly composed of a polymer such as cellulose, cellulose acetate, polyamide, polyacrylonitrile, polymethyl methacrylate, polysulfone and the like. Mention may be made of membrane materials. Among these, in view of the ease of adjusting the molecular weight fractionation characteristics, the stability of the membrane, the ease of adjusting the blood compatibility, etc., it is preferably a hollow fiber made of a polysulfone-based polymer, especially polysulfone and polyvinyl. A hollow fiber made of pyrrolidone is preferred.
[0016]
[Measurement of β2 microglobulin clearance and sieving coefficient of albumin in blood purifiers]
The hollow fiber bundle obtained by drying is inserted into a cylindrical resin container, and the end of the hollow fiber bundle and the end of the container are bonded using a polyurethane potting agent. At this time, the number of hollow fibers is aligned so that the membrane area becomes 1.5 m 2 . 9,000 to 10,000 hollow fibers were filled. After bonding, the end face was cut, the hollow fiber was opened, the header was attached, and a modular blood purifier was obtained.
Β2 microglobulin (manufactured by Eiken Chemical Co., Ltd.) was added to bovine plasma adjusted to a total protein concentration of 6.5 ± 0.5 g / dL with physiological saline, and the flow rate was 200 ml / min. Circulate the blood side of the blood purifier for 1 hour. One hour later, dialysate is flowed to the dialysate side at a flow rate of 500 ml / min in one pass, sampling is performed, the clearance of β2 microglobulin is calculated by the following equation (2), and the sieving coefficient of albumin by the following equation (3) Is calculated.
β2 microglobulin clearance = (QBin x CBin-QBout x CBout) / CBin (2)
QBin: Blood purifier blood side inlet flow rate CBin: Blood purifier blood side inlet β2 microglobulin concentration QBout: Blood purifier blood side outlet flow rate
CBout: Blood purification Blood side-exit β2 microglobulin mouth concentration β2 microglobulin concentration was measured with β2LX reagent (Eiken Chemical).
Screening coefficient of albumin = albumin concentration in filtrate / albumin concentration in original solution (3)
The concentration of albumin was measured with a laser neferometer (Eiken Chemical Co., Ltd.).
[0017]
In the blood purifier of the present invention, the clearance of β2 microglobulin is preferably 25 ml / min or more and the sieve coefficient of albumin is preferably 0.05 or less.
By adopting the configuration of the present invention, blood purification that can achieve a low albumin permeability such that the sieving coefficient of albumin is 0.05 or less, even though the clearance of β2 microglobulin shows a high value of 25 ml / min or more. A vessel is obtained. This is because the blood purifier of the present invention has a structure in which the PVP-UFR becomes larger from the outer periphery of the bundle toward the center of the bundle, so that albumin having a higher molecular weight than β2 microglobulin is formed toward the outer periphery of the bundle. This is probably because the degree to which the sieving coefficient becomes smaller becomes larger and albumin hardly leaks.
In the present invention, the clearance of β2 microglobulin in the blood purifier is preferably 35 ml / min or more, and more preferably 45 ml / min or more. Further, the sieving coefficient of albumin in the blood purifier is preferably 0.04 or less, and more preferably 0.03 or less.
[0018]
Next, taking a hollow fiber made of polysulfone and polyvinylpyrrolidone as an example, the main production method of the blood purifier of the present invention will be described.
The hollow fiber includes at least a step of discharging a spinning stock solution containing polysulfone, polyvinyl pyrrolidone and a solvent together with the hollow inner solution from the spinneret, a step of solidifying the discharged stock solution, and a step of drying the solidified hollow fiber membrane.
The polysulfone polymer (hereinafter referred to as PSf) referred to in the present invention is a general term for polymer conjugates having a sulfone bond, and is not particularly limited.
Figure 0004190361
Or [Chemical 2]
Figure 0004190361
A polysulfone-based polymer resin having a repeating unit represented by the formula (1) is widely available on the market and is preferably used because it is easily available. The polysulfone resin having the former structure is commercially available from Solvay under the “Udel” trade name and from BSF Corporation under the “Ultrazone” trade name. Exists.
In addition, polyvinylpyrrolidone (hereinafter referred to as PVP) referred to in the present invention is a water-soluble polymer compound obtained by vinyl polymerization of N-vinylpyrrolidone. It is commercially available under the trade name “Collidon” from BSF, and has several molecular weights.
[0019]
As a method for producing a hollow fiber membrane, a dry and wet membrane forming technique that is a generally known technique can be used. That is, first, PSf and PVP are dissolved in a common solvent to prepare a uniform spinning solution. Examples of the common solvent for dissolving both PSf and PVP include dimethylacetamide (hereinafter referred to as DMAC), dimethyl sulfoxide, N-methyl-2-pyrrolidone, dimethylformamide, sulfolane, dioxane and the like, or the above solvent 2 The solvent which consists of a liquid mixture of a seed | species or more is mentioned. In order to control the pore size, additives such as water may be added to the spinning dope.
When a hollow fiber is formed into a film, a tube-in-orifice type spinneret is used, and a spinning stock solution is discharged from the spinneret orifice and a hollow internal solution for coagulating the spinning stock solution is simultaneously discharged into the air from the tube.
As the hollow inner liquid, water or a coagulating liquid mainly composed of water can be used, and its composition etc. should be determined according to the membrane performance of the target hollow fiber, but generally it cannot be determined. A mixed solution of the solvent used in the spinning dope and water is preferably used. For example, a 0 to 60% by weight aqueous DMAC solution is used.
The spinning dope discharged from the spinneret together with the hollow inner liquid travels through the idle running part and is introduced into the coagulation bath mainly composed of water installed at the bottom of the spinneret to complete the coagulation. Then, it winds up with the wet hollow fiber membrane winder, and obtains a bundle of hollow fiber membranes.
[0020]
Next, this hollow fiber is dried and placed in a container. In order to create a hollow fiber bundle in which the PVP-UFR referred to in the present invention becomes larger from the outer peripheral part of the bundle toward the central part of the bundle, there are two methods. There is.
One is a method of creating hollow fibers having different sizes of PVP-UFR and arranging them in order. For example, you can create large, medium, and small hollow fibers by placing a large PVP-UFR at the center of the container, a small one at the outer periphery, and a medium one in the middle. .
As a second method, in the drying process of the wet hollow fiber bundle, it is installed in a dryer so that hot air flows in the longitudinal direction of the bundle, and hot air drying is performed. Thus, it is more preferable in that a hollow fiber bundle in which PVP-UFR continuously increases from the outer periphery of the bundle toward the center of the bundle can be created without any interruption, and the creation is simple. And, it is important from the viewpoint of β2 microglobulin permeability and albumin non-permeability that the differential pressure before and after the flux is 100 Pa or more and 800 Pa or less.
When the differential pressure is 100 Pa or less, drying takes time, and the change in PVP-UFR from the outer periphery of the bundle toward the center of the bundle becomes small. In addition, when the pressure exceeds 800 Pa, the bundle is disturbed and is not practical. This is because the difference in PVP-UFR between the inside and outside of the bundle is too great, and conversely, these molecular weight fractionation characteristics deteriorate. This is because a predetermined β2 microglobulin clearance cannot be obtained as a blood purifier unless the albumin sieving coefficient at the center of the bundle is sufficiently increased to allow albumin to permeate.
[0021]
At this time, it is more effective to set the water content of the hollow fiber before hot air drying to 10% to 90%. Usually, the moisture content of the hollow fiber after hot water washing is about 300%, but by making the moisture content 10% to 90%, the gradient of the drying speed inside and outside the bundle during hot air drying can be made gentle. Therefore, it becomes easier to control the PVP-UFR. There are microwave irradiation, far-infrared irradiation, heat treatment, etc. to make the moisture content of the hollow fiber 10% to 90%, but the microwave can control the moisture content while keeping the moisture content inside and outside the bundle uniform. Irradiation is preferred.
The moisture content here is expressed by the following formula (4).
Water content = 100 × {(bundle weight before drying) − (bundle weight after drying)} / bundle weight after drying (4)
[0022]
The larger the differential pressure before and after the bundle in the longitudinal direction of the bundle during hot air drying (the differential pressure between the upstream and downstream sides of the hot air), the greater the change in PVP-UFR from the outer periphery of the bundle toward the center of the bundle. This is presumably because the drying of the bundle occurs from the outer periphery of the bundle and the difference in drying speed due to the gradual drying toward the center of the bundle affects the PVP-UFR.
Here, drying is defined as a state in which moisture is removed until no further weight change occurs in the atmosphere of the drying process even if drying is continued further. Further, at the time of drying, in order to maintain the shape of the bundle, the bundle may be covered and supported by a sheet or the like.
[0023]
【Example】
Hereinafter, the present invention will be described in detail using Examples and Comparative Examples, but the present invention is not limited thereto.
[Example 1]
It consists of 18 parts by weight of a polysulfone resin (manufactured by Solvay, P-1700), 3.6 parts by weight of polyvinylpyrrolidone (manufactured by ISP, K-90), and 78.4 parts by weight of dimethylacetamide (hereinafter, DMAC). A uniform spinning stock solution was prepared. As the hollow inner liquid, a DMAC 52% aqueous solution (the hollow inner liquid concentration becomes 52%) was discharged from a spinneret having a slit width of 50 μm. It was immersed in a coagulation bath mainly composed of water provided below 80 cm and wound up at a speed of 60.0 m / min. The discharge amount of the spinning dope and the hollow inner solution was adjusted so that the film thickness was 45 μm and the inner diameter was 200 μm. When the 9200 filament was wound, the bundle was cut into a length of 35 cm and washed with a hot water shower at 90 ° C. to obtain a wet hollow fiber bundle. A 0.3 kW microwave was irradiated for 14 min and the water content was measured and found to be 11.5%. This hollow fiber bundle was inserted into a hot air drier and dried for 1 hour at a differential pressure around the bundle of 85 ° C. and 300 Pa to obtain a dried bundle. The dried bundle was sampled as shown in FIG. 1, mini-modules were prepared, and PVP-UFR measurement and sieve coefficient measurement using human serum were performed. The results are shown in Table 1. Further, a bundle prepared by the same method was inserted into a styrene resin case, and a blood purifier was obtained by centrifugal adhesion using a polyurethane potting agent, and module evaluation was performed. The measurement results are shown in Table 1.
[0024]
[Table 1]
Figure 0004190361
[0025]
[Example 2]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the microwave irradiation time was 11 minutes. At this time, the water content after microwave irradiation was 85%. The measurement results are shown in Table 1.
[0026]
[Example 3]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that microwave irradiation was not performed and the hot air drying time was 8 hours. At this time, the water content before drying with hot air was 265%. The measurement results are shown in Table 1.
[0027]
[Example 4]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the differential pressure before and after the bundle during hot air drying was set to 700 Pa. The measurement results are shown in Table 1.
[0028]
[Example 5]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the differential pressure before and after the bundle during hot air drying was 100 Pa. The measurement results are shown in Table 1.
[0029]
[Example 6]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the hollow liquid concentration was 50 wt%. The measurement results are shown in Table 1.
[0030]
[Comparative Example 1]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the differential pressure before and after the bundle during hot air drying was 50 Pa. The measurement results are shown in Table 1.
[0031]
[Comparative Example 2]
A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except that the differential pressure before and after the bundle during hot air drying was set to 900 Pa. The measurement results are shown in Table 1.
[0032]
[Comparative Example 3]
The hollow fiber wound up in Example 1 was made into a single yarn and dried at 85 ° C. for 3 hours, and after drying, the bundle was evaluated again as a mini-module and a blood purifier module. Microwave irradiation is not performed. The measurement results are shown in Table 1.
[0033]
[Comparative Example 4]
The wound hollow fiber was wound up in the same manner as in Example 1 except that it was a DMAC 54% aqueous solution (the concentration in the hollow liquid was 54 wt%), and the wound hollow fiber was dried at 85 ° C. for 3 hours as a single yarn, and again after drying As a bundle, mini-module evaluation and blood purifier module evaluation were performed. Microwave irradiation is not performed. The measurement results are shown in Table 1.
[0034]
【The invention's effect】
According to the present invention, a blood purifier having excellent molecular weight fractionation characteristics that can well remove low molecular weight proteins such as β2 microglobulin, which could not be achieved by the prior art, and does not remove useful proteins such as albumin, and hollow fibers used therefor I was able to provide a bundle and a method for manufacturing them.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing sampling positions of hollow fibers in Examples and Comparative Examples.
[Explanation of symbols]
1: bundle outer peripheral part 2: bundle middle part 3: bundle central part

Claims (10)

容器に中空糸束が装填され、中空糸内側空間と中空糸外側−容器内壁間に形成される空間とに仕切られている体液処理器であって、
PVP-UFRが束外周部よりも束中心部の方が大きい事を特徴とする体液処理器。
A bodily fluid treatment device in which a hollow fiber bundle is loaded in a container and partitioned into a hollow fiber inner space and a space formed between the hollow fiber outer side and the inner wall of the container,
Body fluid treatment device characterized in that PVP-UFR is larger in the center of the bundle than in the outer periphery of the bundle.
さらに、中空糸束中心部に存在する中空糸のβ2ミクログロブリンの篩係数が0.85以上、アルブミンの篩係数が0.01以下である事を特徴とする請求項1に記載の体液処理器。2. The body fluid treatment device according to claim 1, wherein the sieving coefficient of β2 microglobulin in the hollow fiber bundle center portion is 0.85 or more and the sieving coefficient of albumin is 0.01 or less. . 束外周部と束中心部におけるPVP-UFRの差が2以上13以下である事を特徴とする請求項1又は2に記載の体液処理器。3. The body fluid treatment device according to claim 1, wherein the difference in PVP-UFR between the outer periphery of the bundle and the center of the bundle is 2 or more and 13 or less. PVP-UFRが束外周部から束中心部へ向けて連続的に大きくなっていることを特徴とする請求項1〜3のいずれかに記載の体液処理器。The body fluid treatment device according to any one of claims 1 to 3, wherein PVP-UFR continuously increases from the outer periphery of the bundle toward the center of the bundle. 容器に中空糸束が装填され、中空糸内側空間と中空糸外側−容器内壁間に形成される空間とに仕切られている体液処理器であって、
湿潤状態の中空糸束を、束長手方向前後の差圧が100Pa以上800Pa以下になるように束長手方向に熱風を流して乾燥することにより得られる体液処理器。
A bodily fluid treatment device in which a hollow fiber bundle is loaded in a container and partitioned into a hollow fiber inner space and a space formed between the hollow fiber outer side and the inner wall of the container,
A body fluid treatment device obtained by drying a wet hollow fiber bundle by flowing hot air in the longitudinal direction of the bundle so that the differential pressure before and after the longitudinal direction of the bundle is 100 Pa or more and 800 Pa or less.
束外周部に存在する中空糸のβ2ミクログロブリンの篩係数が0.7以上、アルブミンの篩係数が0.003以下であることを特徴とする請求項1〜5のいずれかに記載の体液処理器。The body fluid treatment according to any one of claims 1 to 5, wherein the sieving coefficient of β2 microglobulin of the hollow fiber existing in the outer periphery of the bundle is 0.7 or more and the sieving coefficient of albumin is 0.003 or less. vessel. 体液処理器のβ2ミクログロブリンのクリアランスが25ml/min以上、アルブミンの篩係数が0.05以下である請求項1〜6の何れかに記載の体液処理器。The body fluid treatment device according to any one of claims 1 to 6, wherein the clearance of β2 microglobulin of the body fluid treatment device is 25 ml / min or more and the sieve coefficient of albumin is 0.05 or less. 中空糸がポリスルホン系ポリマーからなる請求項1〜7のいずれかに記載の体液処理器。The body fluid treatment device according to any one of claims 1 to 7, wherein the hollow fiber is made of a polysulfone-based polymer. 請求項1〜8の何れかに記載の体液処理器の製造方法であって、
湿潤状態の中空糸束の長手方向前後の差圧が100Pa以上800Pa以下になるように長手方向に熱風を流して乾燥することを特徴とする体液処理器の製造方法。
A method for manufacturing a body fluid treatment device according to claim 1,
A method for producing a bodily fluid treatment device, characterized by drying by flowing hot air in a longitudinal direction so that a differential pressure before and after the longitudinal direction of a hollow fiber bundle in a wet state is 100 Pa or more and 800 Pa or less.
熱風を流す前に、マイクロウェーブにより湿潤状態の中空糸束の含水率を10%〜90%にすることを特徴とする請求項9に記載の製造方法。The method according to claim 9, wherein the moisture content of the hollow fiber bundle in a wet state is set to 10% to 90% by microwave before flowing hot air.
JP2003175933A 2003-06-20 2003-06-20 Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them Expired - Fee Related JP4190361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175933A JP4190361B2 (en) 2003-06-20 2003-06-20 Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175933A JP4190361B2 (en) 2003-06-20 2003-06-20 Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them

Publications (2)

Publication Number Publication Date
JP2005007004A JP2005007004A (en) 2005-01-13
JP4190361B2 true JP4190361B2 (en) 2008-12-03

Family

ID=34098944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175933A Expired - Fee Related JP4190361B2 (en) 2003-06-20 2003-06-20 Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them

Country Status (1)

Country Link
JP (1) JP4190361B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843988B2 (en) * 2005-04-05 2011-12-21 東洋紡績株式会社 Polysulfone hollow fiber membrane blood purifier
KR100752172B1 (en) * 2005-12-29 2007-08-24 동부일렉트로닉스 주식회사 How to Form Contact Holes
KR100752175B1 (en) * 2005-12-29 2007-08-24 동부일렉트로닉스 주식회사 Patterning method of thin film using plasma reaction byproduct
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane
JP6190714B2 (en) * 2013-12-16 2017-08-30 旭化成メディカル株式会社 Hollow fiber membrane blood purification device

Also Published As

Publication number Publication date
JP2005007004A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
US20120145631A1 (en) Perm Selective Asymmetric Hollow Fibre Membrane for the Separation of Toxic Mediators From Blood
JPH06205954A (en) New high flux hollow fiber membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
US10888823B2 (en) Membrane with improved permeability and selectivity
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
AU672856B2 (en) High flux hollow fiber membrane
JP2000140589A (en) Porous polysulfone film
JP3934340B2 (en) Blood purifier
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3253861B2 (en) Permselective hollow fiber membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPH10263375A (en) Selective permeable hollow fiber membrane
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JP3594946B2 (en) High performance microfiltration membrane
JPH09220455A (en) Hollow yarn type selective separation membrane
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP2001038171A (en) Hollow fiber membrane
JPH09308684A (en) Selective separating membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPH10109023A (en) Hollow fiber type selective separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees