JPH0422516Y2 - - Google Patents
Info
- Publication number
- JPH0422516Y2 JPH0422516Y2 JP1985201082U JP20108285U JPH0422516Y2 JP H0422516 Y2 JPH0422516 Y2 JP H0422516Y2 JP 1985201082 U JP1985201082 U JP 1985201082U JP 20108285 U JP20108285 U JP 20108285U JP H0422516 Y2 JPH0422516 Y2 JP H0422516Y2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- metal body
- fusible metal
- insulating substrate
- temperature fuse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- 230000004907 flux Effects 0.000 claims description 16
- 239000010410 layer Substances 0.000 claims description 10
- 239000011247 coating layer Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910020220 Pb—Sn Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Landscapes
- Fuses (AREA)
Description
【考案の詳細な説明】
<産業上の利用分野>
本考案は基板形温度ヒユーズの改良に関するも
のである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement of a substrate type temperature fuse.
<先行技術と問題点>
基板形温度ヒユーズは、セラミツク板等の絶縁
基板の片面上に一対の箔状電極を設け、これら電
極間に箔状の可溶金属体を橋設し、この絶縁基板
の片面上に絶縁被覆層を設けた構成であり、絶縁
基板の他面を被保護電気機器の発熱性部分に接触
させて使用するものである。而して、被保護電気
機器が過電流により発熱すると、絶縁基板を介し
て可溶金属体が加熱され、可溶金属体の溶断によ
り、被保護電気機器の通電が遮断される。<Prior art and problems> Substrate-type temperature fuses include a pair of foil-like electrodes provided on one side of an insulating substrate such as a ceramic plate, and a foil-like fusible metal body bridged between these electrodes. It has a structure in which an insulating coating layer is provided on one side of the insulating substrate, and the other side of the insulating substrate is used in contact with the heat generating part of the electrical equipment to be protected. When the protected electrical equipment generates heat due to overcurrent, the fusible metal body is heated through the insulating substrate, and the fusible metal body is blown out, cutting off the power supply to the protected electrical equipment.
温度ヒユーズにおける可溶金属体の溶断メカニ
ズムは、可溶金属体が溶融し、この溶融金属が表
面張力(表面エネルギー)により球状化し、この
球状化の進行によつて溶融金属が分断する結果で
あり、溶融金属体の表面に酸化物が存在すると表
面エネルギーが小となつて球状化が遅れ、温度ヒ
ユーズを迅速に作動させ得ない。このため、温度
ヒユーズにおいては、可溶金属体上にフラツクス
層を設けることにより、温度ヒユーズ製造中での
可溶金属体の酸化を防止すると共に多少の酸化皮
膜が形成されても、可溶金属体溶融時での高温下
のフラツクスの活性力により酸化皮膜を溶解して
溶融金属体の球状化分断を促進している。しかし
ながら、温度ヒユーズにおいては、被保護電気機
器の通電ヒートサイクルによる繰返し加熱のため
にフラツクス層が流動化することがある。而る
に、基板形温度ヒユーズにおいては、小型化のた
めに基板の平面寸法をそれほど大きくとり得ず、
基板の絶縁被覆層との間のシール性が比較的低い
ので、上記溶融したフラツクスが漏出し易く、作
動時(可溶金属体の溶融時)までに、フラツクス
が逸出してしまい、溶融金属の球状化分断の困難
化或いは遅延が懸念される。 The fusing mechanism of a fusible metal body in a temperature fuse is that the fusible metal body melts, this molten metal becomes spheroidized due to surface tension (surface energy), and the molten metal is divided as the spheroidization progresses. If oxides are present on the surface of the molten metal body, the surface energy will be low and spheroidization will be delayed, making it impossible to quickly operate the temperature fuse. For this reason, in temperature fuses, by providing a flux layer on the fusible metal body, it is possible to prevent the oxidation of the fusible metal body during the manufacture of the temperature fuse, and even if some oxide film is formed, the fusible metal The active force of the flux under high temperature during melting melts the oxide film and promotes the spheroidization and fragmentation of the molten metal body. However, in thermal fuses, the flux layer may become fluidized due to repeated heating of the protected electrical equipment through energized heat cycles. However, in the case of substrate-type temperature fuses, the planar dimensions of the substrate cannot be made so large in order to achieve miniaturization.
Since the sealing performance between the board and the insulating coating layer is relatively low, the above-mentioned molten flux easily leaks out, and by the time it is activated (when the fusible metal body is melted), the flux escapes and the molten metal is There is a concern that spheroidization may become difficult or delayed.
また、従来の基板形温度ヒユーズにおいては、
絶縁基板の周囲からの放熱のために、可溶金属体
の加熱遅延が相当に顕著であり、作動遅れが避け
られない。 In addition, in conventional board type temperature fuses,
Due to heat dissipation from the surroundings of the insulating substrate, the heating delay of the fusible metal body is quite significant, and a delay in operation is inevitable.
上記のように、従来の基板形温度ヒユーズにお
いては、フラツクスの漏出及び可溶金属体が溶融
するまでの間での時間遅れ、並びに溶融後分断す
るまでの時間遅れによる作動遅れが問題となる。 As described above, conventional substrate type thermal fuses suffer from operational delays due to leakage of flux, time delay until the fusible metal body melts, and time delay until disconnection after melting.
<考案の目的>
本考案の目的は、基板形温度ヒユーズにおける
作動遅れを軽減することにある。<Purpose of the invention> The purpose of the invention is to reduce the activation delay in a substrate-type temperature fuse.
<考案の構成>
本考案の基板形温度ヒユーズは、絶縁基板の片
面に基板の一端から他端近傍に達する電極を並列
に設け、これらの電極にまたがり可溶金属体を設
け、該可溶金属体上にフラツクス層を設け、絶縁
基板の片面上に絶縁被覆層を設けてなる温度ヒユ
ーズにおいて、上記絶縁基板の片面に基板他端並
びにその他端近傍の基板両側端に沿つて溝を設
け、該溝に上記の絶縁被覆層を食い込ませたこと
を特徴とする構成である。<Structure of the invention> The substrate-type temperature fuse of the invention has electrodes extending from one end of the substrate to near the other end arranged in parallel on one side of an insulating substrate, a fusible metal body straddling these electrodes, and a fusible metal In a temperature fuse in which a flux layer is provided on the body and an insulating coating layer is provided on one side of an insulating substrate, grooves are provided on one side of the insulating substrate along the other end of the substrate and both sides of the substrate in the vicinity of the other end. This structure is characterized in that the above-mentioned insulating coating layer bites into the groove.
<実施例の説明> 以下、図面により本考案を説明する。<Explanation of Examples> The present invention will be explained below with reference to the drawings.
第1図は本考案に係る温度ヒユーズを示す上面
説明図、第2図は第1図における−断面説明
図である。 FIG. 1 is an explanatory top view showing a temperature fuse according to the present invention, and FIG. 2 is an explanatory cross-sectional view taken from FIG.
第1図並びに第2図において、1は熱伝導性の
良好な絶縁基板、例えばセラミツク板である。
2,2は絶縁基板の片面上に並列に設けた箔状電
極(例えば、銀電極)であり、基板一端から他端
近傍に達している。3,3は各電極2,2に結線
したリード導体である。4は両電極2,2の他端
にまたがつて設けた箔状の可溶金属体であり、例
えばPb−Sn合金系箔を用いることができる。5
1は絶縁基板の片面に、基板他端並びにその他端
近傍の基板両側端に沿つて設けた溝、52は可溶
金属体4を中心として他端溝510に対称的に設
けた溝であり、この溝52は省略することもでき
る。これらの溝51,52はレーザ加工や金型成
形によつて設けることができる。6は可溶金属体
4上に被覆せるフラツクス層、7は基板1の全片
面に被覆せる絶縁層、例えばエポキシ樹脂のモー
ルド層である。 In FIGS. 1 and 2, reference numeral 1 denotes an insulating substrate with good thermal conductivity, such as a ceramic plate.
Reference numerals 2 and 2 denote foil electrodes (for example, silver electrodes) provided in parallel on one side of the insulating substrate, and reach from one end of the substrate to the vicinity of the other end. 3, 3 are lead conductors connected to each electrode 2, 2. 4 is a foil-shaped fusible metal body provided astride the other ends of both electrodes 2, 2; for example, a Pb-Sn alloy foil can be used. 5
1 is a groove provided on one side of the insulating substrate along the other end of the substrate and both sides of the substrate near the other end; 52 is a groove provided symmetrically to the other end groove 510 with the fusible metal body 4 as the center; This groove 52 can also be omitted. These grooves 51 and 52 can be provided by laser machining or molding. 6 is a flux layer coated on the fusible metal body 4, and 7 is an insulating layer coated on one side of the substrate 1, for example, a mold layer of epoxy resin.
上記基板形温度ヒユーズは、絶縁基板1の他面
10を被保護電気機器の発熱性部分に接触させて
使用する。而して、機器が発熱すると、温度ヒユ
ーズの可溶金属体4に絶縁基板1の厚みを介して
熱が伝達し、この伝達熱の一部は絶縁基板1の周
縁から放熱する。而るに、単位時間当りの伝達熱
量をQ、絶縁基板の熱容量をC、絶縁基板の周縁
からの放熱抵抗をRとすれば、絶縁基板の温度T
は
T=RQ(1−e−t/CR) −(1)
である。而して、可溶金属体からこの金属体近傍
の基板周縁に至る熱の移動を、溝51の存在によ
る基板薄厚化のためによく防止でき、上記放熱抵
抗Rを大にできるから、上記第1式に基づく温度
Tを高速度で上昇させ得る。従つて、機器発熱に
応じて可溶金属体を急速に加熱でき、温度ヒユー
ズの作動性をよく向上できる。 The substrate-type temperature fuse is used by bringing the other surface 10 of the insulating substrate 1 into contact with a heat-generating portion of an electrical device to be protected. When the device generates heat, the heat is transferred to the fusible metal body 4 of the temperature fuse through the thickness of the insulating substrate 1, and a portion of this transferred heat is radiated from the periphery of the insulating substrate 1. Therefore, if the amount of heat transferred per unit time is Q, the heat capacity of the insulating substrate is C, and the heat radiation resistance from the periphery of the insulating substrate is R, then the temperature of the insulating substrate is T.
is T=RQ(1-e-t/CR)-(1). Therefore, the transfer of heat from the fusible metal body to the peripheral edge of the substrate near the metal body can be effectively prevented due to the thinning of the substrate due to the presence of the grooves 51, and the heat dissipation resistance R can be increased. The temperature T based on Equation 1 can be increased at a high rate. Therefore, the fusible metal body can be rapidly heated in accordance with the heat generated by the equipment, and the operability of the temperature fuse can be improved.
上記基板形温度ヒユーズにおいては、被保護電
気機器の通電ヒートサイクルによつて加熱される
から、可溶金属体4が未溶融の状態でフラツクス
層6が溶融して熱膨張し、この溶融フラツクスが
漏出しようとするが、絶縁被覆層7の溝51,5
2への食い込みがその漏出に対する堰として作用
するから、上記溶融フラツクスの漏出をよく防止
できる。従つて、作動時まで、フラツクス層を保
有させ得、溶融金属の球状化分断を円滑に行わせ
得る。 In the above-mentioned substrate-type temperature fuse, since it is heated by the energization heat cycle of the electrical equipment to be protected, the flux layer 6 melts and thermally expands while the fusible metal body 4 is not melted, and this molten flux Although it tries to leak, the grooves 51 and 5 of the insulating coating layer 7
Since the bite into 2 acts as a dam against leakage, leakage of the molten flux can be well prevented. Therefore, the flux layer can be maintained until operation, and the molten metal can be smoothly divided into spherules.
尚、フラツクス6から基板1の一端(リード導
体3,3側)に至る距離はかなり長くできるの
で、溝52は省略することもできる。 Incidentally, since the distance from the flux 6 to one end of the substrate 1 (on the side of the lead conductors 3, 3) can be made considerably long, the groove 52 can be omitted.
<考案の効果>
本考案の基板形温度ヒユーズは上述した通りの
構成であり、フラツクスの漏出を防止し、また、
可溶金属体を迅速に加熱して可溶金属体を速く溶
融でき、この溶融した金属を円滑に球状化分断で
きるから、作動速度を高速化できる。<Effects of the invention> The substrate-type temperature fuse of the invention has the structure described above, and prevents leakage of flux.
Since the fusible metal body can be rapidly heated and melted quickly, and the molten metal can be smoothly divided into spheres, the operating speed can be increased.
第1図は本考案に係る基板形温度ヒユーズを示
す一部欠截上面図、第2図は第1図における−
断面図である。
図において、1は絶縁基板、2,2は電極、4
は可溶金属体、51は溝である。
Fig. 1 is a partially cutaway top view showing a substrate-type temperature fuse according to the present invention, and Fig. 2 is a -
FIG. In the figure, 1 is an insulating substrate, 2, 2 are electrodes, 4
is a fusible metal body, and 51 is a groove.
Claims (1)
達する電極を並列に設け、これらの電極にまたが
り可溶金属体を設け、該可溶金属体上にフラツク
ス層を設け、絶縁基板の片面上に絶縁被覆層を設
けてなる温度ヒユーズにおいて、上記絶縁基板の
片面に基板他端並びにその他端近傍の基板両側端
に沿つて溝を設け、該溝に上記の絶縁被覆層を食
い込ませたことを特徴とする基板形温度ヒユー
ズ。 Electrodes extending from one end of the substrate to near the other end are provided in parallel on one side of the insulating substrate, a fusible metal body is provided across these electrodes, a flux layer is provided on the fusible metal body, and a flux layer is provided on one side of the insulating substrate. In a temperature fuse provided with an insulating coating layer, grooves are provided on one side of the insulating substrate along the other end of the substrate and both sides of the substrate near the other edge, and the insulating coating layer is dug into the groove. Features a board-type temperature fuse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985201082U JPH0422516Y2 (en) | 1985-12-25 | 1985-12-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985201082U JPH0422516Y2 (en) | 1985-12-25 | 1985-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62107340U JPS62107340U (en) | 1987-07-09 |
JPH0422516Y2 true JPH0422516Y2 (en) | 1992-05-22 |
Family
ID=31164200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985201082U Expired JPH0422516Y2 (en) | 1985-12-25 | 1985-12-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0422516Y2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108777U (en) * | 1979-01-24 | 1980-07-30 | ||
JPS58134853U (en) * | 1982-03-08 | 1983-09-10 | マツダ株式会社 | printed wiring fuses |
-
1985
- 1985-12-25 JP JP1985201082U patent/JPH0422516Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62107340U (en) | 1987-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003338592A (en) | Semiconductor module | |
JPH0422516Y2 (en) | ||
JP2008198661A (en) | Semiconductor device | |
JPH0723863Y2 (en) | Thermal fuse | |
JP3889855B2 (en) | Substrate type temperature fuse | |
JPH0312192Y2 (en) | ||
JP3274759B2 (en) | Thin fuse and method of manufacturing the same | |
JPH0215239Y2 (en) | ||
JP4112297B2 (en) | Thermo protector and method of manufacturing thermo protector | |
JP3304179B2 (en) | Thin fuse | |
JP3754770B2 (en) | Thin fuse | |
JPH0638351Y2 (en) | Temperature fuse | |
JPH0514438Y2 (en) | ||
JP3260694B2 (en) | Lead conductor for thin fuse and thin fuse | |
JPH0436023Y2 (en) | ||
JPH0514439Y2 (en) | ||
JP3358677B2 (en) | Thin fuse | |
JPH088033B2 (en) | Thermal fuse and manufacturing method thereof | |
JPH0794065A (en) | Flat thermal fuse | |
JPH0641316Y2 (en) | Thermal fuse resistor | |
JPH0521814Y2 (en) | ||
JPH0512895Y2 (en) | ||
JPH09259723A (en) | Thermal fuse and manufacture therefor | |
JPH0638350Y2 (en) | Temperature fuse | |
JPH0723865Y2 (en) | Substrate type thermal fuse |