JP2003338592A - Semiconductor module - Google Patents
Semiconductor moduleInfo
- Publication number
- JP2003338592A JP2003338592A JP2002145910A JP2002145910A JP2003338592A JP 2003338592 A JP2003338592 A JP 2003338592A JP 2002145910 A JP2002145910 A JP 2002145910A JP 2002145910 A JP2002145910 A JP 2002145910A JP 2003338592 A JP2003338592 A JP 2003338592A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- semiconductor module
- power semiconductor
- heat
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 134
- 239000007769 metal material Substances 0.000 claims abstract description 4
- 230000017525 heat dissipation Effects 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 7
- 239000002826 coolant Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 abstract description 5
- 230000008642 heat stress Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 14
- 230000008646 thermal stress Effects 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 230000007774 longterm Effects 0.000 description 10
- 239000003507 refrigerant Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910000639 Spring steel Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- STPKWKPURVSAJF-LJEWAXOPSA-N (4r,5r)-5-[4-[[4-(1-aza-4-azoniabicyclo[2.2.2]octan-4-ylmethyl)phenyl]methoxy]phenyl]-3,3-dibutyl-7-(dimethylamino)-1,1-dioxo-4,5-dihydro-2h-1$l^{6}-benzothiepin-4-ol Chemical compound O[C@H]1C(CCCC)(CCCC)CS(=O)(=O)C2=CC=C(N(C)C)C=C2[C@H]1C(C=C1)=CC=C1OCC(C=C1)=CC=C1C[N+]1(CC2)CCN2CC1 STPKWKPURVSAJF-LJEWAXOPSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
- H01L2924/13033—TRIAC - Triode for Alternating Current - A bidirectional switching device containing two thyristor structures with common gate contact
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は電力変換装置など
に用いられる半導体モジュールの構造に関するものであ
り、特にパワー半導体モジュールに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a semiconductor module used in a power converter and the like, and more particularly to a power semiconductor module.
【0002】[0002]
【従来の技術】図22は従来のパワー半導体モジュール
を示す断面図であり、このパワー半導体モジュールは、
冷却装置を備えた汎用のIGBT(Insulated
Gate Bipolar Transistor)
モジュールである。図において、61はIGBTモジュ
ール、62はアルミや銅等からなる放熱用金属ベース
板、63は両面に銅等からなる金属箔が接着されたアル
ミナや窒化アルミ等からなる絶縁性基板、64はIGB
T素子、65はIGBT素子64のコレクタ電極、66
はIGBT素子64のエミッタ電極である。2. Description of the Related Art FIG. 22 is a sectional view showing a conventional power semiconductor module.
General-purpose IGBT (Insulated) equipped with a cooling device
(Gate Bipolar Transistor)
It is a module. In the figure, 61 is an IGBT module, 62 is a heat-radiating metal base plate made of aluminum, copper, or the like, 63 is an insulating substrate made of alumina, aluminum nitride, or the like having metal foils made of copper or the like bonded to both surfaces, and 64 is an IGBT.
T element, 65 is a collector electrode of the IGBT element 64, 66
Is an emitter electrode of the IGBT element 64.
【0003】また、67は主回路配線のコレクタ用ブス
バー、68は主回路配線のエミッタ用ブスバー、69は
中継基板、70はIGBT素子64のエミッタ電極66
と工ミッタ用ブスバー68を接続するアルミワイヤ、7
1は半田、72はIGBTモジュール61の内部を封止
するシリコンゲル、73はヒートシンク等の冷却装置、
74はグリース等のコンパウンドである。Further, 67 is a collector bus bar of the main circuit wiring, 68 is an emitter bus bar of the main circuit wiring, 69 is a relay substrate, and 70 is an emitter electrode 66 of the IGBT element 64.
And aluminum wire connecting the bus bar 68 for work mitter, 7
1 is solder, 72 is a silicon gel for sealing the inside of the IGBT module 61, 73 is a cooling device such as a heat sink,
74 is a compound such as grease.
【0004】図に示すように、IGBT素子64のコレ
クタ電極65は、絶縁性基板63の上に半田71を介し
て接合され、また絶縁性基板63は放熱用金属ベース板
62の上に半田71を介して接合され、IGBTモジュ
ール61は冷却装置73にコンパウンド74を介して接
続・圧接されている。IGBTモジュールの運転時にI
GBT素子64から発生する熱は、絶縁性基板63と放
熱用金属べース板62とを介して冷却装置73に伝導
し、これによりIGBT素子64等が冷却される。As shown in the figure, the collector electrode 65 of the IGBT element 64 is bonded onto the insulating substrate 63 via the solder 71, and the insulating substrate 63 is soldered onto the heat radiating metal base plate 62. The IGBT module 61 is connected and pressure-contacted to the cooling device 73 via the compound 74. I during operation of the IGBT module
The heat generated from the GBT element 64 is conducted to the cooling device 73 via the insulating substrate 63 and the heat-dissipating metal base plate 62, whereby the IGBT element 64 and the like are cooled.
【0005】また、パワー半導体モジュールの他の構造
としては、GTO(Gate Turn‐0ff Th
yristor)等のパワー半導体素子の両面に、モリ
ブデン、タングステン等からなる緩衝用電極と、銅等か
らなる主電極とが設けられ、パワー半導体モジュールの
両面にヒートシンク等の冷却装置が取り付けられ、それ
ぞれの接続部が外部からの圧力で接続されているような
圧接スタック型モジュールがある。Another structure of the power semiconductor module is GTO (Gate Turn-0ff Th).
A buffer electrode made of molybdenum, tungsten, etc., and a main electrode made of copper, etc. are provided on both sides of a power semiconductor element such as a yristor), and a cooling device such as a heat sink is attached to both sides of the power semiconductor module. There is a pressure contact stack type module in which the connection part is connected by pressure from the outside.
【0006】これらのパワー半導体モジュールの内部構
造においては、使用されている各部材の線膨張係数が互
いに異なるので、運転時の温度変化により熱変形が起こ
り、これにより熱応力が発生する。また、大容量化に伴
って半導体素子での発熱量は増加するとともに、さらに
熱サイクル数も増大しているため長期に亘る信頼性に関
しても問題がある。In the internal structure of these power semiconductor modules, since the linear expansion coefficients of the respective members used are different from each other, thermal deformation occurs due to temperature change during operation, which causes thermal stress. In addition, the amount of heat generated by the semiconductor element increases as the capacity increases, and the number of thermal cycles also increases, which poses a problem regarding long-term reliability.
【0007】例えばIGBTモジュール61では、絶縁
性基板63の線膨張係数が窒化アルミで構成した場合約
4×10-6/Kであるのに対して、放熱用金属ベース板
62の線膨張係数は銅で構成した場合約16×10-6/
K、アルミで構成した場合約23×10-6/Kとその差
が非常に大きく、このため運転時に生じる温度変化によ
って、絶縁性基板63と放熱用金属ベース板62の接合
部には熱応力が発生し、従来の半田71のような硬い材
料で構成した場合は亀裂などが起こりやすく、長期信頼
性に問題があった。さらに、IGBTモジュール61と
冷却装置73の間は、熱伝導率の低いコンパウンド74
で接続・圧接する構造となっているため、熱抵抗が高
く、冷却性能が低いという問題もあった。For example, in the IGBT module 61, the linear expansion coefficient of the insulating substrate 63 is about 4 × 10 -6 / K when it is made of aluminum nitride, whereas the linear expansion coefficient of the heat radiating metal base plate 62 is Approximately 16 × 10 -6 / when composed of copper
In the case of K and aluminum, the difference is about 23 × 10 −6 / K, which is very large. Therefore, due to temperature change during operation, thermal stress is applied to the joint between the insulating substrate 63 and the heat radiating metal base plate 62. When a hard material such as the conventional solder 71 is used, cracks are likely to occur, which causes a problem in long-term reliability. Further, a compound 74 having a low thermal conductivity is provided between the IGBT module 61 and the cooling device 73.
Since the structure is connected and pressure contacted with, there was a problem that the thermal resistance was high and the cooling performance was low.
【0008】また、圧接スタック型モジュールでは、パ
ワー半導体素子と主電極の線膨張係数差が大きいため、
パワー半導体素子と主電極の間に、パワー半導体素子と
主電極材の中間の線膨張係数を持つ材料を緩衝用電極と
して挿入し、熱応力の緩和をはかり、半導体素子の破損
を防止している。しかしながら、この構造では、熱応力
の発生はある程度は緩和できるものの、パワー半導体素
子と緩衝用電極の接合部での熱応力が完全になくなるわ
けではない。In the pressure contact stack type module, the difference in linear expansion coefficient between the power semiconductor element and the main electrode is large.
A material having a linear expansion coefficient intermediate between the power semiconductor element and the main electrode material is inserted as a buffer electrode between the power semiconductor element and the main electrode to relax thermal stress and prevent damage to the semiconductor element. . However, with this structure, although the generation of thermal stress can be relaxed to some extent, the thermal stress at the joint between the power semiconductor element and the buffer electrode is not completely eliminated.
【0009】例えば、パワー半導体素子としてGTO素
子を用いた場合、その線膨張係数は約3×10-6/Kで
あるのに対して、緩衝用電極の線膨張係数はモリプデン
で構成した場合約5×10-6/Kであり、タングステン
で構成した場合約4×10-6/Kである。また、モジュ
ール内部の部材間の熱抵抗、あるいはモジュールと冷却
装置の間の熱抵抗は、圧接力を大きくしなければ低減で
きないが、圧接力が大きいとパワー半導体素子が破損す
ることがあるというような問題もあった。For example, when a GTO element is used as the power semiconductor element, its linear expansion coefficient is about 3 × 10 −6 / K, whereas the linear expansion coefficient of the buffer electrode is about 3 × 10 −6 / K. It is 5 × 10 −6 / K, and when it is made of tungsten, it is about 4 × 10 −6 / K. Further, the thermal resistance between the members inside the module or the thermal resistance between the module and the cooling device cannot be reduced unless the pressure contact force is increased, but the power semiconductor element may be damaged if the pressure contact force is large. There was also a problem.
【0010】このような温度変化による熱応力を緩和す
る手段として、例えば特開平11−233696号公報
には、パワー半導体モジュール内部の熱伝導路となる部
材の長期に亘る信頼性と、半導体モジュールの冷却性能
を向上させる構造が開示されている。この構造は、パワ
ー半導体モジュールの内部の熱伝導路となる絶縁基板と
放熱用金属ベース板の間に、融点がパワー半導体素子の
最高使用温度より低い低融点材が設けられ、かつこの低
融点材と接触する絶縁基板および放熱用金属ベース板の
表面には各々防食性部材がコーティングされ、その上に
低融点材との接触性が良い高接触性部材がさらにコーテ
ィングされてなる2層のコーティングが設けられ、これ
により部材間の熱応力がなくなり、長期に亘る信頼性が
高められ、かつパワー半導体素子の冷却性能が高められ
るとともに、低融点材の合金化が抑制される。As means for alleviating the thermal stress due to such temperature change, for example, Japanese Patent Application Laid-Open No. 11-233696 discloses long-term reliability of a member serving as a heat conduction path inside a power semiconductor module, and the semiconductor module. A structure for improving cooling performance is disclosed. In this structure, a low melting point material having a melting point lower than the maximum operating temperature of the power semiconductor element is provided between the insulating substrate that serves as a heat conduction path inside the power semiconductor module and the heat radiating metal base plate, and the low melting point material contacts The surfaces of the insulating substrate and the metal base plate for heat dissipation are each coated with an anticorrosive member, and a high-contact member having good contact with the low-melting point material is further coated thereon to form a two-layer coating. As a result, the thermal stress between the members is eliminated, the long-term reliability is improved, the cooling performance of the power semiconductor element is improved, and alloying of the low melting point material is suppressed.
【0011】また、圧接スタック型モジュールについて
は、例えば特開平5−267491号公報に圧接型半導
体装置及びこれを使用した電力変換装置が開示されてい
る。この公報には、半導体基板と緩衝用電極の間、緩衝
用電極と主電極の間、更には半導体基板と主電力の間に
軟質材料からなる軟質層を設けることによって熱応力を
緩和し、低い圧接力で熱抵抗を低減するものが示されて
いる。Regarding the pressure contact stack type module, for example, Japanese Patent Application Laid-Open No. 5-267491 discloses a pressure contact type semiconductor device and a power conversion device using the same. In this publication, a soft layer made of a soft material is provided between the semiconductor substrate and the buffer electrode, between the buffer electrode and the main electrode, and further between the semiconductor substrate and the main power to reduce thermal stress and reduce the stress. It is shown that the pressure resistance reduces the thermal resistance.
【0012】さらに、もうひとつの圧接スタック型モジ
ュールについての先行開示例として、例えば特開平6−
37219号公報にパワー半導体の冷却装置が示されて
いる。この構造によれば、複数個の平形パワー半導体素
子を積層して構成したスタック組み立て体に対し、積層
するプレート内部に冷媒通路を設けたコールドプレート
をパワー半導体素子に重ねて介装し、かつコールドプレ
ートに出入りする冷媒循環路を電気絶縁材料からなるパ
イプで構成し、冷媒を強制循環させて半導体で発生した
熱を放熱器を通じて系外に放熱して冷却するものであ
る。Further, as another prior disclosure example of another pressure contact stack type module, for example, Japanese Patent Laid-Open No. 6-
Japanese Patent No. 37219 discloses a power semiconductor cooling device. According to this structure, a cold plate having a coolant passage inside the stacking plate is stacked on the power semiconductor device and is stacked on the power semiconductor device for a stack assembly formed by stacking a plurality of flat power semiconductor devices. The refrigerant circulation path to and from the plate is composed of a pipe made of an electrically insulating material, and the refrigerant is forcibly circulated to radiate the heat generated in the semiconductor to the outside of the system through a radiator to cool it.
【0013】[0013]
【発明が解決しようとする課題】従来の半導体モジュー
ルは以上のように構成されていたので、特開平11−2
33696号公報に開示された構造では、発熱源のパワ
ー半導体素子の片面から冷却するため、基本的には従来
と同様の熱伝導路を構成することになり、さらには、コ
ーティングを複数層に設けることとなり、工数が増加し
てしまい、コスト的に問題があった。Since the conventional semiconductor module is constructed as described above, it is disclosed in Japanese Patent Laid-Open No. 11-2.
In the structure disclosed in Japanese Patent No. 33696, cooling is performed from one side of the power semiconductor element of the heat source, so that basically the same heat conduction path as in the conventional case is formed, and furthermore, the coating is provided in a plurality of layers. As a result, the number of man-hours is increased and there is a problem in cost.
【0014】又、特開平5−267491号公報に開示
された構造では、部材間に軟質層を配置しているが、こ
の構造によって熱応力が完全になくなるわけではないと
いう問題があった。さらに、特開平6−37219号公
報に開示された圧接スタック型の構造では、パワー半導
体の電力を導電する部材と、同じくパワー半導体の熱を
伝熱する部材とが互いに独立した個々の部材から構成さ
れるため、部品数が増えてしまい構造が複雑になるとと
もに、組立て工数が増加するという問題があった。Further, in the structure disclosed in Japanese Patent Laid-Open No. 5-267491, the soft layer is arranged between the members, but there is a problem that the thermal stress is not completely eliminated by this structure. Furthermore, in the pressure contact stack type structure disclosed in Japanese Patent Laid-Open No. 6-37219, a member that conducts electric power of the power semiconductor and a member that also transfers heat of the power semiconductor are composed of independent individual members. As a result, the number of parts increases, the structure becomes complicated, and the number of assembling steps increases.
【0015】この発明は、上記のような問題点を解決す
るためになされたものであって、パワー半導体モジュー
ル内部の熱伝導路となる各部材間の熱応力をなくすこと
により、パワー半導体モジュールの信頼性を長期に亘っ
て継続させることができ、さらにはパワー半導体モジュ
ール内部の熱伝導路となる各部材間の熱抵抗の低減、及
びパワー半導体モジュールと冷却装置の間の熱抵抗の低
減をはかることができる半導体モジュールを提供するこ
とを目的とする。The present invention has been made in order to solve the above-mentioned problems, and eliminates the thermal stress between the members forming the heat conduction paths inside the power semiconductor module, so that the power semiconductor module The reliability can be continued for a long time, and further, the thermal resistance between each member that becomes a heat conduction path inside the power semiconductor module and the thermal resistance between the power semiconductor module and the cooling device can be reduced. An object of the present invention is to provide a semiconductor module that can be manufactured.
【0016】[0016]
【課題を解決するための手段】この発明の請求項lに係
る半導体モジュールは、内部に半導体素子を封止したも
のであって、半導体素子の入力部および出力部に導電性
と熱伝導性の高い金属材料から構成される電極を面接触
させ、半導体素子並びに電極を積層構造とし、積層方向
に積層部材相互を圧接するための弾性部材を設けたもの
である。A semiconductor module according to claim 1 of the present invention is one in which a semiconductor element is sealed, and an input portion and an output portion of the semiconductor element are electrically and thermally conductive. An electrode made of a high metal material is brought into surface contact, a semiconductor element and an electrode have a laminated structure, and an elastic member for pressing the laminated members together in the laminating direction is provided.
【0017】この発明の請求項2に係る半導体モジュー
ルは、電極となるコイルバネを半導体素子に押圧接触さ
せるとともに、コイルバネの一端を制御基板に固着させ
たものである。In the semiconductor module according to the second aspect of the present invention, the coil spring serving as an electrode is pressed against the semiconductor element, and one end of the coil spring is fixed to the control board.
【0018】この発明の請求項3に係る半導体モジュー
ルは、コイルバネの位置決めを行なうための截頭円錐形
伏を有する案内部材を設けたものである。According to a third aspect of the present invention, a semiconductor module is provided with a guide member having a truncated cone shape for positioning a coil spring.
【0019】この発明の請求項4に係る半導体モジュー
ルは、積層部材の位置を決定するための位置決め部材を
設けるとともに、各部材間に隙間を設けたものである。According to a fourth aspect of the present invention, a semiconductor module is provided with a positioning member for determining the position of the laminated member and a gap between the members.
【0020】この発明の請求項5に係る半導体モジュー
ルは、電極に放熱用のフィンを設けたものである。According to a fifth aspect of the present invention, the semiconductor module is such that the electrodes are provided with fins for heat dissipation.
【0021】この発明の請求項6に係る半導体モジュー
ルは、冷却用の冷媒が通過するための貫通穴を電極内部
に設けるとともに、貫通穴の内壁に凹凸形状のフィンを
設けたものである。According to a sixth aspect of the present invention, a semiconductor module is provided with a through hole through which a cooling medium passes and an uneven fin is provided on the inner wall of the through hole.
【0022】この発明の請求項7に係る半導体モジュー
ルは、電極に空洞を設けるとともに、この空洞内に熱を
移動させるための作動液を封入したものである。In the semiconductor module according to the seventh aspect of the present invention, a cavity is provided in the electrode, and a working fluid for transferring heat is sealed in the cavity.
【0023】[0023]
【発明の実施の形態】実施の形態1.以下、この発明の
一実施形態を図に基づいて説明する。図1はこの発明の
実施の形態1によるIGBTモジュールを示す平面図、
図2は図1のA方向から見た側面図、図3は図1のB方
向から見た正面図である。図において、1はIGBTモ
ジュール、2は銅やアルミ等からなる一方のIGBT素
子のコレクタ部に面接触する電極であり、放熱用のフィ
ン3を有している。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. An embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view showing an IGBT module according to Embodiment 1 of the present invention,
2 is a side view seen from the direction A in FIG. 1, and FIG. 3 is a front view seen from the direction B in FIG. In the figure, 1 is an IGBT module, 2 is an electrode which is in surface contact with the collector portion of one IGBT element made of copper, aluminum or the like, and has a fin 3 for heat dissipation.
【0024】4は銅やアルミ等からなる他方のIGBT
素子に於けるエミッタ部に接する電極で、電極2と同様
に放熱用のフィン3を有する。5は電極2がIGBT素
子のコレクタ部に接することで、コレクタとして機能す
る場合には、エミッタ部となり、更には電極4がIGB
T素子のエミッタ部に接することで、エミッタとして機
能する場合にはコレクタ部となる共用電極であり、電極
2、4と同様に放熱用のフィン3が設けられている。The other IGBT 4 is made of copper or aluminum.
The electrode is in contact with the emitter section of the device and has a fin 3 for heat dissipation, similar to the electrode 2. When the electrode 2 is in contact with the collector part of the IGBT element, 5 serves as an emitter part when it functions as a collector, and further, the electrode 4 has an IGBT part.
It is a shared electrode that comes into contact with the emitter of the T element and serves as a collector when it functions as an emitter, and is provided with a fin 3 for heat dissipation similar to the electrodes 2 and 4.
【0025】又、6は各部品を埋め込んだモジュール本
体、7はIGBT素子のスイッチ信号を制御する制御基
板、8はIGBT素子のスイッチ信号をIGBT素子の
ゲート部、あるいはベース部に伝達する電極で、バネ鋼
に錫メッキ等を施したコイルバネからできている。Further, 6 is a module main body in which each component is embedded, 7 is a control board for controlling the switch signal of the IGBT element, and 8 is an electrode for transmitting the switch signal of the IGBT element to the gate portion or the base portion of the IGBT element. , Made of coil spring made of tin plated spring steel.
【0026】また、図4は図2におけるC−C線断面平
面図であり、図において、9はIGBT素子、10はゲ
ート部、11はフライホイルダイオードであり、IGB
T素子9とは対に構成されている。FIG. 4 is a cross-sectional plan view taken along the line CC in FIG. 2. In the figure, 9 is an IGBT element, 10 is a gate portion, 11 is a flywheel diode, and
It is paired with the T element 9.
【0027】電極2は、制御の対象となるモータ(図示
しない)が電動機として作用する場合に、IGBT素子
9のコレクタ部に電池(図示しない)からの正電圧を導
く働きを有している。そして電極2が接するIGBT素
子9のゲート信号がONであれば、エミッタから電池の
正電圧が放出され、電極5がこれを導き、モータ(図示
しない)の界磁コイル(図示しない)に電流を伝達す
る。The electrode 2 has a function of guiding a positive voltage from a battery (not shown) to the collector portion of the IGBT element 9 when a motor (not shown) to be controlled acts as an electric motor. When the gate signal of the IGBT element 9 with which the electrode 2 is in contact is ON, a positive voltage of the battery is emitted from the emitter, the electrode 5 guides it, and a current is supplied to the field coil (not shown) of the motor (not shown). introduce.
【0028】反対にモータが発電機として作用し、発電
機が回生制動の際、電池に蓄電作用する場合には、発電
機(図示しない)の界磁コイル(図示しない)で発生し
た電流を電極5が導くことにより、電極5はIGBT素
子のコレクタ部として機能し、発電機からの正電圧を供
給する。このとき、電極5に接するIGBT素子のゲー
ト信号がONであれば、エミッタから正電位が電極4に
より通電され、二次電池(図示しない)ヘと電流を伝達
する。On the contrary, when the motor acts as a generator and the generator stores electricity in the battery during regenerative braking, the current generated in the field coil (not shown) of the generator (not shown) is used as an electrode. When guided by 5, the electrode 5 functions as a collector portion of the IGBT element and supplies a positive voltage from the generator. At this time, if the gate signal of the IGBT element in contact with the electrode 5 is ON, a positive potential is applied from the emitter by the electrode 4, and the current is transmitted to the secondary battery (not shown).
【0029】図5は図lにおけるD−D線側面断面図で
あり、図において、12はIGBT素子9のゲート部1
0の電極となるコイルバネ8を所望の位置に案内するた
めの截頭直円錐形状を有する案内部材である。そして、
制御基板7に固着されたゲート電極となるコイルバネ8
が、モジュール本体6に組みつけられるときに、モジュ
ール本体6側に固着された截頭直円錐形状の案内部材1
2の斜面に沿いながら、コイルバネ8の中心と、IGB
T素子9のゲート部10の中心が、截頭直円錐形状の案
内部材12の円錐の軸12aと同軸となるように自動的
に位置合わせされるので、コイルバネ8とゲート部10
との微妙な位置調整が不要となり、しかも簡便で高速か
つ確実にゲート部10にコイルバネ8が接触するよう組
み立てることができる。FIG. 5 is a side sectional view taken along the line DD in FIG. 1, in which 12 is a gate portion 1 of the IGBT element 9.
A guide member having a truncated right circular cone shape for guiding the coil spring 8 serving as the zero electrode to a desired position. And
Coil spring 8 fixed to control board 7 and serving as a gate electrode
However, when it is assembled to the module body 6, the truncated right circular cone shaped guide member 1 fixed to the module body 6 side.
While following the slope of No. 2 and the center of the coil spring 8,
Since the center of the gate portion 10 of the T element 9 is automatically aligned with the conical axis 12a of the truncated right circular cone-shaped guide member 12, the coil spring 8 and the gate portion 10 are aligned.
It is not necessary to make a delicate position adjustment, and the coil spring 8 can be assembled so that the coil spring 8 contacts the gate portion 10 easily, at high speed, and reliably.
【0030】更に、13は板バネなどからなるバネであ
り、IGBT素子9とフライホイルダイオード11、お
よび電極2、4、5とを積層した状態で押圧力を発生さ
せるもので、これにより、IGBT素子9と電極2、
4、5の電気的な導通を可能にするとともに、IGBT
素子9とフライホイルダイオード11で発生する熱を、
電極2、4、5に伝えるようにすることができる。Further, 13 is a spring composed of a leaf spring or the like, which generates a pressing force in a state where the IGBT element 9 and the flywheel diode 11 and the electrodes 2, 4 and 5 are laminated. Element 9 and electrode 2,
Enables electrical conduction of 4, 5 and IGBT
The heat generated by the element 9 and the flywheel diode 11 is
It can be adapted to communicate with the electrodes 2, 4, 5.
【0031】図6は図2におけるE−E線正面断面図で
あり、図において、14はパワー半導体モジュール内部
の積層構造の各層において、IGBT素子9、フライホ
イルダイオード11および電極2、4、5の位置を決定
するための位置決め板状部材である。そしてこの位置決
め部材14は上記IGBT素子9等を構成する部材と積
層方向の厚みがほぼ等しく構成されており、より正確に
は若干(10〜100μm程度)薄くなる寸法を有し、
電気的に絶縁され、かつ熱的な伝導性に優れる材料で構
成されており、たとえばセラミック(内部抵抗約10
10Ωm、熱伝導率170W/m・K、線膨張係数約
4.5×10−6/K)や磁器(内部抵抗約1011Ω
m、熱伝導率1.5W/m・K、線膨張係数約4.5×1
0−6/K)からなり、上記IGBT素子9等を構成す
る部材の周囲を囲むようにして位置決めを行う。FIG. 6 is a front sectional view taken along the line EE in FIG. 2. In the drawing, 14 is each layer of the laminated structure inside the power semiconductor module, and the IGBT element 9, the flywheel diode 11 and the electrodes 2, 4, 5 are provided. Is a positioning plate member for determining the position of the. The positioning member 14 has a thickness substantially equal to that of the members forming the IGBT element 9 and the like in the stacking direction, and more accurately has a size that is slightly (about 10 to 100 μm) thinner.
It is made of a material that is electrically insulated and has excellent thermal conductivity. For example, a ceramic (internal resistance of about 10
10 Ωm, thermal conductivity 170 W / mK, linear expansion coefficient about 4.5 × 10 −6 / K) and porcelain (internal resistance about 10 11 Ω)
m, thermal conductivity 1.5 W / mK, linear expansion coefficient about 4.5 x 1
Consists 0 -6 / K), for positioning so as to surround the periphery of the member constituting the IGBT element 9 or the like.
【0032】この時、各層においてはIGBT素子9等
の各機能部材と位置決め部材14は相互に隙間xを有
し、隣接して配置される。この隙間xはIGBT素子9
及びフライホイルダイオード11の半導体素子を構成す
る主材料であるシリコンの線膨張係数約2.4×10
−6/Kと、板状の位置決め部材14の線膨張係数約
4.5×10−6/K、更には電極2、4、5を構成す
る銅の線膨張係数約16.7×10−6/Kまたはアル
ミの線膨張係数約23×10−6/K等、異種材料によ
る膨張差を吸収するための空間を確保する為に設けられ
たものである。At this time, in each layer, each functional member such as the IGBT element 9 and the positioning member 14 have a gap x therebetween and are arranged adjacent to each other. This gap x is determined by the IGBT element 9
And the linear expansion coefficient of silicon, which is the main material forming the semiconductor element of the flywheel diode 11, is approximately 2.4 × 10.
-6 / K, the linear expansion coefficient of the plate-shaped positioning member 14 is about 4.5 × 10 -6 / K, and the linear expansion coefficient of copper forming the electrodes 2, 4, 5 is about 16.7 × 10 −. 6 / K or a linear expansion coefficient of aluminum of about 23 × 10 −6 / K, etc., provided to secure a space for absorbing a difference in expansion due to different materials.
【0033】また、15はケースであり、板状位置決め
部材14と同様に、電気絶縁性と熱伝導性に優れる材料
からなり、パワー半導体モジュール外殻の下部を構成し
ており、このケース15と、外殻の上部を構成するカバ
ー16が、互いに嵌め合わされることでパワー半導体モ
ジュール外殻を構成し、モジュール本体6を形成する。Reference numeral 15 denotes a case, which, like the plate-shaped positioning member 14, is made of a material having excellent electrical insulation and thermal conductivity, and constitutes the lower portion of the outer shell of the power semiconductor module. The cover 16 constituting the upper portion of the outer shell is fitted to each other to form the outer shell of the power semiconductor module and form the module body 6.
【0034】以上のように、本発明に係るパワー半導体
モジュールは、パワー半導体モジュール内部の電力およ
び熱の伝導路となる部材間に、半田等の導電性溶着接合
部材を溶着せず、パワー半導体素子のパワー入力部およ
びパワー出力部に、直接導電性と熱伝導性とに優れる金
属材料からなる電極2,4,5を面接触させることによ
り、導電性と熱伝導性とを発揮させるため、本来の電力
の導電機能を確保しながらも、発生する熱による部材間
の熱応力が発生せず、パワー半導体モジュールの長期に
亘る信頼性を確保することができる。As described above, in the power semiconductor module according to the present invention, a conductive welding member such as solder is not welded between the members serving as power and heat conduction paths inside the power semiconductor module, and the power semiconductor element is not welded. Since the electrodes 2, 4, and 5 made of a metal material having excellent electrical conductivity and thermal conductivity are directly brought into surface contact with the power input section and the power output section of the above, the electrical conductivity and the thermal conductivity are exerted. It is possible to secure long-term reliability of the power semiconductor module without causing thermal stress between the members due to the generated heat, while securing the electric power conduction function.
【0035】又、本洗明に係るパワー半導体モジュール
は、パワー半導体モジュール内部の電力および熱の伝導
路となる部材を積層構造とするとともに、積層方向に積
層部材相互を加圧するためのバネ13等からなる弾性部
材を設けたので、所望の導電性と熱伝導性(熱抵抗)、
および機械的耐久性を設定し維持できることが可能とな
り、パワー半導体素子の長寿命化を図るとともに、長期
に亘る信頼性を確保することができる。Further, in the power semiconductor module according to the present clarification, the members serving as electric power and heat conduction paths inside the power semiconductor module have a laminated structure, and the spring 13 for pressing the laminated members in the laminating direction. Since an elastic member made of is provided, desired electrical conductivity and thermal conductivity (thermal resistance),
Further, it becomes possible to set and maintain the mechanical durability, so that the life of the power semiconductor element can be extended and the reliability can be secured for a long time.
【0036】更に、本発明に係るバワー半導体モジュー
ルは、パワー半導体素子におけるゲート部10あるいは
ベース部に、通電と遮断の信号を伝送するための電極と
して、導電性材料により成形したコイルバネ8を構成
し、このコイルバネ8を押圧接触することで電気的な導
通を可能としたので、本来の導電機能を確保しながら
も、発生する熱による部材間の熱応力が発生せず、パワ
ー半導体素子の長期信頼性が飛躍的に向上する。さら
に、コイルバネ8を制御基板7側に固着させるために、
パワー半導体素子に通電と遮断の信号を伝送する電極と
なる部材を別に設ける必要がなく、構造が簡素化され、
パワー半導体素子の製造コストが抑制できる。Further, in the bower semiconductor module according to the present invention, the coil spring 8 formed of a conductive material is formed as an electrode for transmitting a signal for energization and interruption in the gate portion 10 or the base portion of the power semiconductor element. Since the coil spring 8 is pressed and brought into electrical connection, electrical conduction is enabled, so that thermal stress is not generated between the members due to the generated heat while maintaining the original conductive function, and the long-term reliability of the power semiconductor element is ensured. The sexuality is dramatically improved. Furthermore, in order to fix the coil spring 8 to the control board 7 side,
The power semiconductor element does not need to be separately provided with a member serving as an electrode for transmitting a signal for energization and an interruption, and the structure is simplified,
The manufacturing cost of the power semiconductor device can be suppressed.
【0037】又、本発明に係るパワー半導体モジュール
は、パワー半導体素子のゲート部10あるいはベース部
の中心と、その中心軸とが一致し、かつゲート電極ある
いはベース電極となるコイルバネ8の形状に応じた截頭
直円錐形状の案内部材12を設けたので、組立て時にパ
ワー半導体素子のゲート部10あるいはベース部と、電
極となるコイルバネ8との位置調整をする必要がなく、
組立て性が簡素化されるので、製造コストを抑えること
ができる。In the power semiconductor module according to the present invention, the center of the gate portion 10 or the base portion of the power semiconductor element is aligned with the central axis of the power semiconductor element, and the shape of the coil spring 8 serving as the gate electrode or the base electrode is adjusted. Since the guide member 12 having a truncated right circular cone shape is provided, it is not necessary to adjust the positions of the gate portion 10 or the base portion of the power semiconductor element and the coil spring 8 serving as an electrode during assembly.
Since the assemblability is simplified, the manufacturing cost can be suppressed.
【0038】更に、本発明に係るパワー半導体モジュー
ルは、截頭直円錐形状の案内部材12が、パワー半導体
モジュール本体の積層構造側に固着されるため、截頭直
円錐の中心軸12aとパワー半導体のゲート部10ある
いはベース部の位置とが合致する構造となるので、組立
て時にパワー半導体素子のゲート部10あるいはベース
部と、電極となるコイルバネ8との位置調整をする必要
がなくなり、組立てが簡素化されるので、製造コストを
抑えることができる。Further, in the power semiconductor module according to the present invention, since the guide member 12 having a truncated right circular cone shape is fixed to the laminated structure side of the power semiconductor module body, the central axis 12a of the truncated right circular cone and the power semiconductor. Since the structure is such that the position of the gate portion 10 or the base portion of the power semiconductor element matches, it is not necessary to adjust the position of the gate portion 10 or the base portion of the power semiconductor element and the coil spring 8 serving as the electrode at the time of assembly, and the assembly is simple. Therefore, the manufacturing cost can be suppressed.
【0039】又、本発明に係るパワー半導体モジュール
は、パワー半導体モジュールの積層構造において、同層
で隣り合う複数の部材間に隙間xを設けたので、熱変化
による膨張と収縮による部材間の熱応力が発生せず、パ
ワー半導体モジュールの長期信頼度が向上する。Further, in the power semiconductor module according to the present invention, in the laminated structure of the power semiconductor module, since the gap x is provided between a plurality of adjacent members in the same layer, the heat between the members due to expansion and contraction due to thermal change is generated. No stress is generated and the long-term reliability of the power semiconductor module is improved.
【0040】更に、本発明に係るパワー半導体モジュー
ルは、パワー半導体素子のパワー入力部とパワー出力部
に面接触させる導電性と熱伝導性に優れる金属部材にお
いて、この金属部材(電極)に放熱用のフィン3を設け
ることにより、冷却性能が高まるので、パワー半導体素
子の長寿命化を図るとともに、長期に亘る信頼度を確保
することができる。Further, the power semiconductor module according to the present invention is a metal member excellent in electrical conductivity and thermal conductivity that is brought into surface contact with the power input section and the power output section of the power semiconductor element, and the metal member (electrode) is used for heat dissipation. Since the cooling performance is improved by providing the fin 3, the life of the power semiconductor element can be extended and the reliability can be secured for a long period of time.
【0041】実施の形態2.上記のような本発明の実施
の形態1にかかるIGBTモジュールの構造では、比較
的少ない種類の部材でパワー半導体モジュールの導電機
能を確保することができるものの、パワー半導体素子の
冷却に関しては、効率が良いものとはいえない。なぜな
ら熱源となるパワー半導体素子から伝熱される熱流束
は、一旦、電極2,4,5の断面内を通過し、放熱フィ
ン3のある部位にまで移動をすることになる。Embodiment 2. In the structure of the IGBT module according to the first embodiment of the present invention as described above, although the conductive function of the power semiconductor module can be secured with a relatively small number of types of members, the efficiency of cooling the power semiconductor element is low. It's not good. This is because the heat flux transferred from the power semiconductor element, which is a heat source, once passes through the cross section of the electrodes 2, 4 and 5 and moves to a portion where the heat radiation fin 3 is present.
【0042】この熱流東の移動に際して熱抵抗Rthが
発生するが、熱抵抗Rthは次式で表されるように
Rth=D/λ・S
D:熱の移動する距離[m]
λ:熱伝導率[W/m・K]
S:熱の移動する経路の断面積[m2]
移動する距離Dに比例し、熱流束の通過する部材の断面
積Sに反比例する。このことは本発明の実施の形態1に
かかるIGBTモジュールの電極2,4,5のように、
比較的細長く扁平の形状の部材では、熱の移動距離Dが
長くなり、しかも断面積Sが小さくなるため、抵抗Rt
hの値は高い値にならざるを得ないからである。A thermal resistance Rth is generated during the movement of the heat flow east, and the thermal resistance Rth is represented by the following equation: Rth = D / λS D: Heat moving distance [m] λ: Thermal conduction Rate [W / m · K] S: cross-sectional area [m 2 ] of a path along which heat travels, which is proportional to the moving distance D and inversely proportional to the cross-sectional area S of a member through which a heat flux passes. This is the same as the electrodes 2, 4, 5 of the IGBT module according to the first embodiment of the present invention.
In the case of a relatively thin and flat member, the heat transfer distance D becomes long and the cross-sectional area S becomes small.
This is because the value of h is inevitably high.
【0043】また、断面積Sを増加させるために単純に
部材の寸法を増やすことは、モジュールの本来の目的で
ある小型化と低コスト化に違背することとなる。熱抵抗
Rthの値が高くなると、定常状態においては伝達経路
の部材の温度が比例して上昇し、熱源となるパワー半導
体素子の温度も、この伝達経路部材の温度より高い状態
で維持されることになってしまう。そこで、熱の移動距
離Dを最小に抑えつつ、できるだけ熱流束が通過できる
よう断面積Sを広く確保することにより、熱抵抗Rth
を最小限にするために、実施の形態2においては、電極
に付帯する冷却構造を工夫するものである。Further, simply increasing the size of the member in order to increase the cross-sectional area S is contrary to the original purpose of the module, that is, size reduction and cost reduction. When the value of the thermal resistance Rth becomes high, the temperature of the member of the transmission path rises proportionally in the steady state, and the temperature of the power semiconductor element as the heat source is also maintained at a higher temperature than the temperature of the member of the transmission path. Become. Therefore, the thermal resistance Rth is set by keeping the cross-sectional area S as wide as possible so that the heat flux can pass while suppressing the heat moving distance D to the minimum.
In order to minimize the above, in the second embodiment, the cooling structure incidental to the electrode is devised.
【0044】図7はこの発明の実施の形態2によるIG
BTモジュールを示す平面図、図8は図7のF方向から
みた側面図、図9は図7のG方向からみた正面図であ
る。図において、21はIGBTモジュール、22は銅
やアルミ等からなるIGBT素子のコレクタ部に接する
電極であり、冷却のための冷媒を伝送するとともに電気
的に絶縁性を有する材料から構成される配管(図示しな
い)と嵌め合い結合で一体となるニップル23が、電極
22に圧入されている。FIG. 7 shows an IG according to the second embodiment of the present invention.
FIG. 8 is a plan view showing the BT module, FIG. 8 is a side view seen from the F direction in FIG. 7, and FIG. 9 is a front view seen from the G direction in FIG. In the figure, 21 is an IGBT module, 22 is an electrode in contact with the collector part of an IGBT element made of copper, aluminum, or the like, which is a pipe that transmits a cooling medium and is made of an electrically insulating material ( A nipple 23, which is not shown) and which is integrated by fitting and fitting, is pressed into the electrode 22.
【0045】24は銅やアルミ等からなるIGBT素子
におけるエミッタ部に接する電極で、電極22と同様に
冷媒用のニップル23が圧入される。25は電極22が
IGBTのコレクタ部に接することでコレクタとして機
能する場合にはエミッタ部となり、更には電極24がI
GBT素子のエミッタ部に接することで、エミッタとし
て機能する場合にはコレクタ部となる共用電極であり、
電極22,24と同様に冷媒用のニップル23が圧入さ
れている。Reference numeral 24 denotes an electrode which is in contact with the emitter of the IGBT element made of copper, aluminum or the like, and like the electrode 22, the nipple 23 for the refrigerant is press-fitted. When the electrode 22 contacts the collector part of the IGBT to function as a collector, the electrode 25 becomes an emitter part.
It is a common electrode that serves as a collector when it functions as an emitter by contacting the emitter of the GBT element.
Like the electrodes 22 and 24, the nipple 23 for the refrigerant is press-fitted.
【0046】又、26は各部品を埋め込んだモジュール
本体、27はIGBT素子のスイッチ信号を制御する制
御基板、28はIGBT素子のスイッチ信号をIGBT
のゲート部に伝達する電極で、バネ鋼に錫メッキ等を施
したコイルバネからできている。Further, 26 is a module main body in which each component is embedded, 27 is a control board for controlling the switch signal of the IGBT element, and 28 is an IGBT element for the switch signal of the IGBT element.
The electrode that transmits to the gate part is made of a coil spring made of tin plated spring steel.
【0047】図10は図8におけるH−H線断面平面
図、図11は図8におけるI−I線断面平面図であり、
図において、29はIGBT素子、30はゲート部、3
1はフライホイルダイオードであり、IGBT素子29
とは対に構成されている。電極22は、制御の対象とな
るモータ(図示しない)が電動機として作用する場合
に、IGBT素子のコレクタ部に電池(図示しない)か
らの正電圧を導く働きを有している。そして、電極22
が接するIGBT素子のゲート信号がONであれば、エ
ミッタから電池の正電位が放出され、電極25がこれを
導き、モータ(図示しない)の界磁コイル(図示しな
い)に電流を伝達する。FIG. 10 is a sectional plan view taken along the line HH in FIG. 8, and FIG. 11 is a sectional plan view taken along the line I-I in FIG.
In the figure, 29 is an IGBT element, 30 is a gate portion, 3
Reference numeral 1 is a flywheel diode, which is an IGBT element 29.
And are configured in pairs. The electrode 22 has a function of guiding a positive voltage from a battery (not shown) to the collector portion of the IGBT element when a motor (not shown) to be controlled acts as an electric motor. And the electrode 22
When the gate signal of the IGBT element in contact with is ON, the positive potential of the battery is emitted from the emitter, the electrode 25 guides it, and the current is transmitted to the field coil (not shown) of the motor (not shown).
【0048】反対にモータが発電機として作用し、発電
機が回生制動の際、電池に蓄電作用する場合には、図1
1に記載されたもう一つのIGBT素子29が機能する
ことになる。即ち、発電機(図示しない)の界磁コイル
(図示しない)で発生した電流を電極25が導くことに
より、電極25はIGBT素子のコレクタ部として機能
し、発電機からの正電圧を供給する。このとき電極25
に接するIGBT素子のゲート信号がONであれば、エ
ミッタから正電位が電極24により通電され、二次電池
(図示しない)ヘと電流を伝達し充電する。On the contrary, in the case where the motor acts as a generator and the generator acts on the battery during regenerative braking, FIG.
The other IGBT element 29 described in No. 1 will function. That is, when the electrode 25 guides a current generated in a field coil (not shown) of a generator (not shown), the electrode 25 functions as a collector portion of the IGBT element and supplies a positive voltage from the generator. At this time, the electrode 25
When the gate signal of the IGBT element in contact with is ON, a positive potential is applied from the emitter by the electrode 24, and current is transmitted to the secondary battery (not shown) to charge the secondary battery.
【0049】図12は図7におけるJ−J線側面断面図
であり、図において、32はIGBT素子29のゲート
部30の電極となるコイルバネ28を所望の位置に案内
するための截頭直円錐形状を有する案内部材である。こ
れは制御基板27に固着されたゲート電極となるコイル
バネ28が、モジュール本体26に組みつけられるとき
に、モジュール本体26側に固着された截頭直円錐形状
の案内部材32の斜面に沿いながら、コイル電極のバネ
28の中心と、IGBT素子29のゲート部30の中心
が、截頭直円錐形状の案内部材32の円錐の軸32aと
同軸となるように自動的に位置合わせされるので、コイ
ルバネ28とゲート部30との微妙な位置調整が不要と
なり、しかも簡便で高速かつ確実にゲート部30にコイ
ルバネ28が接触するよう組み立てることができる。FIG. 12 is a side sectional view taken along the line JJ in FIG. 7. In FIG. 12, reference numeral 32 denotes a frustoconical truncated cone for guiding the coil spring 28, which is an electrode of the gate portion 30 of the IGBT element 29, to a desired position. It is a guide member having a shape. This is because when the coil spring 28 fixed to the control substrate 27 and serving as the gate electrode is assembled to the module main body 26, the coil spring 28 follows the slope of the truncated right circular cone-shaped guide member 32 fixed to the module main body 26 side. Since the center of the coil electrode spring 28 and the center of the gate portion 30 of the IGBT element 29 are automatically aligned so as to be coaxial with the conical shaft 32a of the truncated right circular cone-shaped guide member 32, the coil spring The delicate position adjustment between the gate 28 and the gate portion 30 is not necessary, and the coil spring 28 can be assembled so that the coil spring 28 contacts the gate portion 30 easily, at high speed, and reliably.
【0050】更に、33は板バネ等からなるバネであ
り、IGBT素子29とフライホイルダイオード31、
および電極22,24,25とを積層した状態で押圧力
を発生させるもので、これにより、IGBT素子29と
電極22,24,25の電気的な導通を可能にするとと
もに、IGBT素子29とフライホイルダイオード31
で発生する熱を、電極22,24,25に伝えるように
することができる。Further, 33 is a spring composed of a leaf spring or the like, and includes an IGBT element 29 and a flywheel diode 31,
A pressing force is generated in a state where the electrodes and the electrodes 22, 24, 25 are laminated, and this enables electrical conduction between the IGBT element 29 and the electrodes 22, 24, 25, and at the same time the IGBT element 29 and the fly. Wheel diode 31
It is possible to transfer the heat generated at the electrodes 22, 24, 25 to the electrodes.
【0051】図13は図8におけるK−K線正面断面図
であり、図において、34はパワー半導体モジュール内
部の積層構造の各層において、IGBT素子29、フラ
イホイルダイオード31および電極22,24,25の
位置を決定するための位置決め部材である。そして、こ
の位置決め部材34は上記IGBT素子29等を構成す
る部材と積層方向の厚みがほぼ等しく構成されており、
より正確には若干(10〜100μm程度)薄くなる寸
法を有し、電気的に絶縁され、かつ熱的な伝導性に優れ
る材料で構成されており、たとえばセラミック(内部抵
抗約1010Ωm、熱伝導率170W/m・K、線膨張
係数約4.5×10-6/K)や磁器(内部抵抗約10
11Ωm、熱伝導率1.5W/m・K、線膨張係数約4.
5×10-6/K)からなり、上記IGBT素子29等を
構成する部材の周囲を囲むようにして位置決めを行う。FIG. 13 is a front sectional view taken along the line KK in FIG. 8. In the figure, 34 is each layer of the laminated structure inside the power semiconductor module, which is an IGBT element 29, a flywheel diode 31, and electrodes 22, 24 and 25. Is a positioning member for determining the position of. The positioning member 34 has a thickness substantially equal to that of the members forming the IGBT element 29 and the like in the stacking direction.
More precisely, it has a dimension that makes it slightly (about 10 to 100 μm) thinner, and is made of a material that is electrically insulated and has excellent thermal conductivity. For example, a ceramic (internal resistance: about 10 10 Ωm, heat resistance: Conductivity 170 W / mK, linear expansion coefficient about 4.5 × 10 -6 / K and porcelain (internal resistance about 10)
11 Ωm, thermal conductivity 1.5 W / mK, linear expansion coefficient about 4.
5 × 10 −6 / K), and the positioning is performed so as to surround the members constituting the IGBT element 29 and the like.
【0052】この時、各層においてはIGBT素子29
等の各機能部材と位置決め部材34は相互に隙間xを有
し、隣接して配置される。この隙間xはIGBT素子2
9及びフライホイルダイオード31の半導体素子を構成
する主材料であるシリコンの線膨張係数約2.4×10
-6/Kと、板状の位置決め部材34の線膨張係数約4.
5×10-6/K、更には電極22,24,25を構成す
る銅の線膨張係数約16.7×10-6/K、またはアル
ミの線膨張係数約23×10-6/K等、異種材料による
膨張差を吸収するための空間を確保する為に設けられた
ものである。At this time, the IGBT element 29 is formed in each layer.
Each of the functional members such as the above and the positioning member 34 have a gap x therebetween and are arranged adjacent to each other. This gap x is determined by the IGBT element 2
9 and the linear expansion coefficient of silicon, which is the main material forming the semiconductor elements of the flywheel diode 31, of about 2.4 × 10.
-6 / K and the linear expansion coefficient of the plate-like positioning member 34 is about 4.
5 × 10 −6 / K, further, the linear expansion coefficient of copper constituting the electrodes 22, 24, 25 is about 16.7 × 10 −6 / K, or the linear expansion coefficient of aluminum is about 23 × 10 −6 / K, etc. It is provided to secure a space for absorbing a difference in expansion due to different materials.
【0053】又、35はケースであり、板状位置決め部
材34と同様に、電気絶縁性と熱伝導性に優れる材料か
らなり、パワー半導体モジュール外殻の下部を構成して
おり、このケース35と、外殻の上部を構成するカバー
36が、互いに嵌め合わされることで、パワー半導体モ
ジュール外殻を構成し、モジュール本体26を形成す
る。Reference numeral 35 designates a case, which, like the plate-like positioning member 34, is made of a material having excellent electric insulation and thermal conductivity and constitutes the lower part of the outer shell of the power semiconductor module. The cover 36 forming the upper part of the outer shell is fitted with each other to form the outer shell of the power semiconductor module and form the module body 26.
【0054】図14は図8におけるL−L線正面断面図
であり、図において、37は電極22,24,25の内
部を貫通する冷却用の冷媒が通過するための貫通穴であ
る。図15はこの貫通穴37の断面形状を示すための拡
大図である。図15に示すように、冷媒との接触面積を
広げるために、貫通穴37の内壁には、凹凸形状のフィ
ン38が設けられている。この凹凸形状のフィン38が
接触面積を広げ、熱抵抗Rthを抑え、熱伝達性能を高
めている。このように冷却性能が高まるので、パワー半
導体素子の長寿命が図れるとともに、長期に亘って信頼
性を確保することができる。FIG. 14 is a front sectional view taken along the line LL in FIG. 8. In FIG. 14, reference numeral 37 is a through hole through which a cooling medium penetrating the inside of the electrodes 22, 24 and 25 passes. FIG. 15 is an enlarged view showing the sectional shape of the through hole 37. As shown in FIG. 15, an uneven fin 38 is provided on the inner wall of the through hole 37 in order to increase the contact area with the refrigerant. The uneven fins 38 increase the contact area, suppress the thermal resistance Rth, and improve the heat transfer performance. Since the cooling performance is enhanced in this way, the life of the power semiconductor element can be extended and the reliability can be secured for a long period of time.
【0055】そして、貫通穴37を通過する冷却用の冷
媒として、電気的に絶縁材料となる空気、あるいはフロ
ロカーボン液などを使用することが考えられる。Then, it is conceivable to use air, which is an electrically insulating material, or a fluorocarbon liquid, etc., as the cooling refrigerant passing through the through holes 37.
【0056】実施の形態3.本実施形態は、更に熱の移
動を高速に行い、効率的に熱交換を行うため、ヒートパ
イプを電極に施したものである。図16はこの発明の実
施の形態3によるIGBTモジュールを示す平面図、図
17は図16のM方向からみた側面図、図18は図16
のN方向からみた正面図である。図において、41はI
GBTモジュール、42は銅により外殻を構成するヒー
トパイプであり、一方のIGBT素子のコレクタ部に接
する電極をも兼ねている。又、このヒートパイプ42の
放熱部には放熱用のフィン43を有している。Embodiment 3. In the present embodiment, a heat pipe is applied to the electrodes in order to transfer heat more rapidly and efficiently perform heat exchange. 16 is a plan view showing an IGBT module according to Embodiment 3 of the present invention, FIG. 17 is a side view seen from the M direction in FIG. 16, and FIG. 18 is FIG.
It is the front view seen from N direction. In the figure, 41 is I
The GBT module 42 is a heat pipe having an outer shell made of copper and also serves as an electrode in contact with the collector portion of one IGBT element. The heat radiating portion of the heat pipe 42 has fins 43 for radiating heat.
【0057】44は鋼からなるヒートパイプで、他方の
IGBT素子におけるエミッタ部に接する電極をも兼ね
ており、ヒートパイプ42と同様に放熱用のフィン43
を有する。45は電極42がIGBT素子のコレクタに
接することでコレクタとして機能する場合はエミッタ部
となり、更には電極44がIGBT素子のエミッタ部に
接することで、エミッタとして機能する場合にはコレク
タ部となる共用電極であり、これも銅から構成され、ヒ
ートパイプをも兼用し、放熱用のフィン43を有してい
る。A heat pipe 44 made of steel also serves as an electrode in contact with the emitter of the other IGBT element. Like the heat pipe 42, the fin 43 for heat dissipation is used.
Have. Reference numeral 45 serves as an emitter section when the electrode 42 contacts the collector of the IGBT element to function as a collector. Further, when the electrode 44 contacts the emitter section of the IGBT element, it serves as a collector section. Electrodes, which are also made of copper, also serve as heat pipes, and have fins 43 for heat dissipation.
【0058】又、46は各部品を埋め込んだモジュール
本体、47はIGBT素子のスイッチ信号を制御する制
御基板、48はIGBT素子のスイッチ信号をIGBT
素子のゲート部に伝達する電極で、バネ鋼に錫メッキ等
を施したコイルバネからできている。Further, 46 is a module main body in which the respective parts are embedded, 47 is a control board for controlling the switch signal of the IGBT element, and 48 is an IGBT element for the switch signal of the IGBT element.
It is an electrode that transmits to the gate of the device, and is made of a coil spring made of tinned spring steel.
【0059】又、図19は図17におけるO−O線断面
平面図であり、図において、49はIGBT素子、50
はゲート部、51はフライホイルダイオードであり、I
GBT素子49とは対に構成されている。FIG. 19 is a cross-sectional plan view taken along the line OO in FIG. 17, in which 49 is an IGBT element and 50 is an element.
Is a gate portion, 51 is a flywheel diode, and
It is paired with the GBT element 49.
【0060】電極42は、制御の対象となるモータ(図
示しない)が電動機として作用する場合に、IGBT素
子49のコレクタ部に電池(図示しない)からの正電圧
を導く働きを有している。そして、電極42が接するI
GBT素子49のゲート信号がONであれば、エミッタ
から電池の正電圧が放出され、電極45がこれを導き、
モータ(図示しない)の界磁コイル(図示しない)に電
流を伝達する。The electrode 42 has a function of guiding a positive voltage from a battery (not shown) to the collector portion of the IGBT element 49 when a motor (not shown) to be controlled acts as an electric motor. Then, the I that the electrode 42 contacts
When the gate signal of the GBT element 49 is ON, the positive voltage of the battery is emitted from the emitter and the electrode 45 guides it.
A current is transmitted to a field coil (not shown) of a motor (not shown).
【0061】反対にモータが発電機として作用し、発電
機が回生制動の際、電池に蓄電作用する場合には、発電
機(図示しない)の界磁コイル(図示しない)で発生し
た電流を電極45が導くことにより、電極45はIGB
T素子49のコレクタ部として機能し、発電機からの正
電圧を供給する。このとき電極45に接するIGBT素
子49のゲート信号がONであれば、エミッタから正電
位が電極44により通電され、二次電池(図示しない)
ヘと電流を伝達する。On the other hand, when the motor acts as a generator and the generator stores electricity in the battery during regenerative braking, the current generated in the field coil (not shown) of the generator (not shown) is applied to the electrode. The electrode 45 is guided by the IGB 45.
It functions as a collector of the T element 49 and supplies a positive voltage from the generator. At this time, if the gate signal of the IGBT element 49 in contact with the electrode 45 is ON, a positive potential is applied from the emitter by the electrode 44, and a secondary battery (not shown)
F and current is transmitted.
【0062】図20は図16におけるP−P線側面断面
図であり、図において、52はIGBT素子49のゲー
ト部50の電極となるコイルバネ48を所望の位置に案
内するための截頭直円錐形状を有する案内部材である。
これは制御基板47に固着されたゲート電極となるコイ
ルバネ48が、モジュール本体46に組みつけられると
きに、モジュール本体46側に固着された截頭直円錐形
状の案内部材52の斜面に沿いながら、コイルバネ48
の中心と、IGBT素子49のゲート部50の中心が、
截頭直円錐形状の案内部材52の円錐の軸52aと同軸
となるように自動的に位置合わせされるので、コイルバ
ネ48とゲート部50との微妙な位置調整が不要とな
り、しかも簡便で高速かつ確実にゲート部50にコイル
バネ48が接触するよう組み立てることができる。FIG. 20 is a side sectional view taken along the line P--P in FIG. 16, in which reference numeral 52 denotes a frustoconical truncated cone for guiding the coil spring 48 serving as the electrode of the gate portion 50 of the IGBT element 49 to a desired position. It is a guide member having a shape.
This is because when the coil spring 48, which is fixed to the control substrate 47 and serves as a gate electrode, is attached to the module main body 46, the coil spring 48 follows the slope of the truncated right circular cone-shaped guide member 52 fixed to the module main body 46 side. Coil spring 48
And the center of the gate part 50 of the IGBT element 49 are
Since the guide member 52 having a truncated cone shape is automatically aligned so as to be coaxial with the conical shaft 52a, fine adjustment of the position of the coil spring 48 and the gate portion 50 is unnecessary, and it is simple, fast, and fast. The gate spring 50 can be assembled so that the coil spring 48 is surely brought into contact with the gate portion 50.
【0063】更に、53は板バネ等からなるバネであ
り、IGBT素子49とフライホイルダイオード51、
および電極42,44,45とを積層した状態で押圧力
を発生させるもので、これによりIGBT素子49と電
極42,44,45の電気的な導通を可能にするととも
に、IGBT素子49とフライホイルダイオード51で
発生する熱を、電極42,44,45に伝えるようにす
ることができる。Further, 53 is a spring composed of a leaf spring or the like, which includes an IGBT element 49 and a flywheel diode 51,
A pressing force is generated in a state where the electrodes and the electrodes 42, 44 and 45 are laminated, which enables electrical connection between the IGBT element 49 and the electrodes 42, 44 and 45, and at the same time, the IGBT element 49 and the flywheel. The heat generated by the diode 51 can be transferred to the electrodes 42, 44, 45.
【0064】図21は図17におけるQ−Q線正面断面
図であり、図において、54はパワー半導体モジュール
内部の積層構造の各層において、IGBT素子49、フ
ライホイルダイオード51および電極42,44,45
の位置を決定するための位置決め板状部材である。そし
てこの位置決め板状部材54は上記IGBT素子49等
を構成する部材と積層方向の厚みがほぼ等しく構成され
ており、より正確には若干(10〜100μm程度)薄
くなる寸法を有し、電気的に絶縁され、かつ熱的な伝導
性に優れる材料で構成されており、たとえばセラミック
(内部抵抗約1010Ωm、熱伝導率170W/m・
K、線膨張係数約4.5×10−6/K)や磁器(内部
抵抗約1011Ωm、熱伝導率l.5W/m・K、線膨
張係数約4.5×10−6/K)からなり、上記IGB
T素子49等を構成する部材の周囲を囲むようにして位
置決めを行う。FIG. 21 is a front sectional view taken along the line Q-Q in FIG. 17, in which 54 denotes each layer of the laminated structure inside the power semiconductor module, the IGBT element 49, the flywheel diode 51 and the electrodes 42, 44 and 45.
Is a positioning plate member for determining the position of the. The positioning plate member 54 has a thickness substantially equal to that of the members forming the IGBT element 49 and the like in the stacking direction, and more precisely has a dimension of slightly thinning (about 10 to 100 μm), and has an electrical property. It is made of a material that is electrically insulated and has excellent thermal conductivity. For example, a ceramic (internal resistance of about 10 10 Ωm, thermal conductivity of 170 W / m.
K, linear expansion coefficient about 4.5 × 10 −6 / K) and porcelain (internal resistance about 10 11 Ωm, thermal conductivity 1.5 W / m · K, linear expansion coefficient about 4.5 × 10 −6 / K). ), The above IGB
Positioning is performed so as to surround the members that form the T element 49 and the like.
【0065】この時、各層においてはIGBT素子49
等の各機能部材と位置決め部材54は相互に隙間xを有
し、隣接して配置される。この隙間xはIGBT素子4
9及びフライホイルダイオード51の半導体素子を構成
する主材料であるシリコンの線膨張係数約2.4×10
−6/Kと、板伏の位置決め部材54の線膨張係数約
4.5×10−6/K、更には電極42,44,45を
構成する銅の線膨張係数約16.7×10−6/Kまた
はアルミの線膨張係数約23×10−6/K等、異種材
料による膨張差を吸収するための空間を確保する為に設
けられたものである。At this time, the IGBT element 49 is formed in each layer.
The respective functional members such as the above and the positioning member 54 have a gap x therebetween and are arranged adjacent to each other. This gap x is determined by the IGBT element 4
9 and the linear expansion coefficient of silicon, which is the main material forming the semiconductor elements of the flywheel diode 51, of about 2.4 × 10.
-6 / K, the linear expansion coefficient of the plate-shaped positioning member 54 is about 4.5 * 10 < -6 > / K, and the linear expansion coefficient of copper forming the electrodes 42, 44, 45 is about 16.7 * 10 < - >. 6 / K or a linear expansion coefficient of aluminum of about 23 × 10 −6 / K, etc., provided to secure a space for absorbing a difference in expansion due to different materials.
【0066】又、55はケースであり、板状位置決め部
材54と同様に、電気絶縁性と熱伝導性に優れる材料か
らなり、パワー半導体モジュール外殻の下部を構成して
おり、このケース55と、外殻の上部を構成するカバー
56が、互いに嵌め含わされることで、パワー半導体モ
ジュール外殻を構成し、モジュール本体46を形成す
る。Reference numeral 55 denotes a case, which, like the plate-shaped positioning member 54, is made of a material having excellent electrical insulation and thermal conductivity and constitutes the lower part of the outer shell of the power semiconductor module. The cover 56 forming the upper part of the outer shell is fitted and included in each other to form the outer shell of the power semiconductor module and form the module main body 46.
【0067】電極42,44,45は図20に示すよう
に、内部に空洞57が設けられており、ウイック(図示
しない)とよばれる毛細管組織がこの空洞57の内壁面
に形成され、さらにこの内側の空間に作動液(図示しな
い)とよばれる、熱を移動させる液体が封入されてい
る。IGBT素子49とフライホイルダイオード51で
発生した熱が、熱伝導体であるヒートパイプを兼ねる電
極42,44,45に伝達され、ヒートパイプの入熱部
の壁に伝達される。これにより、ヒートパイプの内側の
空洞57に封入されている作動液が加熱され蒸発する。As shown in FIG. 20, the electrodes 42, 44 and 45 are provided with a cavity 57 therein, and a capillary tissue called a wick (not shown) is formed on the inner wall surface of the cavity 57. A liquid that moves heat, which is called a working liquid (not shown), is enclosed in the inner space. The heat generated by the IGBT element 49 and the flywheel diode 51 is transferred to the electrodes 42, 44, 45 which also function as a heat pipe which is a heat conductor, and transferred to the wall of the heat input part of the heat pipe. As a result, the working fluid enclosed in the cavity 57 inside the heat pipe is heated and evaporated.
【0068】この気化によって得られた蒸気は、ヒート
パイプの入熱部から放熱部に移動し、放熱部で熱を放出
して凝縮し再び作動液に戻る。蒸気から放出された潜熱
は、ヒートパイプの放熱部のフィン43に伝達されて空
気中に放出される。また、作動液はヒートパイプの放熱
部から入熱部に還流する。The vapor obtained by this vaporization moves from the heat input portion of the heat pipe to the heat radiating portion, releases heat in the heat radiating portion, condenses, and returns to the working fluid again. The latent heat released from the vapor is transferred to the fins 43 of the heat radiating portion of the heat pipe and released into the air. Further, the working fluid flows back from the heat radiating portion of the heat pipe to the heat input portion.
【0069】また、上記各実施の形態で説明したパワー
半導体素子は、IGBT素子に限定するものではなく、
IGBT素子の他にダイオード、サイリスタ、トライア
ック、MOSFET、バイポーラトランジスタ、SIT
等を単独、あるいはこれらが混在するものを用いること
ができる。The power semiconductor element described in each of the above embodiments is not limited to the IGBT element.
Besides IGBT element, diode, thyristor, triac, MOSFET, bipolar transistor, SIT
Etc., or a mixture of these may be used.
【0070】上記のように、本発明に係るパワー半導体
モジュールは、パワー半導体素子のパワー入力部とパワ
ー出力部に面接触させる導電性と熱伝導性に優れる金属
部材を設け、この金属部材をヒートパイプとしても機能
させるので、熱源となるパワー半導体素子を複数の異種
部材を介在させて冷却するのではなく、この金属部材
(電極)自体で冷却機能を兼ねるため、構成部材の簡素
化と組立ての容易化が可能となり、パワー半導体モジュ
ールの製造に関するコストを大幅に下げる効果が得られ
る。As described above, the power semiconductor module according to the present invention is provided with a metal member having excellent conductivity and thermal conductivity, which is brought into surface contact with the power input section and the power output section of the power semiconductor element, and the metal member is heated. Since it also functions as a pipe, the power semiconductor element serving as a heat source is not cooled by interposing a plurality of different members, but the metal member (electrode) itself also serves as a cooling function. The simplification can be achieved, and the effect of significantly reducing the cost for manufacturing the power semiconductor module can be obtained.
【0071】さらに、この金属部材(電極)に熱を吸熱
し移動させる冷媒の通路を構成することにより、熱抵抗
を大幅に抑えることが可能となり、パワー半導体素子の
長寿命化と長期に亘る信頼性をさらに向上させることが
可能となる。また、金属部材(電極)に放熱用のフィン
43を設けることにより、冷却性能が高まるので、パワ
ー半導体素子の長寿命化と長期に亘る信頼性をさらに向
上させることが可能となる。Further, by constructing a passage for a refrigerant that absorbs and moves heat in this metal member (electrode), it becomes possible to greatly suppress the thermal resistance, and the life of the power semiconductor element is prolonged and the reliability is long-term. It is possible to further improve the property. Further, since the cooling performance is improved by providing the fins 43 for heat dissipation on the metal member (electrode), it becomes possible to further prolong the life of the power semiconductor element and further improve the long-term reliability.
【0072】[0072]
【発明の効果】この発明の請求項1に係る半導体モジュ
ールによれば、内部に半導体素子を封止したものであっ
て、半導体素子の入力部および出力部に導電性と熱伝導
性の高い金属材料から構成される電極を面接触させ、半
導体素子並びに電極を積層構造とし、積層方向に積層部
材相互を圧接するための弾性部材を設けたので、発生す
る熱による部材間の熱応力が発生せず、又、所望の導電
性と熱伝導性、並びに機械的耐久性を維持することがで
き、半導体素子の長寿命化が図れ、長期に亘る信頼性を
確保することができる。According to the semiconductor module of the first aspect of the present invention, the semiconductor element is sealed inside, and the input portion and the output portion of the semiconductor element are made of metal having high conductivity and thermal conductivity. Since the electrodes made of materials are brought into surface contact, the semiconductor element and the electrodes have a laminated structure, and elastic members for pressing the laminated members in the laminating direction are provided, thermal stress between the members is not generated by the generated heat. In addition, desired electrical conductivity, thermal conductivity, and mechanical durability can be maintained, the life of the semiconductor element can be extended, and long-term reliability can be ensured.
【0073】この発明の請求項2に係る半導体モジュー
ルによれば、電極となるコイルバネを半導体素子に押圧
接触させるとともに、コイルバネの一端を制御基板に固
着させたので、構造が簡素化され、製造コストを抑制す
ることができる。According to the semiconductor module of the second aspect of the present invention, since the coil spring serving as the electrode is pressed against the semiconductor element and one end of the coil spring is fixed to the control substrate, the structure is simplified and the manufacturing cost is reduced. Can be suppressed.
【0074】この発明の請求項3に係る半導体モジュー
ルによれば、コイルバネの位置決めを行なうための截頭
円錐形状を有する案内部材を設けたので、組立てを容易
に行なうことができる。According to the semiconductor module of the third aspect of the present invention, since the guide member having the truncated cone shape for positioning the coil spring is provided, the assembly can be easily performed.
【0075】この発明の請求項4に係る半導体モジュー
ルによれば、積層部材の位置を決定するための位置決め
部材を設けるとともに、各部材間に隙間を設けたので、
部材間の熱応力が発生しなくなる。According to the semiconductor module of the fourth aspect of the present invention, since the positioning member for determining the position of the laminated member is provided and the gap is provided between the respective members,
The thermal stress between members does not occur.
【0076】この発明の請求項5に係る半導体モジュー
ルによれば、電極に放熱用のフィンを設けたので、冷却
性能を高めることができる。According to the semiconductor module of the fifth aspect of the present invention, since the fins for radiating heat are provided on the electrodes, the cooling performance can be improved.
【0077】この発明の請求項6に係る半導体モジュー
ルによれば、冷却用の冷媒が通過するための貫通穴を電
極内部に設けるとともに、貫通穴の内壁に凹凸形状のフ
ィンを設けたので、冷却性能を高めることができる。According to the semiconductor module of the sixth aspect of the present invention, the through hole for passing the cooling medium is provided inside the electrode, and the fin having the uneven shape is provided on the inner wall of the through hole. Performance can be improved.
【0078】この発明の請求項7に係る半導体モジュー
ルによれば、電極に空洞を設けるとともに、この空洞内
に熱を移動させるための作動液を封入したので、冷却性
能を高めることができる。According to the semiconductor module of the seventh aspect of the present invention, since the electrode is provided with the cavity and the working liquid for moving the heat is enclosed in the cavity, the cooling performance can be enhanced.
【図1】 この発明の実施の形態1による半導体モジュ
ールを示す平面図である。FIG. 1 is a plan view showing a semiconductor module according to a first embodiment of the present invention.
【図2】 図1のA方向から見た側面図である。FIG. 2 is a side view seen from the direction A in FIG.
【図3】 図lのB方向から見た正面図である。FIG. 3 is a front view seen from the direction B in FIG.
【図4】 図2におけるC−C線断面平面図である。FIG. 4 is a cross-sectional plan view taken along the line CC in FIG.
【図5】 図1におけるD−D線断面側面図である。5 is a cross-sectional side view taken along the line DD in FIG.
【図6】 図2におけるE−E線断面正面図である。6 is a sectional front view taken along line EE in FIG.
【図7】 この発明の実施の形態2による半導体モジュ
ールを示す平面図である。FIG. 7 is a plan view showing a semiconductor module according to a second embodiment of the present invention.
【図8】 図7のF方向から見た側面図である。FIG. 8 is a side view seen from the F direction in FIG.
【図9】 図7のG方向から見た正面図である。9 is a front view seen from the direction G in FIG. 7. FIG.
【図10】 図8におけるH−H線断面平面図である。10 is a cross-sectional plan view taken along the line HH in FIG.
【図11】 図8におけるI−I線断面平面図である。11 is a cross-sectional plan view taken along the line I-I of FIG.
【図12】 図7におけるJ−J線断面側面図である。12 is a cross-sectional side view taken along line JJ in FIG.
【図13】 図8におけるK−K線断面正面図である。13 is a sectional front view taken along line KK in FIG.
【図14】 図8におけるL−L線断面正面図である。14 is a sectional front view taken along line LL in FIG.
【図15】 貫通穴部分を示すための拡大図である。FIG. 15 is an enlarged view showing a through hole portion.
【図16】 この発明の実施の形態3による半導体モジ
ュールを示す平面図である。FIG. 16 is a plan view showing a semiconductor module according to a third embodiment of the present invention.
【図17】 図16のM方向から見た側面図である。FIG. 17 is a side view seen from the M direction in FIG.
【図18】 図16のN方向から見た正面図である。FIG. 18 is a front view seen from the N direction in FIG.
【図19】 図17におけるO−O線断面平面図であ
る。19 is a cross-sectional plan view taken along line OO in FIG.
【図20】 図16におけるP−P線断面側面図であ
る。20 is a cross-sectional side view taken along line P-P in FIG.
【図21】 図17におけるQ−Q線断面正面図であ
る。21 is a sectional front view taken along the line QQ in FIG.
【図22】 従来の半導体モジュールを示す断面図であ
る。FIG. 22 is a sectional view showing a conventional semiconductor module.
2,4,5,22,24,25,42,44,45 電
極、3,43 フィン、7,27,47 制御基板、
8,28,48 コイルバネ、12,32,52案内部
材、13,33,53 弾性部材、14,34,54
位置決め部材、37 貫通穴、57 空洞。2, 4, 5, 22, 24, 25, 42, 44, 45 electrodes, 3,43 fins, 7, 27, 47 control board,
8, 28, 48 Coil spring, 12, 32, 52 Guide member, 13, 33, 53 Elastic member, 14, 34, 54
Positioning member, 37 through holes, 57 cavities.
Claims (7)
ールであって、上記半導体素子の入力部および出力部に
導電性と熱伝導性の高い金属材料から構成される電極を
面接触させ、上記半導体素子並びに上記電極を積層構造
とし、積層方向に積層部材相互を圧接するための弾性部
材を設けたことを特徴とする半導体モジュール。1. A semiconductor module having a semiconductor element sealed inside, wherein an electrode made of a metal material having high electrical conductivity and thermal conductivity is brought into surface contact with an input portion and an output portion of the semiconductor element, A semiconductor module, wherein the semiconductor element and the electrode have a laminated structure, and an elastic member for pressing the laminated members against each other in the laminating direction is provided.
押圧接触させるとともに、上記コイルバネの一端を制御
基板に固着させたことを特徴とする請求項1記載の半導
体モジュール。2. The semiconductor module according to claim 1, wherein a coil spring serving as an electrode is pressed into contact with the semiconductor element and one end of the coil spring is fixed to a control board.
載頭円錐形状を有する案内部材を設けたことを特徴とす
る請求項2記載の半導体モジュール。3. The semiconductor module according to claim 2, further comprising a guide member having a truncated cone shape for positioning the coil spring.
決め部材を設けるとともに、各部材間に隙間を設けたこ
とを特徴とする請求項1から請求項3のいずれか1項に
記載の半導体モジュール。4. The semiconductor according to claim 1, wherein a positioning member for determining the position of the laminated member is provided, and a gap is provided between each member. module.
特徴とする請求項1から請求項4のいずれか1項に記載
の半導体モジュール。5. The semiconductor module according to claim 1, wherein the electrode is provided with a fin for heat dissipation.
記電極内部に設けるとともに、上記貫通穴の内壁に凹凸
形伏のフィンを設けたことを特徴とする請求項1から請
求項5のいずれか1項に記載の半導体モジュール。6. A through hole for allowing a cooling medium to pass therethrough is provided inside the electrode, and an uneven fin is provided on the inner wall of the through hole. The semiconductor module according to any one of 1.
洞内に熱を移動させるための作動液を封入したことを特
徴とする請求項1から請求項5のいずれか1項に記載の
半導体モジュール。7. The semiconductor module according to claim 1, wherein a cavity is provided in the electrode, and a working liquid for transferring heat is sealed in the cavity. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002145910A JP3669971B2 (en) | 2002-05-21 | 2002-05-21 | Semiconductor module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002145910A JP3669971B2 (en) | 2002-05-21 | 2002-05-21 | Semiconductor module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003338592A true JP2003338592A (en) | 2003-11-28 |
JP3669971B2 JP3669971B2 (en) | 2005-07-13 |
Family
ID=29705049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002145910A Expired - Fee Related JP3669971B2 (en) | 2002-05-21 | 2002-05-21 | Semiconductor module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3669971B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006165499A (en) * | 2004-06-08 | 2006-06-22 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
JP2007221127A (en) * | 2006-02-13 | 2007-08-30 | Semikron Elektronik Gmbh & Co Kg | Power semiconductor module and related manufacturing method |
JP2008035591A (en) * | 2006-07-27 | 2008-02-14 | Meidensha Corp | Structure of ac controller |
US7504720B2 (en) | 2005-08-19 | 2009-03-17 | Hitachi, Ltd. | Semiconductor unit, and power conversion system and on-vehicle electrical system using the same |
JP2009071064A (en) * | 2007-09-13 | 2009-04-02 | Mitsubishi Electric Corp | Semiconductor device |
JP2009081399A (en) * | 2007-09-27 | 2009-04-16 | Mitsubishi Electric Corp | Power semiconductor module |
US7656016B2 (en) | 2004-12-08 | 2010-02-02 | Mitsubishi Denki Kabushiki Kaisha | Power semiconductor device |
JP2010251711A (en) * | 2009-03-23 | 2010-11-04 | Toyota Central R&D Labs Inc | Power module |
JP2011125152A (en) * | 2009-12-11 | 2011-06-23 | Toyota Central R&D Labs Inc | Power converter |
JP2011167028A (en) * | 2010-02-15 | 2011-08-25 | Denso Corp | Power conversion apparatus |
US8648462B2 (en) | 2010-08-18 | 2014-02-11 | Mitsubishi Electric Corporation | Semiconductor power module |
JP2017084850A (en) * | 2015-10-22 | 2017-05-18 | 日本発條株式会社 | Power semiconductor device |
CN109690767A (en) * | 2016-09-07 | 2019-04-26 | 三菱电机株式会社 | semiconductor device |
KR20240087039A (en) * | 2022-12-12 | 2024-06-19 | 현대트랜시스 주식회사 | Power module device for vehicle |
KR20240087038A (en) * | 2022-12-12 | 2024-06-19 | 현대트랜시스 주식회사 | Power module device for vehicle |
-
2002
- 2002-05-21 JP JP2002145910A patent/JP3669971B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006165499A (en) * | 2004-06-08 | 2006-06-22 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
US7656016B2 (en) | 2004-12-08 | 2010-02-02 | Mitsubishi Denki Kabushiki Kaisha | Power semiconductor device |
US7504720B2 (en) | 2005-08-19 | 2009-03-17 | Hitachi, Ltd. | Semiconductor unit, and power conversion system and on-vehicle electrical system using the same |
US7816786B2 (en) | 2005-08-19 | 2010-10-19 | Hitachi, Ltd. | Semiconductor unit, and power conversion system and on-vehicle electrical system using the same |
JP2007221127A (en) * | 2006-02-13 | 2007-08-30 | Semikron Elektronik Gmbh & Co Kg | Power semiconductor module and related manufacturing method |
JP2008035591A (en) * | 2006-07-27 | 2008-02-14 | Meidensha Corp | Structure of ac controller |
JP2009071064A (en) * | 2007-09-13 | 2009-04-02 | Mitsubishi Electric Corp | Semiconductor device |
JP2009081399A (en) * | 2007-09-27 | 2009-04-16 | Mitsubishi Electric Corp | Power semiconductor module |
JP2010251711A (en) * | 2009-03-23 | 2010-11-04 | Toyota Central R&D Labs Inc | Power module |
JP2011125152A (en) * | 2009-12-11 | 2011-06-23 | Toyota Central R&D Labs Inc | Power converter |
JP2011167028A (en) * | 2010-02-15 | 2011-08-25 | Denso Corp | Power conversion apparatus |
US8648462B2 (en) | 2010-08-18 | 2014-02-11 | Mitsubishi Electric Corporation | Semiconductor power module |
JP2017084850A (en) * | 2015-10-22 | 2017-05-18 | 日本発條株式会社 | Power semiconductor device |
CN109690767A (en) * | 2016-09-07 | 2019-04-26 | 三菱电机株式会社 | semiconductor device |
CN109690767B (en) * | 2016-09-07 | 2022-08-26 | 三菱电机株式会社 | Semiconductor device with a plurality of semiconductor chips |
KR20240087039A (en) * | 2022-12-12 | 2024-06-19 | 현대트랜시스 주식회사 | Power module device for vehicle |
KR20240087038A (en) * | 2022-12-12 | 2024-06-19 | 현대트랜시스 주식회사 | Power module device for vehicle |
KR102746919B1 (en) | 2022-12-12 | 2024-12-27 | 현대트랜시스 주식회사 | Power module device for vehicle |
KR102752852B1 (en) | 2022-12-12 | 2025-01-09 | 현대트랜시스 주식회사 | Power module device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3669971B2 (en) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4617209B2 (en) | Heat dissipation device | |
JP3669971B2 (en) | Semiconductor module | |
JP4292913B2 (en) | Semiconductor cooling unit | |
JP2007335663A (en) | Semiconductor module | |
JP5965687B2 (en) | Power semiconductor module | |
JPWO2019009172A1 (en) | Semiconductor laser device | |
JPH09307040A (en) | Semiconductor device, inverter device, and method for manufacturing semiconductor device | |
JP5249662B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP2006222461A (en) | Heat dissipation structure | |
JP5217015B2 (en) | Power converter and manufacturing method thereof | |
JP2000156439A (en) | Power semiconductor module | |
JP4935783B2 (en) | Semiconductor device and composite semiconductor device | |
JP4968150B2 (en) | Semiconductor element cooling device | |
JP2019102519A (en) | Semiconductor device | |
JP2006294921A (en) | Power converter | |
JP4649950B2 (en) | Semiconductor device with cooler | |
US11990391B2 (en) | Semiconductor device | |
JP5164793B2 (en) | Power semiconductor device | |
JPH11233696A (en) | Power semiconductor module and bonded block of power semiconductor module and cooler | |
WO2021095146A1 (en) | Semiconductor device | |
JP4158648B2 (en) | Semiconductor cooling unit | |
CN220733332U (en) | Electronic equipment | |
US12288767B2 (en) | Semiconductor device | |
JP2020113600A (en) | Semiconductor device | |
CN221928061U (en) | Power module and electronic product comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050412 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |