JPH042181A - Thin film superconductor and manufacture thereof - Google Patents
Thin film superconductor and manufacture thereofInfo
- Publication number
- JPH042181A JPH042181A JP2101616A JP10161690A JPH042181A JP H042181 A JPH042181 A JP H042181A JP 2101616 A JP2101616 A JP 2101616A JP 10161690 A JP10161690 A JP 10161690A JP H042181 A JPH042181 A JP H042181A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- euo
- film
- superconducting
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 92
- 239000002887 superconductor Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010949 copper Substances 0.000 claims abstract description 11
- 230000008020 evaporation Effects 0.000 claims abstract description 8
- 238000001704 evaporation Methods 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 238000010030 laminating Methods 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000004544 sputter deposition Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 239000002648 laminated material Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 230000000737 periodic effect Effects 0.000 abstract description 9
- 238000000151 deposition Methods 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 abstract 3
- 229910002480 Cu-O Inorganic materials 0.000 abstract 2
- 239000010408 film Substances 0.000 description 75
- 230000007704 transition Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910004247 CaCu Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Thin Magnetic Films (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、100 ’に以上の高臨界温度が期待される
ビスマスを含む酸化物超電導体の薄膜およびその製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film of an oxide superconductor containing bismuth, which is expected to have a high critical temperature of 100' or more, and a method for manufacturing the same.
(従来の技術)
高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge)
などが知られていたが、これらの材料の超電導転移温度
はたかだか23″にであった。一方、ペロブスカイト系
化合物は、さらに高い転移温度が期待され、B a−L
a−Cu−〇系の高温超電導体が提案された[ J
、G、 Bednorz and K、A、Mulle
r。(Prior art) Niobium nitride (NbN) and germanium niobium (Nb3Ge) are used as A15 type binary compounds as high-temperature superconductors.
etc., but the superconducting transition temperature of these materials was only 23". On the other hand, perovskite compounds are expected to have an even higher transition temperature, and B a-L
A-Cu-〇-based high-temperature superconductor was proposed [J
, G., Bednorz and K., Mulle.
r.
ツアイトシュリフト・フユア・フィジーク(Zetsh
rift Fiir Physik B)−Co
ndensedMatter、Vol、64,189−
193 (1986)]。Zeitschrift Fuyur Physique (Zetsh
rift Fire Physik B)-Co
ndensedMatter, Vol, 64,189-
193 (1986)].
さらに、 ]B1−8r−Ca−Cu−〇の材料が10
0 ’に以上の転移温度を示すことも発見された[ H
,Maeda、 Y 、 Tanaka、 M、 Fu
kuto@i and T 。Furthermore, the material of ]B1-8r-Ca-Cu-〇 is 10
It was also discovered that [H
, Maeda, Y., Tanaka, M., Fu
kuto@i and T.
AsanO+ジャパニーズ″ジャーナル・オブ・アプラ
イド拳フィジックス(Japanese Journa
l of Ap−plied Physics)Vo
l、27. L209−210 (198g)コ。AsanO+Japanese “Journal of Applied Fist Physics”
l of Ap-plied Physics)Vo
l, 27. L209-210 (198g).
この種の材料の超電導機構の詳細は明らかではないが
、転移温度が室温以上に高くなる可能性があり、高温超
電導体として従来の2元系化合物より、より有望な特性
が期待される。The details of the superconducting mechanism of this type of material are not clear, but the transition temperature may be higher than room temperature, and it is expected that it will have more promising properties as a high-temperature superconductor than conventional binary compounds.
さらに超電導体と磁性体とのを交互に積層することによ
り、より高い臨界電流密度およびより高い臨界磁場が従
来から期待されている。Furthermore, higher critical current density and higher critical magnetic field have been conventionally expected by alternately stacking superconductors and magnetic materials.
(発明が解決しようとする課題)
しかしながら、B1−5r−Ca−Cu−0系の材料は
、現在の技術では主として焼結という過程でしか形成で
きないため、セラミックの粉末あるいはブロックの形状
でしか得られない。一方、この種の材料を実用化する場
合、薄膜状に加工することが強く要望されているが、従
来の技術では、良好な超電導特性を有する薄膜作製は厳
しいものであった。(Problem to be solved by the invention) However, with current technology, B1-5r-Ca-Cu-0-based materials can only be formed mainly through the process of sintering, so they can only be obtained in the form of ceramic powder or blocks. I can't. On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but with conventional techniques, it has been difficult to produce a thin film with good superconducting properties.
すなわち、 B1−8r−Ca−Cu−○系には超電導
転移温度の異なるいくつかの相が存在することが知られ
ているが、特に転移温度が100″に以上の相を薄膜の
形態で達成するのは、非常に困難とされていた。In other words, it is known that the B1-8r-Ca-Cu-○ system has several phases with different superconducting transition temperatures, but it is particularly difficult to achieve a phase with a transition temperature of 100'' or higher in the form of a thin film. It was considered extremely difficult to do so.
また、従来のこのBi系において良好な超電導特性を示
す薄膜を形成するためには少なくとも700℃以上の熱
処理あるいは形成時の加熱が必要であり、そのため高い
臨界電流密度、高い臨界磁場が期待される磁性薄膜との
周期的な積層構造を得ることは極めて困難と考えられ、
またこの構造を利用した集積化デバイスを構成すること
もたいへん困難であるとされていた。In addition, in order to form a thin film that exhibits good superconducting properties in this conventional Bi system, heat treatment at at least 700°C or higher or heating during formation is required, and therefore a high critical current density and high critical magnetic field are expected. It is thought to be extremely difficult to obtain a periodic layered structure with magnetic thin films.
It was also considered to be extremely difficult to construct an integrated device using this structure.
本発明の目的は、従来の欠点を解消し、 100 ’に
以上の高臨界温度が期待されるビスマスを含む酸化物超
電導薄膜およびその製造方法を提供することである。An object of the present invention is to eliminate the conventional drawbacks and provide a bismuth-containing oxide superconducting thin film that is expected to have a high critical temperature of 100' or more, and a method for manufacturing the same.
(課題を解決するための手段) 本発明者らによる第1の発明の薄膜超電導体は。(Means for solving problems) The thin film superconductor of the first invention by the present inventors is as follows.
主体成分が少なくともビスマス(Bi)、銅(Cu)、
およびアルカリ土類(na族)を含む層状酸化物超電導
薄膜と、EuOからなる磁性薄膜が交互に積層された構
造を持つものである。The main components are at least bismuth (Bi), copper (Cu),
It has a structure in which layered oxide superconducting thin films containing alkaline earth elements (NA group) and magnetic thin films made of EuO are alternately laminated.
さらに第2の発明の薄膜超電導体の製造方法は、基体上
に、少なくともBiを含む酸化物と少なくとも銅および
アルカリ土類(na族)を含む酸化物とを周期的に積層
させて形成する酸化物薄膜と。Furthermore, the method for producing a thin film superconductor according to the second invention includes an oxide film formed by periodically stacking an oxide containing at least Bi and an oxide containing at least copper and alkaline earth (NA group) on a substrate. Thin film.
EuOからなる磁性薄膜とを、交互に積層させて得る薄
膜超電導体の製造方法である。This is a method for manufacturing a thin film superconductor obtained by alternately stacking magnetic thin films made of EuO.
ここでアルカリ土類は、IIa族元素のうち少なくとも
一種あるいは二種以上の元素を示す。Here, alkaline earth refers to at least one or two or more elements of Group IIa elements.
(作 用)
本発明者らによる第1の発明においては、安定なり12
02酸化膜層またはこれを主体とした層によりともに覆
われた結晶構造となっているところの、Bi系超電導薄
膜と、EuOからなる磁性薄膜とが、交互に積層された
構造をとることによって、超電導膜と磁性薄膜との間で
の相互拡散の少ない積層が可能となる。また、磁性薄膜
のもつ磁気モーメントまたはスピンと超電導体との相互
作用により、Bi系超電導薄膜における臨界電流密度お
よび臨界磁場の向上が実現されたものである。(Function) In the first invention by the present inventors, it is stable.
By adopting a structure in which a Bi-based superconducting thin film and a magnetic thin film made of EuO are alternately laminated, the Bi-based superconducting thin film and the magnetic thin film made of EuO have a crystal structure covered with a 02 oxide film layer or a layer mainly composed of this. Lamination with less mutual diffusion between the superconducting film and the magnetic thin film becomes possible. Furthermore, the critical current density and critical magnetic field in the Bi-based superconducting thin film have been improved due to the interaction between the magnetic moment or spin of the magnetic thin film and the superconductor.
さらに第2の発明においては上記構造を達成するため、
少なくともBiを含む酸化物と、少なくとも銅およびア
ルカリ土類(IIa族)を含む酸化物あるいはEuOと
を、周期的に積層させて分子レベルの制御による薄膜の
作製を行うことによって、再現性良<Bi系超電導薄膜
と磁性薄膜との積層を得ることに成功したものである。Furthermore, in the second invention, in order to achieve the above structure,
By periodically stacking an oxide containing at least Bi and an oxide containing at least copper and alkaline earth (group IIa) or EuO to form a thin film through control at the molecular level, it is possible to achieve good reproducibility. This has succeeded in producing a laminated layer of a Bi-based superconducting thin film and a magnetic thin film.
(実施例)
まず、Bi系超電導薄膜と磁性薄膜との周期的な積層構
造を実現するため、Bi系超電導薄膜と種々の磁性薄膜
との界面での相互作用について検討した。(Example) First, in order to realize a periodic stacked structure of a Bi-based superconducting thin film and a magnetic thin film, the interaction at the interface between a Bi-based superconducting thin film and various magnetic thin films was studied.
通常、Bi系超電導薄膜は500〜700℃に加熱した
基体上に蒸着して得る。蒸着後、そのままでも薄膜は超
電導特性を示すが、そののち800〜950℃の熱処理
を施し、超電導特性を向上させる。Usually, a Bi-based superconducting thin film is obtained by vapor deposition on a substrate heated to 500 to 700°C. After vapor deposition, the thin film exhibits superconducting properties as it is, but is then subjected to heat treatment at 800 to 950°C to improve its superconducting properties.
しかしながら、基体温度が高いときに磁性薄膜をBi系
超電導薄膜に続いて積層したり、磁性薄膜を形成後熱処
理を行った場合、超電導薄膜と磁性薄膜との間で、元素
の相互拡散が起こり超電導特性が大きく劣化することが
判明した。相互拡散を起こさないためには、超電導薄膜
、磁性薄膜の結晶性が優れていること、超電導薄膜、磁
性薄膜間での格子の整合性が優れていること、磁性薄膜
が800〜950℃の熱処理に対して安定であることが
不可欠と考えられる。However, when a magnetic thin film is laminated next to a Bi-based superconducting thin film when the substrate temperature is high, or when heat treatment is performed after forming the magnetic thin film, mutual diffusion of elements occurs between the superconducting thin film and the magnetic thin film, resulting in superconducting It was found that the characteristics were significantly deteriorated. In order to prevent mutual diffusion, the crystallinity of the superconducting thin film and the magnetic thin film must be excellent, the lattice matching between the superconducting thin film and the magnetic thin film must be excellent, and the magnetic thin film must be heat-treated at 800 to 950°C. It is considered essential to be stable against
種々の検討を行った結果、EuOが磁性薄膜として適し
ていることを見いだした。この理由としては明らかでは
ないが、EuOは、Bi系超電導体との格子の整合性が
きわめて優れており、また高温の熱処理においても、B
i系超電導体との界面が非常に安定であると考えられる
。As a result of various studies, we found that EuO is suitable as a magnetic thin film. The reason for this is not clear, but EuO has extremely good lattice matching with Bi-based superconductors, and even during high-temperature heat treatment, EuO
It is thought that the interface with the i-based superconductor is very stable.
さらにBi系超電導薄膜とEu○薄膜を周期的に積層し
たとき、Bi系超超電導薄膜本来臨界電流密度および臨
界磁場が向上することを見いだした。Furthermore, it has been found that when Bi-based superconducting thin films and Eu○ thin films are stacked periodically, the inherent critical current density and critical magnetic field of the Bi-based superconducting thin films are improved.
第1の発明の内容を更に深く理解されるために、第1図
を用い具体的な実施例を示す6
(実施例1)
第1図は、本実施例で用いた高周波二元マグネトロンス
パッタ装置内部の概略図であり、11はB1−8r−C
a−Cu−○ターゲット、12はEuOターゲット、1
3はシャッター、14はアパーチャー、15は基体、1
6は基体加熱用ヒーターを示す。焼結体をプレス成形加
工して作製した2個のターゲット11、12を用い、第
1図に示すように配置させた。In order to further understand the contents of the first invention, a specific example will be shown using FIG. 1. (Example 1) FIG. It is a schematic diagram of the inside, 11 is B1-8r-C
a-Cu-○ target, 12 is EuO target, 1
3 is a shutter, 14 is an aperture, 15 is a base, 1
6 indicates a heater for heating the substrate. Two targets 11 and 12 produced by press forming a sintered body were used and arranged as shown in FIG.
すなわち、MgO(100)基体15に焦点を結ぶよう
に各ターゲットが約30°傾いて設置されている。ター
ゲットの前方には回転するシャッター13があり、その
中にはアパーチャー14が設けられている。シャッター
13の回転をパルスモータで制御することにより、アパ
ーチャー14をB1−5r−Ca−Cu−0ターゲツト
またはEuOターゲット上に停止させることができる。That is, each target is installed at an angle of approximately 30 degrees so as to focus on the MgO (100) substrate 15. In front of the target is a rotating shutter 13 in which an aperture 14 is provided. By controlling the rotation of the shutter 13 with a pulse motor, the aperture 14 can be stopped on the B1-5r-Ca-Cu-0 target or the EuO target.
このようにして、B1−8r−Ca−Cu−〇→E u
o−4B i−S r−Ca−Cu−0−+ EuO→
B1−8r−Ca−Cu−〇のサイクルでスパッタ蒸気
を行うことができる。B1−5r−Ca−Cu−○膜、
EuO膜の積層の様子を概念的に第2図に示す。In this way, B1-8r-Ca-Cu-〇→E u
o-4B i-S r-Ca-Cu-0-+ EuO→
Sputtering vapor can be performed in a cycle of B1-8r-Ca-Cu-〇. B1-5r-Ca-Cu-○ film,
FIG. 2 conceptually shows how the EuO films are stacked.
同図において、21はEuO膜、22はB1−8r−C
a−Cu−○膜を示す。ターゲット11.12への入力
電力、およびそれぞれのターゲットのスパッタ時間を制
御することにより、基体15上に蒸着するEu○膜21
、B1−8r−Ca−Cu−0膜22の膜厚を変えるこ
とができる。基体15をヒーター16で約700℃に加
熱し、アルゴン・酸素(1: 1)混合雰囲気0.5P
aのガス中の各ターゲットのスパッタリングを行なった
。薄膜作製後は酸素雰囲気中において、800’Cの熱
処理を2時間施した。本実施例では、各ターゲットのス
パッタ電力を、B1−8r−Ca−Cu−0:150w
、EuO:100wとし、ターゲット11.12のスパ
ッタ時間を制御した。B1−8r−Ca−Cu−○膜2
2の元素の組成比率がBi: Sr: Ca: Cu=
2 :2:2:3になるよう、ターゲット11の元素組
成比率を調整した。また、EuO膜の組成比率がEu:
○=1:1になるようスパッタ条件を最適化した。B
i−S r−Ca−Cu−0膜22をEuO膜21と積
層せずに基体15上に形成した場合、すなわちB1−5
r−Ca−Cu−0膜22そのものの特性は、110X
で超電導転移を起こし、100 ’にで抵抗値がゼロに
なるものであった。また、EuO,膜だけを成膜し、磁
化を測定したところ磁化容易軸は膜面に平行であった。In the same figure, 21 is an EuO film, 22 is a B1-8r-C
The a-Cu-◯ film is shown. By controlling the input power to the targets 11 and 12 and the sputtering time of each target, the Eu○ film 21 is deposited on the substrate 15.
, the thickness of the B1-8r-Ca-Cu-0 film 22 can be changed. The substrate 15 is heated to about 700°C with a heater 16, and placed in a 0.5P mixed atmosphere of argon and oxygen (1:1).
Sputtering of each target in the gas of a was performed. After the thin film was prepared, heat treatment was performed at 800'C for 2 hours in an oxygen atmosphere. In this example, the sputtering power for each target was set to B1-8r-Ca-Cu-0: 150w.
, EuO: 100 W, and the sputtering time of targets 11 and 12 was controlled. B1-8r-Ca-Cu-○ film 2
The composition ratio of the two elements is Bi: Sr: Ca: Cu=
The elemental composition ratio of the target 11 was adjusted to be 2:2:2:3. Moreover, the composition ratio of the EuO film is Eu:
The sputtering conditions were optimized so that ○=1:1. B
When the i-S r-Ca-Cu-0 film 22 is formed on the base 15 without being laminated with the EuO film 21, that is, B1-5
The characteristics of the r-Ca-Cu-0 film 22 itself are 110X
A superconducting transition occurs at 100', and the resistance value becomes zero at 100'. Further, when only the EuO film was formed and the magnetization was measured, the axis of easy magnetization was parallel to the film surface.
また磁化の値はバルクの値と同一であった。EuO膜お
よびBi、5r2Ca、Cu、0.膜の膜厚をそれぞれ
500人とし1層ずつ積層した。この積層膜の磁化を測
定したところ当然のことなからEuOだけの膜の値と同
じであった。この膜の抵抗の温度特性を第3図に示す。Moreover, the magnetization value was the same as that of the bulk. EuO film and Bi, 5r2Ca, Cu, 0. The thickness of each film was 500, and one layer was laminated. When the magnetization of this laminated film was measured, it was naturally the same as the value of a film made only of EuO. The temperature characteristics of the resistance of this film are shown in FIG.
超電導転移温度(オンセット温度)は、110 ’にで
ありEuO膜を積層していない場合とかわらなかった。The superconducting transition temperature (onset temperature) was 110', which was the same as when no EuO film was laminated.
外部磁場10koeを積層膜の膜面に平行に印加し、磁
性体膜を磁化させたのちに外部磁場を取り除いた状態で
測定した臨界電流密度の温度依存性を第4図に示す。臨
界電流密度は磁界をかける前の値に対して各温度におい
て約20%大きくなっている。第5図には外部磁場を印
加した状態における電気抵抗の温度特性を示す、EuO
膜を積層していないBi−5r−Ca−Cu−○膜自身
の結果を比較すると積層膜においては、磁場による超電
導転移温度領域の広がりが小さくなることがわかった。FIG. 4 shows the temperature dependence of the critical current density measured when an external magnetic field of 10 koe was applied parallel to the film surface of the laminated film to magnetize the magnetic film and then the external magnetic field was removed. The critical current density is approximately 20% larger at each temperature than the value before applying the magnetic field. Figure 5 shows the temperature characteristics of electrical resistance when an external magnetic field is applied.
Comparing the results of the Bi-5r-Ca-Cu-◯ film itself, which is not a laminated film, it was found that in the laminated film, the spread of the superconducting transition temperature region due to the magnetic field is smaller.
このことは上部臨界磁場の向上を意味している。これら
の臨界電流密度および上部臨界磁界の向上の理由は明ら
かではないがEuO膜の磁化またはスピンがB1−8
r−Ca−Cu−○膜の超電導機構に影響をもたらした
結果であると考えられる。また、EuO膜およびB1−
8r−Ca−Cu−0膜単独で成膜したとき、膜厚がそ
れぞれ100人および50Å以上のとき結晶性の薄膜が
得られることがわかった。第2図において、EuO膜2
1の膜厚を100人としてB1−3r−Ca−Cu−0
膜22の膜厚が100人、300人、500人、繰り返
し回数を20回としたときの特性をそれぞれ第6図にお
いて、特性61.62.63に示す。特性61において
はゼロ抵抗温度が約30 ’にとB1−5r−Ca−C
u−0膜22の特性が劣化することがわかった。この理
由として、B1−8r−Ca−Cu−0膜22とEuO
膜21との間で元素の相互拡散による膜21.22の結
晶性の破壊が考えられる。さらに特性63においては、
EuO膜21との周期的な積層なしに基体15上につけ
たときのB1−8r−Ca−Cu−0膜22本来の超電
導特性とほとんど同じであり、磁性薄膜EuO膜21と
の積層効果は確認されなかった。しかし、特性62にお
いて、臨界電流密度は磁性膜を積層していない膜と比較
して約20%向上し、77 ’にで320万A10とな
った。上記臨界磁場はB1−8r−Ca−Cu−0膜本
来のものより約20%向上した。4.2″Kにおいて、
C軸に平行方向に磁場を加えたときの値は30テスラ、
またC軸に垂直方向では450テスラであった。現在、
これらの効果の詳細な理由については未だ不明であるが
、Eu○膜21が持つ磁気モーメントまたはスピンの影
響、または、薄いEuO膜21を介して複数のB1−5
r−Ca−Cu−0膜22を積層することによりB1−
5r−Ca−Cu−0膜22において超電導機構になん
らかの変化が引き起こされたことが考えられる。This means an improvement in the upper critical magnetic field. The reason for these improvements in critical current density and upper critical magnetic field is not clear, but the magnetization or spin of the EuO film is B1-8.
This is thought to be the result of affecting the superconducting mechanism of the r-Ca-Cu-○ film. In addition, EuO film and B1-
It was found that when the 8r-Ca-Cu-0 film was formed alone, a crystalline thin film was obtained when the film thickness was 100 Å or more and 50 Å or more, respectively. In FIG. 2, EuO film 2
B1-3r-Ca-Cu-0 with the film thickness of 1 as 100 people
The characteristics when the thickness of the film 22 is 100, 300, and 500 and the number of repetitions is 20 are shown in characteristics 61, 62, and 63 in FIG. 6, respectively. In characteristic 61, the zero resistance temperature is about 30' and B1-5r-Ca-C
It was found that the characteristics of the u-0 film 22 deteriorated. The reason for this is that the B1-8r-Ca-Cu-0 film 22 and the EuO
It is considered that the crystallinity of the films 21 and 22 is destroyed due to interdiffusion of elements with the film 21. Furthermore, in characteristic 63,
The B1-8r-Ca-Cu-0 film 22 has almost the same superconducting properties as the original when it is deposited on the substrate 15 without periodic lamination with the EuO film 21, and the lamination effect with the magnetic thin film EuO film 21 is confirmed. It wasn't done. However, in characteristic 62, the critical current density was improved by about 20% compared to the film without laminated magnetic film, reaching 3.2 million A10 at 77'. The critical magnetic field was improved by about 20% compared to the original B1-8r-Ca-Cu-0 film. At 4.2″K,
When a magnetic field is applied in a direction parallel to the C axis, the value is 30 Tesla,
Moreover, in the direction perpendicular to the C axis, it was 450 Tesla. the current,
The detailed reason for these effects is still unknown, but it may be due to the influence of the magnetic moment or spin of the Eu○ film 21, or the influence of the magnetic moment or spin of the EuO film 21, or the
By laminating the r-Ca-Cu-0 film 22, B1-
It is conceivable that some change was caused in the superconducting mechanism in the 5r-Ca-Cu-0 film 22.
なお、ターゲット11.もしくは12に鉛(pb)を添
加してスパッタしたとき、基体15の温度が上記実施例
よりも約100℃低くても、上記実施例と同等な結果が
得られることを見いだした。In addition, target 11. Alternatively, it has been found that when lead (pb) is added to 12 and sputtered, results equivalent to those of the above example can be obtained even if the temperature of the substrate 15 is about 100° C. lower than that of the above example.
さらに、Biの酸化物と、Sr、Ca、Cuめ酸化物を
異なる蒸発源から真空中で別々に蒸発させ。Further, the Bi oxide and the Sr, Ca, and Cu oxides were separately evaporated in vacuum from different evaporation sources.
基体上にB 1−0− S r−Cu−0−Ca−Cu
−0−S r−Cu−O−Bi−0の順に周期的に積層
させた場合、ざらにEu○ターゲットを用いて真空中で
蒸発させ、積層させた場合、(実施例1)に示した積層
構造作製方法より極めて制御性良く、安定した膜質の、
しかも膜表面が極めて平坦なり1−5r−Ca−Cu−
0超電導薄膜およびEuO磁性薄膜が得られることを見
いだした。B 1-0-S r-Cu-0-Ca-Cu on the substrate
-0-S r-Cu-O-Bi-0 is laminated periodically in the order of evaporation in vacuum using a rough Eu○ target and laminated, as shown in (Example 1). This method has much better controllability and stable film quality than the laminated structure fabrication method.
Moreover, the film surface is extremely flat.1-5r-Ca-Cu-
It has been found that a EuO superconducting thin film and a EuO magnetic thin film can be obtained.
さらに、B1−0.5r−Cu−0、Ca−Cu−0、
EuOを別々の蒸発源から蒸発させ、B1−8r−Ca
−Cu−0超電導薄膜とEuO磁性薄膜を周期的に積層
したとき、極めて制御性良<m(Bi−5r−Ca−C
u−0)・n(EuO)の周期構造を持つ薄膜を形成で
きることを見いだした。ここでm、nはそれぞれ少なく
とも1以上の正の整数を示す。さらに。Furthermore, B1-0.5r-Cu-0, Ca-Cu-0,
EuO is evaporated from separate sources and B1-8r-Ca
- When Cu-0 superconducting thin films and EuO magnetic thin films are stacked periodically, controllability is extremely good < m (Bi-5r-Ca-C
We have discovered that it is possible to form a thin film with a periodic structure of u-0).n(EuO). Here, m and n each represent a positive integer of at least 1 or more. moreover.
このm(Bi−5r−Ca−Cu−0) ・n(EuO
)薄膜は。This m(Bi-5r-Ca-Cu-0) ・n(EuO
) thin film.
(実施例1)に示したB1−5r−Ca−Cu−0を同
時に蒸着して得る超電導薄膜と、EuOを同時に蒸着し
て得る酸化物磁性薄膜とを周期的に積層して得た薄膜に
比べて、はるかに結晶性が優れ、臨界電流密度および上
部臨界磁場の特性において勝っていることも併せて見い
だした。さらに、上記の方法で作製したB i−S r
−Ca−Cu−0超電導薄膜とEuO磁性薄膜ともに薄
膜表面が極めて平坦であることを見いだした。A thin film obtained by periodically laminating a superconducting thin film obtained by simultaneously depositing B1-5r-Ca-Cu-0 shown in (Example 1) and an oxide magnetic thin film obtained by simultaneously depositing EuO. We also found that it has much better crystallinity and superior critical current density and upper critical magnetic field characteristics. Furthermore, B i-S r produced by the above method
It has been found that the surfaces of both the -Ca-Cu-0 superconducting thin film and the EuO magnetic thin film are extremely flat.
これらのことは、異なる元素を別々に順次積層していく
ことにより、基体表面に対し平行な面内だけで積層され
た蒸着元素が動くだけで、基体表面に対し垂直方向への
元素が移動がないことによるものと考えられる。These things are possible because by stacking different elements separately and sequentially, the deposited elements move only in the plane parallel to the substrate surface, but the elements do not move in the direction perpendicular to the substrate surface. This is thought to be due to the fact that there is no such thing.
さらに、良好な超電導特性を得るに必要な基体の温度、
熱処理温度も、従来より低いことを見いだした。Furthermore, the temperature of the substrate required to obtain good superconducting properties,
It was also found that the heat treatment temperature was lower than conventional ones.
B1−0,5r−Cu−0,Ca−Cu−0,Eu−○
を周期的に積層させる方法としては、いくつか考えられ
る。一般に、MBE装置あるいは多元のEB蒸着装置で
蒸発源の前を開閉シャッターで制御したリ、気相成長法
で作製する際にガスの種類を切り替えたりすることによ
り、周期的積層を達成することができる。しかしこの種
の非常に薄い層の積層には従来スパッタリング蒸着は不
向きとされていた。この理由は、成膜中のガス圧の高さ
に起因する不純物の混入およびエネルギーの高い粒子に
よるダメージと考えられている。しかし、このBi系酸
化物超電導体に対してスパッタリングによる異なる薄い
層の積層を行なったところ、意外にも良好な積層膜作製
が可能なことを発見した。B1-0, 5r-Cu-0, Ca-Cu-0, Eu-○
There are several possible methods for periodically stacking layers. In general, it is possible to achieve periodic stacking by controlling the opening and closing shutter in front of the evaporation source in an MBE device or multi-source EB evaporation device, or by switching the type of gas during production using the vapor phase growth method. can. However, sputtering deposition has traditionally been considered unsuitable for this type of extremely thin layer stacking. The reason for this is thought to be the incorporation of impurities due to the high gas pressure during film formation and damage caused by high energy particles. However, when different thin layers were laminated by sputtering on this Bi-based oxide superconductor, it was surprisingly discovered that it was possible to produce a good laminated film.
スパッタ中の高い酸素ガス圧をおよびスパッタ放電が、
Bi系の100″に以上の臨界温度を持つ相の形成、お
よびEuO絶緻膜の形成に都合がよいためではなかろう
かと考えられる。High oxygen gas pressure during sputtering and sputtering discharge
This is thought to be because it is convenient for the formation of a Bi-based phase having a critical temperature of 100'' or higher, and for the formation of a dense EuO film.
スパッタ蒸着で異なる物質を積層させる方法としては1
組成分布を設けた1個のスパッタリングターゲットの放
電位置を周期的に制御するという方法があるが1組成の
異なる複数個のターゲットのスパッタリングという方法
を用いると比較的簡単に達成することができる。この場
合、複数個のターゲットの各々のスパッタ量を周期的に
制御したり、あるいはターゲットの前にシャッターを設
けて周期的に開閉したりして、周期的積層膜を作製する
ことができる。また基板を周期的運動させて各々ターゲ
ットの上を移動させる方法でも作製が可能である。レー
ザースパッタあるいはイオンビームスパッタを用いた場
合には、複数個のターゲットを周期運動させてビームの
照射するターゲットを周期的に変えれば、周期的積層膜
が実現される。このような複数個のターゲットを用いた
スパッタリングにより比較的簡単にBi系酸化物の周期
的積層が作製可能となる。There are 1 methods for layering different materials using sputter deposition.
Although there is a method of periodically controlling the discharge position of one sputtering target provided with a composition distribution, this can be achieved relatively easily by using a method of sputtering a plurality of targets having different compositions. In this case, a periodic laminated film can be produced by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and opening and closing it periodically. Alternatively, it can be manufactured by a method in which the substrate is moved periodically and moved over each target. When laser sputtering or ion beam sputtering is used, periodic laminated films can be realized by periodically moving a plurality of targets and periodically changing the targets irradiated with the beam. By sputtering using such a plurality of targets, a periodic stack of Bi-based oxides can be produced relatively easily.
以下筒2の発明の内容をさらに深く理解するために、具
体的な実施例を示す。In order to further understand the content of the invention of cylinder 2, specific examples will be shown below.
(実施例2)
第7図に本実施例で用いた4元マグネトロンスパッタ装
置の概略図を示す。第7図において、71はBiメタ−
ット、72は5rCu合金ターゲット。(Example 2) FIG. 7 shows a schematic diagram of a four-element magnetron sputtering apparatus used in this example. In FIG. 7, 71 is a Bi metal
72 is a 5rCu alloy target.
73はCa Cu合金ターゲット、74はEuターゲッ
ト、75はシャッター、76はアパーチャー、77は基
体、78は基体加熱用ヒーターを示す。計4個のターゲ
ット71.72.73.74は第7図に示すのと同様に
配置させた。すなわち、 Mg0(100)基体77に
焦点を結ぶように各ターゲットが約30°傾いて設置さ
れている。ターゲットの前方には回転するシャッター7
5があり、パルスモータで駆動することによりその中に
設けられたアパーチャー76の回転が制御され、各ター
ゲットのサイクルおよびスパッタ時間を設定することが
できる。基体77のヒーター78で約600℃に加熱し
、アルゴン・酸素(5:1)混合雰囲気3Paのガス中
でBi、5rCuおよびCaCuターゲットのスパッタ
リングを行なった。73 is a Ca Cu alloy target, 74 is an Eu target, 75 is a shutter, 76 is an aperture, 77 is a substrate, and 78 is a heater for heating the substrate. A total of four targets 71, 72, 73, and 74 were arranged in the same manner as shown in FIG. That is, each target is installed at an angle of about 30° so as to focus on the Mg0 (100) substrate 77. There is a rotating shutter 7 in front of the target.
5, and by driving it with a pulse motor, the rotation of an aperture 76 provided therein is controlled, and the cycle and sputtering time of each target can be set. The substrate 77 was heated to about 600° C. by a heater 78, and sputtering of Bi, 5rCu and CaCu targets was performed in a mixed atmosphere of argon and oxygen (5:1) at 3 Pa.
また、Euターゲットのスパッタリング時にEuターゲ
ットの酸化を防止するため、雰囲気ガスをArだけにし
た。そののち、酸素ガスを導入し成膜したEuを酸化し
EuOとした。各ターゲットのスッパタ電流を、B i
: 30mA 、 S rCu : 80mA 。Further, in order to prevent oxidation of the Eu target during sputtering of the Eu target, only Ar was used as the atmospheric gas. Thereafter, oxygen gas was introduced to oxidize the formed Eu film into EuO. Let the sputtering current of each target be B i
: 30mA, SrCu: 80mA.
CaCu : 300+nA 、 Eu : 80mA
にして実験を行った。CaCu: 300+nA, Eu: 80mA
The experiment was carried out.
Bi−+5rCu−+CaCu−+5rCu−+Biサ
イクルでスパッタし、B1−5r−Ca−Cu−0膜の
元素の組成比率がBi: Sr:Ca: Cu=2 :
2 : 2 : 3となる各ターゲットのスパッタ時
間を調整し、上記サイクルを204期行った結果、11
0″に以上の臨界温度を持つ相を作製することができた
。このまま状態でもこのB1−5r−Ca−Cu−〇膜
は110X以上の超電導転移を示したが、さらに酸素中
で600℃、1時間の熱処理を行うと非常に再現性がよ
くなり、超電導転移温度は115 ’にで抵抗値がゼロ
になる温度は100 ’Kになった。超電導転移温度が
100 ’Kを超す相は金属元素がB1−8r−Cu−
Ca−Cu−Ca−Cu−Sr−Biの順序で並んだ酸
化物の層から成り立っているとも言われており1本発明
の製造方法がこの構造を作るのに非常に役だっているの
ではないかと考えられる。Sputtering was performed using a Bi−+5rCu−+CaCu−+5rCu−+Bi cycle, and the elemental composition ratio of the B1−5r−Ca−Cu−0 film was Bi:Sr:Ca:Cu=2:
As a result of adjusting the sputtering time of each target to become 2:2:3 and performing the above cycle for 204 times, the sputtering time was 11.
We were able to fabricate a phase with a critical temperature of 0'' or higher.Even in this state, this B1-5r-Ca-Cu-〇 film showed a superconducting transition of 110X or higher, but it was further developed at 600°C in oxygen. After 1 hour of heat treatment, the reproducibility was very good, and the superconducting transition temperature was 115' and the temperature at which the resistance value became zero was 100' K. Phases with superconducting transition temperatures exceeding 100' K are metallic. The element is B1-8r-Cu-
It is said that it consists of layers of oxides arranged in the order Ca-Cu-Ca-Cu-Sr-Bi, and the manufacturing method of the present invention is not very useful in creating this structure. I think so.
Bi−+5rCu−+CaCu−+5rCuの積層を1
周期としてn周期積層しその上にEuOを膜厚d(人)
になるよう各ターゲットをスパッタし、n(Bi−5r
−Ca−Cu−0) ・d(EuO)薄膜を基体77上
に作製した。ここでnは1以上の正の整数を示す。n=
10のとき、EuO薄膜の膜厚dを変化させて積層して
得た膜の超電導特性を調へた。このときB1−5r−C
a−Cu−0薄膜/Eu○薄膜の積層繰り返し回数は1
0回とした。第8図にd =7o、 200゜1000
人のときに得た多層膜の抵抗の温度変化をそれぞれ特性
81.82.83に示す。第8図において、d=200
人のとき、最も高い超電導転移温度およびゼロ抵抗温度
、すなわち特性82が得られた。特性82の超電導転移
温度、ゼロ抵抗温度はB i−S r−Ca−Cu−0
膜本来のそれらの値と同等である。臨界電流密度は77
”Kにおいて、360万A10となり、磁性体薄膜を
積層していない薄膜の値より45%高くなった。また、
上部臨界磁場はB1−3r−Ca−Cu−0膜本来のも
のより約30%向上する。4.2″Kにおいて、C軸に
平行方向に磁場を加えたときの値は33テスラ、またC
軸に垂直方向では490テスラであった。この効果の詳
細な理由については未だ不明であるが、本実施例に示し
た方法でB1−5r−Ca−Cu−0膜とEuO膜とを
周期的に積層することによって、B1−8r−Ca−C
u−0膜とEu○膜がエピタキシャル成長していること
により積層界面での元素の相互拡散の影響がなく、かつ
結晶性に優れた薄いEuO膜を介して同じく結晶性に優
れたB1−8r−Ca−Cu−0膜を積層することによ
りB i−S r−Ca−Cu−○膜において超電導機
構になんらかの変化が引き起こされたことが考えられる
。1 layer of Bi-+5rCu-+CaCu-+5rCu
Layer n periods as a period, and layer EuO on top with a film thickness d (people)
Sputter each target so that n(Bi-5r
-Ca-Cu-0) d(EuO) thin film was produced on the substrate 77. Here, n represents a positive integer of 1 or more. n=
10, the superconducting properties of the films obtained by stacking EuO thin films with varying film thicknesses d were investigated. At this time, B1-5r-C
The number of repetitions of lamination of a-Cu-0 thin film/Eu○ thin film is 1
It was set as 0 times. In Figure 8, d = 7o, 200°1000
Characteristics 81, 82, and 83 show the temperature changes in the resistance of the multilayer film obtained for humans. In Figure 8, d=200
For humans, the highest superconducting transition temperature and zero resistance temperature, characteristic 82, were obtained. The superconducting transition temperature and zero resistance temperature of characteristic 82 are B i-S r-Ca-Cu-0
These values are equivalent to those of the original film. Critical current density is 77
"K" was 3.6 million A10, which was 45% higher than the value of a thin film without laminated magnetic thin film.
The upper critical magnetic field is improved by about 30% compared to the original B1-3r-Ca-Cu-0 film. At 4.2″K, the value when applying a magnetic field parallel to the C axis is 33 Tesla, and C
In the direction perpendicular to the axis, it was 490 Tesla. Although the detailed reason for this effect is still unknown, by periodically stacking the B1-5r-Ca-Cu-0 film and the EuO film using the method shown in this example, the B1-8r-Ca -C
Because the u-0 film and the Eu○ film are epitaxially grown, there is no effect of mutual diffusion of elements at the laminated interface, and B1-8r-, which also has excellent crystallinity, is produced through the thin EuO film with excellent crystallinity. It is considered that some change was caused in the superconducting mechanism in the B i-S r-Ca-Cu-◯ film by laminating the Ca-Cu-0 film.
さらに、ターゲット7I、もしくは74に鉛(pb)を
添加してスパッタしたとき、基体77の温度が上記実施
例よりも約100℃低くても、上記実施例と同等な結果
が得られることを見いだした。Furthermore, it has been found that when sputtering is performed by adding lead (PB) to target 7I or 74, results equivalent to those of the above embodiment can be obtained even if the temperature of the base 77 is about 100° C. lower than that of the above embodiment. Ta.
(発明の効果)
第1の発明の薄膜超電導体は、Bi系薄膜超電導体の臨
界電流密度、臨界磁場の向上をはかる構造を提供するも
のであり、第2の発明の薄膜超電導体の製造方法は第1
の発明をより効果的に実現し、デバイス等の応用には必
須の低温でのプロセスを確立したものであり1本発明の
工業的価値は大きい。(Effects of the Invention) The thin film superconductor of the first invention provides a structure that improves the critical current density and critical magnetic field of the Bi-based thin film superconductor, and the method for manufacturing a thin film superconductor of the second invention is the first
The present invention has great industrial value because it more effectively realizes the invention described above and establishes a low-temperature process that is essential for applications such as devices.
第1図は第1の発明の実施例における薄膜の製造装置の
概略図、第2図は第1の発明の構造概念図、第3図、第
6図は第1図の装置により得た薄膜における抵抗値の温
度特性図、第4図は第1図の装置により得た薄膜におけ
る臨界電流密度の温度依存性を示す図、第5図は第1図
の装置により得た薄膜における外部磁場下における抵抗
値の温度特性図、第7図は第2の発明の実施例における
薄膜の製造装置の概略図、第8図は第7図の装置により
得た薄膜における抵抗値の温度特性図である。
II、 12.71.72.73.74・・・スパッタ
リングターゲット、 13.75・・・シャッター14
.76・・・アパーチャー、15.77・・・MgO基
体、16.78・・・ ヒーター、21−= EuO膜
、 22− B1−8r−Ca−Cu−0膜、61.
62.63.81.82.83・・・薄膜の抵抗の温度
特性。
特許出願人 松下電器産業株式会社
松下電工株式会社
第
図FIG. 1 is a schematic diagram of a thin film manufacturing apparatus according to an embodiment of the first invention, FIG. 2 is a structural conceptual diagram of the first invention, and FIGS. 3 and 6 are thin films obtained by the apparatus of FIG. 1. Figure 4 shows the temperature dependence of the critical current density in the thin film obtained with the apparatus shown in Figure 1. Figure 5 shows the temperature dependence of the critical current density in the thin film obtained with the apparatus shown in Figure 1 under an external magnetic field. 7 is a schematic diagram of the thin film manufacturing apparatus in the embodiment of the second invention, and FIG. 8 is a temperature characteristic diagram of the resistance value of the thin film obtained by the apparatus of FIG. 7. . II, 12.71.72.73.74...Sputtering target, 13.75...Shutter 14
.. 76... Aperture, 15.77... MgO base, 16.78... Heater, 21-=EuO film, 22- B1-8r-Ca-Cu-0 film, 61.
62.63.81.82.83...Temperature characteristics of thin film resistance. Patent applicant: Matsushita Electric Industrial Co., Ltd. Matsushita Electric Works Co., Ltd.
Claims (4)
u)、およびアルカリ土類(IIa族)を含む層状酸化物
超電導薄膜と、EuOからなる磁性薄膜が交互に積層さ
れた構造を持つことを特徴とする薄膜超電導体。 ここでアルカリ土類は、IIa族元素のうち少なくとも一
種あるいは二種以上の元素を示す。(1) The main components are at least bismuth (Bi) and copper (C).
u) and a thin film superconductor characterized by having a structure in which layered oxide superconducting thin films containing alkaline earth elements (group IIa) and magnetic thin films made of EuO are alternately laminated. Here, alkaline earth refers to at least one or two or more elements of Group IIa elements.
とも銅およびアルカリ土類(IIa族)を含む酸化物とを
周期的に積層させて形成する酸化物薄膜と、EuOから
なる磁性薄膜とを、交互に積層させて得ることを特徴と
する薄膜超電導体の製造方法。 ここでアルカリ土類は、IIa族元素のうちの少なくとも
一種あるいは二種以上の元素を示す。(2) An oxide thin film formed by periodically laminating an oxide containing at least Bi and an oxide containing at least copper and alkaline earth (group IIa) on a substrate, and a magnetic thin film made of EuO. , a method for producing a thin film superconductor, characterized in that it is obtained by alternately laminating layers. Here, alkaline earth refers to at least one or two or more elements of group IIa elements.
行うことを特徴とする請求項(2)記載の薄膜超電導体
の製造方法。(3) The method for manufacturing a thin film superconductor according to claim (2), characterized in that the evaporation of the laminated material is performed using at least two types of evaporation sources.
特徴とする請求項(2)記載の薄膜超電導体の製造方法
。(4) The method for manufacturing a thin film superconductor according to claim (2), wherein the evaporation of the laminated material is performed by sputtering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101616A JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101616A JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH042181A true JPH042181A (en) | 1992-01-07 |
JP2741277B2 JP2741277B2 (en) | 1998-04-15 |
Family
ID=14305341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2101616A Expired - Lifetime JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2741277B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9637051B2 (en) | 2006-01-20 | 2017-05-02 | Winplus North America, Inc. | System for monitoring an area adjacent a vehicle |
KR20190065415A (en) * | 2016-10-31 | 2019-06-11 | 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. | Method of depositing a magnetic thin film laminated structure, a magnetic thin film laminated structure and a micro-inductor element |
-
1990
- 1990-04-19 JP JP2101616A patent/JP2741277B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9637051B2 (en) | 2006-01-20 | 2017-05-02 | Winplus North America, Inc. | System for monitoring an area adjacent a vehicle |
KR20190065415A (en) * | 2016-10-31 | 2019-06-11 | 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. | Method of depositing a magnetic thin film laminated structure, a magnetic thin film laminated structure and a micro-inductor element |
US11699541B2 (en) | 2016-10-31 | 2023-07-11 | Beijing Naura Microelectronics Equipment Co., Ltd. | Magnetic thin film laminated structure deposition method |
Also Published As
Publication number | Publication date |
---|---|
JP2741277B2 (en) | 1998-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02145761A (en) | Manufacture of thin superconductor film | |
JPH042181A (en) | Thin film superconductor and manufacture thereof | |
JP3037514B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2733368B2 (en) | Superconducting thin film and method for producing the same | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2669052B2 (en) | Oxide superconducting thin film and method for producing the same | |
JP3478543B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH0316920A (en) | Oxide superconductive thin film and its production | |
JP2558880B2 (en) | Method for producing copper oxide thin film | |
JPH05170448A (en) | Production of thin ceramic film | |
JPH02122065A (en) | Production of thin film type superconductor | |
JP2502744B2 (en) | Method of manufacturing thin film super-electric body | |
JPH0316919A (en) | Superconductive thin film and its production | |
JPH042617A (en) | Oxide superconducting thin film and production thereof | |
EP0640994B1 (en) | Superconductor thin film and manufacturing method | |
JPH02298257A (en) | Thin film of oxide superconductor and its production | |
JP2502743B2 (en) | Method of manufacturing thin film superconductor | |
JPH0437609A (en) | Oxide superconducting thin film and its production | |
JPH046108A (en) | Insulator, production of insulating thin film, superconducting thin film and production thereof | |
JPH03170333A (en) | Thin filmy super conductor and its preparation | |
JPH0465320A (en) | Superconducting thin film and its production | |
JPH0382749A (en) | Thin film superconductor and its production | |
JP2961852B2 (en) | Manufacturing method of thin film superconductor | |
JPH05171414A (en) | Superconducting thin film and its production | |
JPH05194095A (en) | Production of thin-film electric conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 13 |