JPH04359448A - Semiconductor device and its estimation method - Google Patents
Semiconductor device and its estimation methodInfo
- Publication number
- JPH04359448A JPH04359448A JP13419191A JP13419191A JPH04359448A JP H04359448 A JPH04359448 A JP H04359448A JP 13419191 A JP13419191 A JP 13419191A JP 13419191 A JP13419191 A JP 13419191A JP H04359448 A JPH04359448 A JP H04359448A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- ion implantation
- semiconductor
- electrode
- connecting portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、半導体装置の製造に際
してイオン注入技術の評価を行うための半導体装置およ
びその評価方法に係り、特に斜めイオン注入技術や回転
イオン注入技術などを評価する際に使用される半導体装
置およびその評価方法に関する。[Field of Industrial Application] The present invention relates to a semiconductor device and an evaluation method thereof for evaluating ion implantation techniques during the manufacture of semiconductor devices, and in particular to evaluation methods for ion implantation techniques such as oblique ion implantation techniques and rotational ion implantation techniques. The present invention relates to a semiconductor device used and a method for evaluating the same.
【0002】0002
【従来の技術】従来、半導体装置製造プロセスで使用さ
れるイオン注入技術を評価する方法として、通常は、半
導体基板表面にイオンを注入し、この後、この基板表面
の抵抗を測定している。2. Description of the Related Art Conventionally, as a method for evaluating ion implantation techniques used in semiconductor device manufacturing processes, ions are usually implanted into the surface of a semiconductor substrate, and then the resistance of the surface of the substrate is measured.
【0003】一方、近年のイオン注入技術として、半導
体基板表面に対してイオン注入角度を自由に設定し得る
斜めイオン注入技術や、半導体基板を回転させながらイ
オン注入を行い得る回転イオン注入技術が開発されてい
る。On the other hand, as recent ion implantation techniques, oblique ion implantation techniques that allow the ion implantation angle to be freely set with respect to the semiconductor substrate surface, and rotational ion implantation techniques that allow ion implantation to be performed while rotating the semiconductor substrate have been developed. has been done.
【0004】ところで、上記のような斜めイオン注入技
術を評価する際に前記したような従来の評価方法を適用
した場合、イオン注入角度の僅かな変化に対するイオン
注入量の変化(基板表面の抵抗の変化量)が小さいので
、イオン注入角度とイオン注入量との関係を正確に評価
することが困難であった。また、前記のような回転イオ
ン注入技術を評価する際に前記したような従来の評価方
法を使用した場合、半導体基板の面内方向におけるイオ
ン注入方向の僅かな変化に対するイオン注入量の変化が
小さいので、イオン注入方向とイオン注入量との関係を
正確に評価することが困難であった。By the way, when the above-mentioned conventional evaluation method is applied to evaluate the above-mentioned oblique ion implantation technique, the change in the ion implantation amount due to a slight change in the ion implantation angle (the change in the resistance of the substrate surface) Since the amount of change) was small, it was difficult to accurately evaluate the relationship between the ion implantation angle and the ion implantation amount. In addition, when the conventional evaluation method described above is used to evaluate the rotational ion implantation technique, the amount of ion implantation changes little with respect to a slight change in the direction of ion implantation in the in-plane direction of the semiconductor substrate. Therefore, it has been difficult to accurately evaluate the relationship between the ion implantation direction and the ion implantation amount.
【0005】[0005]
【発明が解決しようとする課題】上記したように従来の
半導体装置の評価方法は、斜めイオン注入技術や回転イ
オン注入技術を正確に評価することが困難であるという
問題があった。As described above, the conventional semiconductor device evaluation method has a problem in that it is difficult to accurately evaluate oblique ion implantation techniques and rotational ion implantation techniques.
【0006】本発明は上記の問題点を解決すべくなされ
たもので、半導体製造プロセスで使用される斜めイオン
注入技術や回転イオン注入技術を正確に評価し得る半導
体装置およびその評価方法を提供することを目的とする
。The present invention has been made to solve the above problems, and provides a semiconductor device and an evaluation method thereof that can accurately evaluate oblique ion implantation technology and rotational ion implantation technology used in semiconductor manufacturing processes. The purpose is to
【0007】[0007]
【課題を解決するための手段】本発明は、半導体製造プ
ロセスで使用されるイオン注入技術を評価するために形
成される半導体装置において、半導体基板上に形成され
た導電体よりなる2つの電極部と、この2つの電極部間
を連結するように凸状に形成され、少なくとも表面が絶
縁体よりなる連結部と、この連結部の片方の側壁で前記
2つの電極部間を連結するように形成された半導体膜と
を具備することを特徴とする。[Means for Solving the Problems] The present invention provides two electrode portions made of a conductor formed on a semiconductor substrate in a semiconductor device formed to evaluate ion implantation technology used in a semiconductor manufacturing process. a connecting portion formed in a convex shape and having at least a surface made of an insulator so as to connect the two electrode portions; and a connecting portion formed such that one side wall of the connecting portion connects the two electrode portions. The semiconductor film is characterized by comprising:
【0008】また、本発明は、半導体製造プロセスで使
用されるイオン注入技術を評価するための半導体装置の
評価方法において、半導体基板上に形成された導電体よ
りなる2つの電極部およびこの2つの電極部間を連結す
るように形成された少なくとも表面が絶縁体よりなる凸
状の連結部および上記2つの電極部間を連結するように
上記連結部の片方の側壁に形成された半導体膜とを具備
する半導体装置を製造するステップと、この半導体装置
の前記半導体膜にイオンを注入し、この注入イオンを活
性化するステップと、前記2つの電極部間の抵抗値を測
定するステップとを具備することを特徴とする。The present invention also provides a semiconductor device evaluation method for evaluating ion implantation technology used in a semiconductor manufacturing process, in which two electrode portions made of a conductor formed on a semiconductor substrate and A convex connecting part formed to connect the electrode parts and at least a surface of which is made of an insulator, and a semiconductor film formed on one side wall of the connecting part to connect the two electrode parts. the steps of manufacturing a semiconductor device, implanting ions into the semiconductor film of the semiconductor device and activating the implanted ions, and measuring a resistance value between the two electrode parts. It is characterized by
【0009】[0009]
【作用】凸状連結部の側壁に形成された半導体膜にイオ
ンを注入した後に注入イオンを活性化すると、前記2つ
の電極部間の抵抗値がイオン注入量に応じて定まる。斜
めイオン注入技術を用いてイオンを注入した場合には、
イオン注入角度の僅かな変化に対するイオン注入量の変
化(前記抵抗値の変化量)が大きいので、電極部間の抵
抗値を測定することにより、イオン注入角度とイオン注
入量との関係、半導体膜が向いている方向からのイオン
注入の基板面内方向の変化に対する注入量の関係を正確
に評価することが可能になる。[Operation] When ions are implanted into the semiconductor film formed on the side wall of the convex connecting portion and then the implanted ions are activated, the resistance value between the two electrode portions is determined depending on the amount of ion implantation. When ions are implanted using oblique ion implantation technique,
Since the change in the amount of ion implantation (the amount of change in the resistance value) caused by a slight change in the ion implantation angle is large, by measuring the resistance value between the electrode parts, it is possible to determine the relationship between the ion implantation angle and the amount of ion implantation, and to determine the relationship between the ion implantation angle and the amount of ion implantation in the semiconductor film. It becomes possible to accurately evaluate the relationship between the implantation amount and the change in the in-plane direction of the substrate due to ion implantation from the direction in which the substrate is facing.
【0010】0010
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は、半導体製造プロセスで使用される
イオン注入技術を評価するために形成された半導体装置
の第1実施例の一部を示している。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a portion of a first embodiment of a semiconductor device formed to evaluate ion implantation techniques used in semiconductor manufacturing processes.
【0011】11…は半導体基板上に形成された2つの
電極部であり、それぞれ表面が導電体(例えば多結晶シ
リコン膜)により被覆されている。12はこの2つの電
極部11…間を連結するように半導体基板上に凸状に形
成され、少なくとも表面が絶縁体12´よりなる連結部
であり、例えば高さが1100nm、幅が10μmのシ
リコン酸化膜よりなる。13はこの連結部12の片方の
側壁に形成された半導体膜であり、例えば厚さが400
nmの多結晶シリコン膜よりなり、前記2つの電極部間
を連結している。本例では、上記連結部12が前記電極
部11…を構成する導電体(表面の多結晶シリコン膜)
と同時に形成された同一層からなる、換言すれば、連結
部12の多結晶シリコン膜の両端が前記2つの電極部1
1…の表面の多結晶シリコン膜に連なっている。次に、
上記半導体装置の製造工程について図2(a)乃至(c
)を参照しながら説明する。Reference numerals 11 denote two electrode portions formed on a semiconductor substrate, the surfaces of each of which are covered with a conductor (for example, a polycrystalline silicon film). Reference numeral 12 denotes a connecting portion formed in a convex shape on the semiconductor substrate so as to connect these two electrode portions 11, and at least the surface thereof is made of an insulator 12'. Made of oxide film. 13 is a semiconductor film formed on one side wall of this connecting portion 12, and has a thickness of, for example, 400 mm.
It is made of a polycrystalline silicon film with a thickness of 100 nm and connects the two electrode parts. In this example, the connecting portion 12 is a conductor (a polycrystalline silicon film on the surface) constituting the electrode portion 11.
In other words, both ends of the polycrystalline silicon film of the connecting portion 12 are formed of the same layer formed at the same time as the two electrode portions 1.
1... is connected to the polycrystalline silicon film on the surface. next,
2(a) to (c) regarding the manufacturing process of the above semiconductor device.
).
【0012】まず、半導体基板を酸化し、基板表面にシ
リコン酸化膜を1100nm程度の厚みとなるように形
成する。次に、RIE(反応性イオンエッチング)を施
し、図2(a)に示すように、2つの電極部11…の基
体およびこの電極部基体間を連結する10μm程度の幅
を有する凸状の連結部12を形成する。次に、全体を酸
化し、シリコン酸化膜を100nm程度の厚みとなるよ
うに形成する。次に、半導体膜、例えば多結晶シリコン
膜13を400nm程度の厚みとなるように堆積する。First, a semiconductor substrate is oxidized, and a silicon oxide film is formed on the surface of the substrate to a thickness of about 1100 nm. Next, RIE (reactive ion etching) is performed, and as shown in FIG. A portion 12 is formed. Next, the entire structure is oxidized to form a silicon oxide film to a thickness of about 100 nm. Next, a semiconductor film, for example a polycrystalline silicon film 13, is deposited to a thickness of about 400 nm.
【0013】次に、電極形成予定部のみをレジスト(図
示せず)で覆い、RIEを施すことにより、図2(b)
に示すように、前記多結晶シリコン膜13を電極部11
…表面および連結部12側壁にのみ残すようにエッチン
グする。Next, only the portion where the electrode is to be formed is covered with a resist (not shown), and RIE is performed to form the area shown in FIG. 2(b).
As shown in FIG.
...Etching is performed so as to leave only the surface and the side wall of the connecting portion 12.
【0014】次に、上記レジストを除去した後、連結部
12の片方の側壁のみが露出するようにレジスト(図示
せず)で覆い、図2(c)に示すように、連結部12の
片方の側壁のみ除去するように等方性エッチングを施す
。次に、上記半導体装置を用いて半導体製造プロセスで
使用されるイオン注入技術を評価するための評価方法の
一例について、図3を参照しながら説明する。Next, after removing the resist, one side wall of the connecting portion 12 is covered with a resist (not shown) so that only one side wall of the connecting portion 12 is exposed, as shown in FIG. 2(c). Perform isotropic etching to remove only the sidewalls. Next, an example of an evaluation method for evaluating an ion implantation technique used in a semiconductor manufacturing process using the above semiconductor device will be described with reference to FIG.
【0015】上記半導体装置は、半導体基板上の2つの
電極部11…間を連結するように形成された少なくとも
表面が絶縁体12´よりなる凸状の連結部12の片方の
側壁で上記2つの電極部11…間を連結するように多結
晶シリコン膜13が形成されている。従って、上記連結
部側壁の多結晶シリコン膜13にイオンを注入した後、
全面にシリコン酸化膜(図示せず)を300nm程度の
厚みとなるように堆積させ、不活性ガス雰囲気中で95
0℃、約30分の熱処理を行い、注入イオンを電気的に
活性化させると、前記2つの電極部11…間の抵抗値が
イオン注入量に応じて定まる。さらに、前記シリコン酸
化膜を電極部表面部のみフッ化アンモニウム溶液で除去
し、電極部11…表面の多結晶シリコン膜13を露出さ
せると、電極部11…間の抵抗値の電気的測定が可能に
なる。[0015] In the semiconductor device, the two electrode parts 11 on the semiconductor substrate are connected to each other on one side wall of a convex connecting part 12 whose surface is made of an insulator 12'. A polycrystalline silicon film 13 is formed to connect the electrode parts 11. Therefore, after implanting ions into the polycrystalline silicon film 13 on the side wall of the connecting portion,
A silicon oxide film (not shown) was deposited on the entire surface to a thickness of about 300 nm, and was heated at 95 nm in an inert gas atmosphere.
When heat treatment is performed at 0° C. for about 30 minutes to electrically activate the implanted ions, the resistance value between the two electrode portions 11 is determined depending on the amount of ions implanted. Furthermore, by removing only the surface portion of the electrode portion of the silicon oxide film with an ammonium fluoride solution to expose the polycrystalline silicon film 13 on the surface of the electrode portion 11, it is possible to electrically measure the resistance value between the electrode portions 11. become.
【0016】前記イオン注入に際して、斜めイオン注入
技術を用いてイオンを注入した場合には、イオン注入角
度の僅かな変化に対するイオン注入量の変化(前記抵抗
値の変化量)が大きいので、電極部間の抵抗値を測定す
ることにより、イオン注入角度とイオン注入量との関係
を正確に評価することが可能になる。即ち、連結部側壁
の多結晶シリコン膜13の単位面積当りに注入されるイ
オン数dは、次式で表わされる。
d=DcosθWhen the ions are implanted using an oblique ion implantation technique, the change in the amount of ions implanted (the amount of change in the resistance value) caused by a slight change in the ion implantation angle is large. By measuring the resistance value between the ion implantation angle and the ion implantation amount, it becomes possible to accurately evaluate the relationship between the ion implantation angle and the ion implantation amount. That is, the number d of ions implanted per unit area of the polycrystalline silicon film 13 on the side wall of the connecting portion is expressed by the following equation. d=Dcosθ
【0017】ここで、θは、連結部側壁の多結晶シリコ
ン膜13の法線31に対するイオン注入方向32のなす
角度、Dは連結部側壁の多結晶シリコン膜表面に垂直に
イオンを注入した時の単位面積当りの注入イオン数であ
る。上式から、単位面積当りのイオン注入量は、イオン
注入角度θに依存する。特に、θ=90°に近い場合に
は、イオン注入量はイオン注入角度θに大きく依存する
。Here, θ is the angle formed by the ion implantation direction 32 with respect to the normal 31 of the polycrystalline silicon film 13 on the side wall of the connecting portion, and D is the angle when ions are implanted perpendicularly to the surface of the polycrystalline silicon film on the side wall of the connecting portion. is the number of ions implanted per unit area. From the above equation, the ion implantation amount per unit area depends on the ion implantation angle θ. In particular, when θ=90°, the ion implantation amount largely depends on the ion implantation angle θ.
【0018】また、前記イオン注入に際して、連結部側
壁の多結晶シリコン膜13が向いている方向からのイオ
ン注入の基板面内方向を変化させた場合、半導体基板の
面内方向におけるイオン注入方向の僅かな変化に対する
イオン注入量の変化(前記抵抗値の変化量)が大きいの
で、イオン注入方向とイオン注入量との関係を正確に評
価することが可能になる。Furthermore, when the ion implantation is performed, if the in-plane direction of the ion implantation is changed from the direction in which the polycrystalline silicon film 13 on the side wall of the connecting portion faces, the ion implantation direction in the in-plane direction of the semiconductor substrate is changed. Since the change in the ion implantation amount (the amount of change in the resistance value) for a slight change is large, it is possible to accurately evaluate the relationship between the ion implantation direction and the ion implantation amount.
【0019】なお、本発明の半導体装置は、図1に示し
た実施例のものに限らず、様々な変形実施が可能である
。例えば電極部および連結部側壁の多結晶シリコン膜と
して、半導体基板面内における連結部の形成方向が互い
に直交するものを独立に2組設けた場合には、それぞれ
の組でそれぞれ連結部側壁の多結晶シリコン膜が向いて
いる方向からのイオン注入の基板面内方向の変化に対す
るイオン注入量の関係を正確に評価することが可能にな
る。同様に、電極部および連結部側壁の多結晶シリコン
膜として、半導体基板面内における連結部の形成方向が
同じものを独立に2組設け、この2組における各半導体
膜を上記2組における各連結部の互いに異なる側の側壁
に形成した場合には、それぞれの組でそれぞれ連結部側
壁の多結晶シリコン膜が向いている方向からのイオン注
入の基板面内方向の変化に対するイオン注入量の関係を
正確に評価することが可能になる。Note that the semiconductor device of the present invention is not limited to the embodiment shown in FIG. 1, and can be implemented in various modifications. For example, if two sets of polycrystalline silicon films for the side walls of the electrode portion and the connecting portion are provided, in which the directions in which the connecting portions are formed in the plane of the semiconductor substrate are orthogonal to each other, each set has a polycrystalline silicon film on the side wall of the connecting portion. It becomes possible to accurately evaluate the relationship between the amount of ion implantation and the change in the in-plane direction of the substrate due to ion implantation from the direction in which the crystalline silicon film is oriented. Similarly, two sets of polycrystalline silicon films for the side walls of the electrode portion and the connecting portion are provided independently with the connecting portions formed in the same direction in the plane of the semiconductor substrate, and each semiconductor film in these two sets is connected to each connecting portion in the two sets. When the ion implantation is performed on different sidewalls of the connecting portion, the relationship between the ion implantation amount and the change in the in-plane direction of the substrate from the direction in which the polycrystalline silicon film on the sidewall of the connecting portion faces is determined for each group. It becomes possible to evaluate accurately.
【0020】図4は、第2実施例に係る半導体装置の一
部を示している。この半導体装置は、図1に示した電極
部11…および連結部側壁の多結晶シリコン膜13の組
が、互いに直交する4方向を向くように4組形成されて
いる。従って、回転イオン注入技術を用いてイオンを注
入した場合に、4個の連結部側壁の多結晶シリコン膜1
3…がそれぞれ向いている方向からのイオン注入の基板
面内方向の変化に対するイオン注入量の関係を正確に評
価することが可能になる。FIG. 4 shows a part of a semiconductor device according to a second embodiment. In this semiconductor device, four sets of electrode parts 11 and polycrystalline silicon films 13 on the side walls of the connecting part shown in FIG. 1 are formed so as to face in four directions perpendicular to each other. Therefore, when ions are implanted using the rotational ion implantation technique, the polycrystalline silicon film 1 on the side walls of the four connecting parts
It becomes possible to accurately evaluate the relationship between the amount of ion implantation and the change in the in-plane direction of the substrate due to ion implantation from the direction in which 3... are facing, respectively.
【0021】図5は、第3実施例に係る半導体装置の一
部を示している。この半導体装置は、図1に示した半導
体装置と比べて、前記2つの電極部11…間で互いに間
隔をあけて平行に連結部12…および連結部側壁の多結
晶シリコン膜13…が複数組形成されている点が異なる
。FIG. 5 shows a part of a semiconductor device according to a third embodiment. This semiconductor device is different from the semiconductor device shown in FIG. 1 in that a plurality of sets of connecting portions 12 and polycrystalline silicon films 13 on the side walls of the connecting portion are arranged in parallel at intervals between the two electrode portions 11. They are different in how they are formed.
【0022】この半導体装置によれば、2つの電極部間
の複数(N)個の多結晶シリコン膜にそれぞれイオンを
注入した後に注入イオンを活性化すると、前記各実施例
のように2つの電極部間連結する多結晶シリコン膜が1
個しかないものと比べて、2つの電極部間の抵抗値が1
/N倍になるので、電極部間の抵抗値を安定に測定する
ことが可能になるという利点が得られる。According to this semiconductor device, when ions are implanted into a plurality of (N) polycrystalline silicon films between two electrode portions and the implanted ions are activated, the two electrodes are activated as in each of the above embodiments. The polycrystalline silicon film connecting the parts is 1
The resistance value between the two electrode parts is 1 compared to the case where there are only 1
/N times, so there is an advantage that the resistance value between the electrode parts can be stably measured.
【0023】[0023]
【発明の効果】上述したように本発明によれば、半導体
製造プロセスで使用される斜めイオン注入技術や回転イ
オン注入技術を正確に評価し得る半導体装置およびその
評価方法を実現できる。As described above, according to the present invention, it is possible to realize a semiconductor device and an evaluation method thereof that can accurately evaluate oblique ion implantation technology and rotational ion implantation technology used in semiconductor manufacturing processes.
【図1】本発明の第1実施例に係る半導体装置の一部を
示す平面図。FIG. 1 is a plan view showing a part of a semiconductor device according to a first embodiment of the present invention.
【図2】図1の半導体装置の製造工程の一例を示す斜視
図。FIG. 2 is a perspective view showing an example of the manufacturing process of the semiconductor device shown in FIG. 1;
【図3】本発明の評価方法を示す斜視図。FIG. 3 is a perspective view showing the evaluation method of the present invention.
【図4】本発明の第2実施例に係る半導体装置を示す平
面図。FIG. 4 is a plan view showing a semiconductor device according to a second embodiment of the present invention.
【図5】本発明の第3実施例に係る半導体装置を示す平
面図。FIG. 5 is a plan view showing a semiconductor device according to a third embodiment of the present invention.
11…電極部、12…連結部、12´…絶縁体、13…
半導体膜。DESCRIPTION OF SYMBOLS 11... Electrode part, 12... Connection part, 12'... Insulator, 13...
semiconductor film.
Claims (6)
なる2つの電極部と、この2つの電極部間を連結するよ
うに凸状に形成され、少なくとも表面が絶縁体よりなる
連結部と、この連結部の片方の側壁で前記2つの電極部
間を連結するように形成された半導体膜とを具備するこ
とを特徴とする半導体装置。1. Two electrode parts made of a conductor formed on a semiconductor substrate; a connecting part formed in a convex shape to connect the two electrode parts and having at least a surface made of an insulator; A semiconductor device comprising: a semiconductor film formed so as to connect the two electrode parts on one side wall of the connecting part.
前記電極部を構成する導電体および前記連結部の側壁の
半導体膜は同時に形成された同一層からなることを特徴
とする半導体装置。2. The semiconductor device according to claim 1,
A semiconductor device, wherein the conductor constituting the electrode portion and the semiconductor film on the side wall of the connecting portion are formed at the same time and made of the same layer.
おいて、前記2つの電極部および連結部および半導体膜
は、半導体基板面内における連結部の形成方向が互いに
直交するものが独立に2組設けられていることを特徴と
する半導体装置。3. The semiconductor device according to claim 1, wherein the two electrode portions, the connecting portions, and the semiconductor film are independently provided in two sets in which the connecting portions are formed in directions perpendicular to each other within the plane of the semiconductor substrate. A semiconductor device characterized by:
の半導体装置において、前記2つの電極部および連結部
および半導体膜は、半導体基板面内における連結部の形
成方向が同じものが独立に2組設けられ、この2組にお
ける各半導体膜は上記2組における各連結部の互いに異
なる側の側壁に形成されていることを特徴とする半導体
装置。4. The semiconductor device according to claim 1, wherein the two electrode portions, the connecting portion, and the semiconductor film are independent in that the connecting portions are formed in the same direction within the plane of the semiconductor substrate. 2. A semiconductor device characterized in that two sets are provided, and each semiconductor film in the two sets is formed on a side wall on a different side of each connecting portion in the two sets.
おいて、前記連結部および半導体膜は、前記2つの電極
部間で平行に複数組形成されていることを特徴とする半
導体装置。5. The semiconductor device according to claim 1, wherein a plurality of sets of the connecting portion and the semiconductor film are formed in parallel between the two electrode portions.
なる2つの電極部およびこの2つの電極部間を連結する
ように形成された少なくとも表面が絶縁体よりなる凸状
の連結部および上記2つの電極部間を連結するように上
記連結部の片方の側壁に形成された半導体膜とを具備す
る半導体装置を製造するステップと、この半導体装置の
前記半導体膜にイオンを注入し、この注入イオンを活性
化するステップと、前記2つの電極部間の抵抗値を測定
するステップとを具備することを特徴とする半導体装置
の評価方法。6. Two electrode parts made of a conductor formed on a semiconductor substrate, a convex connecting part formed to connect the two electrode parts and having at least a surface made of an insulator, and the above-mentioned 2 electrode parts. manufacturing a semiconductor device including a semiconductor film formed on one side wall of the connecting portion so as to connect two electrode portions; and implanting ions into the semiconductor film of the semiconductor device, and implanting the implanted ions into the semiconductor film of the semiconductor device. 1. A method for evaluating a semiconductor device, comprising the steps of: activating the electrode portion; and measuring a resistance value between the two electrode portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13419191A JPH04359448A (en) | 1991-06-05 | 1991-06-05 | Semiconductor device and its estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13419191A JPH04359448A (en) | 1991-06-05 | 1991-06-05 | Semiconductor device and its estimation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04359448A true JPH04359448A (en) | 1992-12-11 |
Family
ID=15122567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13419191A Pending JPH04359448A (en) | 1991-06-05 | 1991-06-05 | Semiconductor device and its estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04359448A (en) |
-
1991
- 1991-06-05 JP JP13419191A patent/JPH04359448A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0135495B2 (en) | ||
JPS6376330A (en) | Manufacture of semiconductor device | |
JPH0927529A (en) | Semiconductor device for detecting alignment | |
JPH04359448A (en) | Semiconductor device and its estimation method | |
CN113267118B (en) | A kind of semiconductor conductive film thickness on-line test structure and test method | |
JPS63127531A (en) | Manufacturing method of semiconductor device | |
JPH0770531B2 (en) | Method for forming buried oxide film | |
KR0162144B1 (en) | Formation method of contact hole in semiconductor device | |
JPH0729711A (en) | Forming method of resistor | |
JPS59195859A (en) | Manufacturing method of semiconductor device | |
JPH03165030A (en) | Manufacture of semiconductor device | |
JPS6279625A (en) | Manufacture of semiconductor device | |
JPS63207180A (en) | Semiconductor device | |
JPH01224671A (en) | Manufacture of semiconductor acceleration sensor | |
JPH04317357A (en) | Manufacture of semiconductor device | |
JPS5676534A (en) | Manufacture of semiconductor device | |
JPH10123190A (en) | Method for measuring sheet resistance of semiconductor substrate | |
JP2901262B2 (en) | Manufacturing method of polysilicon resistance element | |
JPH05243497A (en) | Semiconductor device | |
JP2740292B2 (en) | Method for manufacturing semiconductor device | |
JPS62106629A (en) | Manufacture of semiconductor device | |
JPH02239626A (en) | Manufacture of semiconductor device | |
JPH03259527A (en) | Manufacture of semiconductor device | |
JPS6329581A (en) | Manufacture of semiconductor device | |
JPH02199865A (en) | Manufacture of semiconductor device |