[go: up one dir, main page]

JPH0461154A - Thin-film transistor device - Google Patents

Thin-film transistor device

Info

Publication number
JPH0461154A
JPH0461154A JP2165106A JP16510690A JPH0461154A JP H0461154 A JPH0461154 A JP H0461154A JP 2165106 A JP2165106 A JP 2165106A JP 16510690 A JP16510690 A JP 16510690A JP H0461154 A JPH0461154 A JP H0461154A
Authority
JP
Japan
Prior art keywords
channel
gate electrode
length
effect transistor
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2165106A
Other languages
Japanese (ja)
Other versions
JP2973479B2 (en
Inventor
Akeshi Kawamura
河村 明士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2165106A priority Critical patent/JP2973479B2/en
Publication of JPH0461154A publication Critical patent/JPH0461154A/en
Application granted granted Critical
Publication of JP2973479B2 publication Critical patent/JP2973479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To equalize the effective channel length of both FETs approximately by mutually making gate electrode length differ in thin-film semiconductors formed to a common semiconductor base body and setting the gate electrode length of the P channel type FET at a value smaller than that of the N channel type FET. CONSTITUTION:In a thin-film transistor device in which a P channel type field- effect transistor FETP and an N channel type field-effect transistor FETN are formed to a thin-film semiconductor 2 formed onto a common base body 1, the gate electrode length LGP of the gate electrode GP of the P channel FETP is selected at a value smaller than that LGN of the gate electrode GN of the N channel FETN. Each source region and drain region 3SP and 3DP, 3Sn and 3DN of the P channel FETP and the N channel FETN are formed in mutually approximately equal channel length LPCH=LNCH by introducing B as a Ptype impurity and As as an N-type impurity while using each gate electrode GP and GN as masks. Accordingly, a C-MOS having approximately equal effective channel length LPCH and LNCH can be acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタ装置特にpチャンネル型MO
3−FET (電界効果トランジスタ)とnチャンネル
型MO5−FETによるいわゆる6MO3等を有する薄
膜トランジスタ装置に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film transistor device, particularly a p-channel type MO
The present invention relates to a thin film transistor device having a so-called 6MO3 etc. formed by a 3-FET (field effect transistor) and an n-channel MO5-FET.

二発胡の概要〕 本発明は、共通の半導体基体に形成された薄膜半導体に
互いにゲート電極長を異にし、pチャンネル型FETの
ゲート電極長がnチアンネル型FETのゲート電極長よ
り小に設定して両FETの有効チャンネル長がほぼ等し
くなるようにする。
Overview of the two-shot Hu] The present invention provides thin film semiconductors formed on a common semiconductor substrate with different gate electrode lengths, and the gate electrode length of a p-channel FET is set smaller than that of an n-channel FET. so that the effective channel lengths of both FETs are approximately equal.

口従来の技術〕 チャンネル長が短い絶縁ゲート型電界効果トランジスタ
MO3−FETを得る場合、通常ゲート電極をマスクと
してその両側に不純物のイオン注入及びアニール処理を
行ってソース及びドレイン領域の形成が行われる。
[Background Art] When obtaining an MO3-FET insulated gate field effect transistor with a short channel length, the source and drain regions are usually formed by implanting impurity ions and annealing on both sides of the gate electrode using the gate electrode as a mask. .

そして共通の半導体基体にpチャンネル型MO5−FE
Tとnチャンネル型MO5−FETとの相補型MO3−
FETすなわちC−MOSを形成する場合、半導体基体
がシリコン(Sl)ウニハチする場合は、そのnチャン
ネル型MO3−FETのソース及びドレインを形成する
n型の不純物例えば^Sよりもpチャンネル型MO3F
ETのソース及びドレインを構成するpチャンネル型F
ETの不純物例えばB、BF、の方がその拡散定数が大
きくなってサイドデイフュージョン量すなわちゲート電
極下に入り込む量が大となることから、両pチャンネル
MO5−FET及びnチャンネルMO3−FETについ
て、そのソース及びドレインを形成するに当ってのマス
クとなるゲート電極長を同等にすると、nチャンネル及
びpチャンネルの両チャンネル長L1゜ヨ及びLPCI
 は、LIIC+1>’LPCM となる。このためサ
イドデイフュージョンを小さくするようなプロセスとす
る方法が採られるが、実際にその制御は難しい。したが
って、一般には、pチャンネル及びnチャンネルの各ゲ
ート電極長Lcp及びLGKをLGP>LGK止して、
サイドデイフュージョンの差の補償を行って結果的に両
チャンネル型のMOS−FETの実効的チャンネル長L
 NCI+及びLpca の均一化をはかっている。
And p-channel type MO5-FE on the common semiconductor substrate.
Complementary type MO3- of T and n-channel type MO5-FET
When forming a FET, that is, a C-MOS, if the semiconductor substrate is silicon (Sl), the n-type impurity forming the source and drain of the n-channel MO3-FET, e.g., p-channel type MO3F, is preferable to S.
p-channel type F that constitutes the source and drain of ET
Since ET impurities such as B and BF have a larger diffusion constant and a larger amount of side diffusion, that is, a larger amount of penetrating under the gate electrode, for both p-channel MO5-FET and n-channel MO3-FET, If the lengths of the gate electrodes used as masks for forming the source and drain are made equal, the channel lengths L1 and LPCI of both the n-channel and p-channel will be the same.
is LIIC+1>'LPCM. For this reason, a method is adopted in which the process reduces side diffusion, but it is difficult to actually control it. Therefore, generally, the respective gate electrode lengths Lcp and LGK of p-channel and n-channel are set such that LGP>LGK,
By compensating for the difference in side diffusion, the effective channel length L of both channel type MOS-FETs is reduced as a result.
Efforts are being made to equalize NCI+ and Lpca.

ところが、薄膜トランジスタにおけるC−MOSを得る
場合において、このようなゲート長関係に選定するとき
両nチャンネルFET及びpチャンネルFETに関して
同一のチャンネル長を得ることができない。
However, when obtaining a C-MOS in a thin film transistor, when selecting such a gate length relationship, it is not possible to obtain the same channel length for both the n-channel FET and the p-channel FET.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明においては、共通の薄膜半導体に、C−MOS等
の互いに導電型を異にするpチャンネル型FETとnチ
ャンネルFETとを有する薄膜トランジスタ装置におい
て、両チャンネル長の均一化をはかる。
In the present invention, in a thin film transistor device including a p-channel FET and an n-channel FET, such as C-MOS, having mutually different conductivity types in a common thin film semiconductor, the lengths of both channels are made uniform.

〔課題を解決するた狛の手段〕[A means to solve problems]

すなわち本発明においては、例えば石英(S102)基
板上に形成した薄膜半導体に対してゲート絶縁層として
のSiO□を介してゲート電極例えば不純物のドープさ
れた多結晶シリコン構成を採る場合、すなわちチャンネ
ル形成部の薄膜半導体が310.によって挟み込まれた
態様を採るとき、そのサイドデイフュージョンが先に述
べた通常のシリコン半導体基板における場合とは異なる
性状を示すことを究明し、これに基づいてpチャンネル
及びnチャンネルに関して同一のチャンネル長を得るこ
とができるようにする。すなわち、本発明においてはn
型の不純物の例えば砒素^Sは、p型の不純物のボロン
Bに比してS10□に対する偏析係数が小さいことによ
って、この3102によって挾み込まれた薄膜半導体に
おいては、Siウェハによる場合とは異なる性状を示す
ことを究明し、これに基づいてチャンネル長の均一化を
はかる。
That is, in the present invention, for example, when a gate electrode, for example, a polycrystalline silicon structure doped with an impurity, is used for a thin film semiconductor formed on a quartz (S102) substrate through SiO□ as a gate insulating layer, that is, channel formation. The thin film semiconductor of the part is 310. It was discovered that when adopting an aspect in which the side diffusion is sandwiched by to be able to obtain That is, in the present invention, n
The type impurity, for example arsenic^S, has a smaller segregation coefficient for S10□ than the p-type impurity boron B, so in the thin film semiconductor sandwiched by this 3102, it is different from that in the case of a Si wafer. We will investigate the fact that they exhibit different properties, and based on this, we will try to make the channel length uniform.

つまり、本発明においては、第1図にその一例の路線的
断面図を示すように、共通の基体(1)上に形成された
薄膜半導体(2)にpチャンネル型電界効果トランジス
タFETp  とnチャンネル型電界効果トランジスタ
FET* とが形成されてなる薄膜トランジスタ装置に
おいて、そのpチャンネルのFET、のゲート電極Gp
 のゲート電極長LGpがnチャンネルF E THの
ゲート電極G。のゲート電極長LGNより小に選定する
。そしてpチャンネルのFET、およびnチャンネルの
FET、の各ソース領域及びドレイン領域(3S、)及
び(3DP)。
That is, in the present invention, as shown in FIG. 1, which is an example of a cross-sectional view, a p-channel field effect transistor FETp and an n-channel In a thin film transistor device formed with a type field effect transistor FET*, the gate electrode Gp of the p-channel FET is
The gate electrode G of the n-channel F E TH has a gate electrode length LGp. The gate electrode length LGN is selected to be smaller than the gate electrode length LGN. and source and drain regions (3S, ) and (3DP) of a p-channel FET and an n-channel FET, respectively.

(33N)及び(3[1,)を、それぞれそのゲート電
極Gp及びGKをマスクとしてp型の不純物の例えばB
とn型の不純物例えばAsを導入して互いにほぼ等しい
チャンネル長し、。H−SL +I C11とする。
(33N) and (3[1,), respectively, using the gate electrodes Gp and GK as masks to form p-type impurities such as B.
and n-type impurities such as As are introduced to make the channel lengths approximately equal to each other. Set as H-SL +I C11.

〔作用〕[Effect]

上述の本発明構成によれば、それぞれpチャンネルFE
TとnチャンネルFETのゲート長をLGF < LG
Nとしたことによってその偏析係数の差に基づく不純物
の入り込み量の差を補償することができて結果的に実効
的チャンネル長LPC!I とLWCHがほぼ等しい例
えばC−MOS、すなわちコンブリメンタル型FET等
を有する薄膜トランジスタ装置を構成することができる
According to the configuration of the present invention described above, each p-channel FE
The gate length of T and n-channel FET is LGF < LG
By setting it to N, it is possible to compensate for the difference in the amount of impurities introduced due to the difference in the segregation coefficient, and as a result, the effective channel length LPC! It is possible to construct a thin film transistor device having, for example, a C-MOS, that is, a combinational type FET, in which I and LWCH are approximately equal.

〔実施例〕〔Example〕

本発明による薄膜トランジスタの一実施例を説明する。 An embodiment of a thin film transistor according to the present invention will be described.

まず、第2図、へに示すように、共通の基体(υ例えば
石英5i02基板上に、先ず例えば40[)人の厚さに
多結晶ンリコンをCVD (化学的気相成長法)によっ
て形成する。この多結晶シリコンに対して全面的にSi
イオンの打ち込みを行って非晶質薄膜半導体を形成する
。これを例えば620℃10時間あるいは6C1O℃3
0時間のアニール処理を施して多結晶化を行ってシリコ
ン薄膜半導体(2)を形成する。そしてこの薄膜半導体
(2)上に例えばその表面熱酸化あるいはCVD法等に
よってS+02のゲート絶縁層(4)を形成し、これの
上に不純物が高濃度をもってドープされて低比抵抗(E
さnた多結晶シリコン層によるゲート電極層(5)を形
成する。
First, as shown in Fig. 2, on a common substrate (for example, a quartz 5i02 substrate), polycrystalline silicon is first formed to a thickness of, for example, 40 mm by CVD (chemical vapor deposition). . This polycrystalline silicon is completely covered with Si.
Ion implantation is performed to form an amorphous thin film semiconductor. For example, 620℃ for 10 hours or 6C1O℃3
An annealing process is performed for 0 hours to perform polycrystallization and form a silicon thin film semiconductor (2). Then, a gate insulating layer (4) of S+02 is formed on this thin film semiconductor (2) by, for example, thermal oxidation of its surface or CVD method, and on this is doped with impurities at a high concentration to have a low specific resistance (E
A gate electrode layer (5) made of a polycrystalline silicon layer is formed.

その後第2WBに示すように、この多結晶シリコン層及
びこれの下のゲート絶縁層をフォ) IJソグラフィに
よるエツチングによってパターン化してpチャンネルF
ET及びnチャンネルFETの各ゲート電極Cyp 及
びG8 を形成する。この場合、そのゲート部の長さL
cp及びしいはそれぞれLap〈1.、、いに選定する
。その後、−力のFETの形成部、例えばpチャンネル
FETの形成部をイ」ン注入のマスク例えばフォトレジ
スト(6)によって覆って、他方のFETの形成、部に
、ゲート電極1.。
Thereafter, as shown in the second WB, this polycrystalline silicon layer and the gate insulating layer below it are patterned by etching using IJ lithography to form a p-channel F.
Gate electrodes Cyp and G8 of the ET and n-channel FET are formed. In this case, the length of the gate part L
cp and or respectively Lap<1. ,,Select. Thereafter, the formation area of the negative FET, for example, the formation area of the p-channel FET, is covered with an ion implantation mask, such as a photoresist (6), and the formation area of the other FET is covered with the gate electrode 1. .

をマスクにその両側に不純物Asをイオン注入する。Impurity As is ion-implanted on both sides using the mask as a mask.

次に、図示しないがpチアンネルFET形成部上のフォ
トレジストを除去して、丁〕チャンネルFET形成部上
をフォトレジストによって覆い、pチャンネルFET、
のゲート電極G、の両側にそのゲート電極G、をマスク
として不純物B、BF、。
Next, although not shown, the photoresist on the p-channel FET formation part is removed, and the p-channel FET formation part is covered with photoresist, and the p-channel FET,
Impurities B, BF, are applied on both sides of the gate electrode G, using the gate electrode G as a mask.

のイオン注入を行う。Perform ion implantation.

その後、例えば900〜1000℃のアニール処理を施
して各不純物の活性化処理を施す、このとき、各不純物
B及びAsはそれぞれゲート電極G、及びG、I の形
成部下に拡散いわゆるサイドデイフュージョンによって
入り込むが、このサイドデイフュージョン量すなわち各
ゲート部下の入り込み量はそれぞれ相違する。本発明に
おいて予めこの入り込み量の相違を勘案してゲート電極
Gp及びGNのゲート長LGP及びLGNをり、Gp 
< LGNに選定しておくものであり、このようにして
最終的に第1国に示すようにソース及びドレイン間の間
隔すなわち実効的チャンネル長LPCI!及びL NC
11がほぼ等しくなるように選定される。すなわち、第
3図に、曲線(31)及び(32)にそれぞれBとAs
との1000℃での拡散時間(アニール時r′JJ)に
対する拡散長の相違を示すように、アニール時間に応じ
てp型不純物とn型不純物の拡散長に生じる差を、ゲー
ト長LGp及びLGMO差によって補償する。
Thereafter, each impurity is activated by annealing at, for example, 900 to 1000°C. At this time, each impurity B and As are diffused under the formation of the gate electrode G and G, I by so-called side diffusion. However, the amount of side diffusion, that is, the amount of penetration under each gate is different. In the present invention, the gate lengths LGP and LGN of the gate electrodes Gp and GN are determined in advance by taking into consideration the difference in the amount of penetration, and the gate lengths LGP and LGN of the gate electrodes Gp and GN are
< LGN, and in this way, the distance between the source and drain, that is, the effective channel length LPCI! is finally selected as shown in the first country. and LNC
11 are selected to be approximately equal. That is, in FIG. 3, curves (31) and (32) have B and As, respectively.
As shown in the figure, the difference in diffusion length between p-type impurity and n-type impurity depending on the annealing time can be expressed as gate length LGp and LGMO. Compensate by difference.

第1図は本発明による薄膜トランジスタ装置の一例の路
線的拡大断面図、第2図はその製造工程図、第3図は拡
散長−拡散時間の特性図である。
FIG. 1 is an enlarged cross-sectional view of an example of a thin film transistor device according to the present invention, FIG. 2 is a manufacturing process diagram thereof, and FIG. 3 is a characteristic diagram of diffusion length versus diffusion time.

(1)は基体、(2)は薄膜半導体層、Gp 及びG、
はゲート電極である。
(1) is the base, (2) is the thin film semiconductor layer, Gp and G,
is the gate electrode.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば通常のS1ウエハにおけ
るとは異なる性状を示すS1薄膜トランジスタにおいて
そのpチャンネルFETとnチャンネルFETを共通の
ほぼ等しいチャンネル長をもって形成することができる
ことから、特に短チャンネル長例えば5μm以下のチャ
ンネル長のC−MOS型の薄膜トランジスタ装置に適用
してその相補特性を確実に得ることができる。
As described above, according to the present invention, the p-channel FET and the n-channel FET can be formed with a common and almost equal channel length in the S1 thin film transistor, which exhibits properties different from those in a normal S1 wafer. For example, the present invention can be applied to a C-MOS type thin film transistor device having a channel length of 5 μm or less, and its complementary characteristics can be reliably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

代  理  人 松  隈  秀  盛 representative person Hide Matsukuma

Claims (1)

【特許請求の範囲】  共通の基体上に形成された薄膜半導体にpチャンネル
型電界効果トランジスタと、nチャンネル型電界効果ト
ランジスタとが形成されてなる薄膜トランジスタ装置に
おいて、 上記pチャンネル型の電界効果トランジスタのゲート電
極長が上記nチャンネル型の電界効果トランジスタのゲ
ート電極長に比して小に選択され、上記pチャンネル型
電界効果トランジスタ及び上記nチャンネル型電界効果
トランジスタのソース領域及びドレイン領域は、それぞ
れそのゲート電極をマスクとしてp型の不純物とn型の
不純物を導入して互いにほぼ等しいチャンネル長とされ
たことを特徴とする薄膜トランジスタ装置。
[Scope of Claims] A thin film transistor device in which a p-channel field effect transistor and an n-channel field effect transistor are formed on a thin film semiconductor formed on a common substrate, wherein the p-channel field effect transistor is The gate electrode length is selected to be smaller than the gate electrode length of the n-channel field effect transistor, and the source region and drain region of the p-channel field effect transistor and the n-channel field effect transistor are respectively A thin film transistor device characterized in that a p-type impurity and an n-type impurity are introduced using a gate electrode as a mask so that channel lengths are approximately equal to each other.
JP2165106A 1990-06-22 1990-06-22 Thin film transistor device Expired - Fee Related JP2973479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165106A JP2973479B2 (en) 1990-06-22 1990-06-22 Thin film transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165106A JP2973479B2 (en) 1990-06-22 1990-06-22 Thin film transistor device

Publications (2)

Publication Number Publication Date
JPH0461154A true JPH0461154A (en) 1992-02-27
JP2973479B2 JP2973479B2 (en) 1999-11-08

Family

ID=15806012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165106A Expired - Fee Related JP2973479B2 (en) 1990-06-22 1990-06-22 Thin film transistor device

Country Status (1)

Country Link
JP (1) JP2973479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616935A (en) * 1994-02-08 1997-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit having N-channel and P-channel transistors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616935A (en) * 1994-02-08 1997-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit having N-channel and P-channel transistors
US5877513A (en) * 1994-02-08 1999-03-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US6124603A (en) * 1994-02-08 2000-09-26 Semiconductor Energy Laboratory Co., Ltd. Complementary integrated circuit having N channel TFTs and P channel TFTs
US6492685B1 (en) 1994-02-08 2002-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pair of N-channel TFT and P-channel TFT
US6875999B2 (en) 1994-02-08 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US7227229B2 (en) 1994-02-08 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device comprising an inverter circuit

Also Published As

Publication number Publication date
JP2973479B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
US6914303B2 (en) Ultra thin channel MOSFET
US5316960A (en) C-MOS thin film transistor device manufacturing method
JP2525630B2 (en) Method for manufacturing thin film transistor
JPH09102550A (en) LDD CMOS formation method
JPH05235350A (en) Semiconductor device
JPS61263274A (en) Manufacturing method of semiconductor device
JPH0461154A (en) Thin-film transistor device
JPH03265143A (en) Manufacture of thin film transistor
JPH03227525A (en) Manufacture of thin film transistor
EP0152625A2 (en) Method for fabricating a semiconductor device having a polycrystalline silicon-active region.
JPH08293557A (en) Semiconductor device and manufacturing method thereof
JPH02270335A (en) Semiconductor device and manufacture thereof
JP3589136B2 (en) Semiconductor device and manufacturing method thereof
JP3218511B2 (en) Manufacturing method of SOI structure semiconductor device
JPH0521800A (en) Soimosfet
KR0167667B1 (en) Semiconductor manufacturing method
JPH065757B2 (en) Semiconductor device manufacturing method
JPH05121744A (en) Soi semiconductor device and manufacture thereof
KR930008534B1 (en) Manufacturing method of dual-gate transistor
JPH08167658A (en) Semiconductor device and manufacturing method thereof
JPS6084859A (en) Complementary semiconductor device and manufacturing method thereof
JPH0517701B2 (en)
JPH05160404A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS62112361A (en) Complementary semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees