JP2741277B2 - Thin film superconductor and method of manufacturing the same - Google Patents
Thin film superconductor and method of manufacturing the sameInfo
- Publication number
- JP2741277B2 JP2741277B2 JP2101616A JP10161690A JP2741277B2 JP 2741277 B2 JP2741277 B2 JP 2741277B2 JP 2101616 A JP2101616 A JP 2101616A JP 10161690 A JP10161690 A JP 10161690A JP 2741277 B2 JP2741277 B2 JP 2741277B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- euo
- superconducting
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Thin Magnetic Films (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、100゜K以上の高臨界温度が期待されるビス
マスを含む酸化物超電導体の薄膜およびその製造方法に
関するものである。Description: TECHNICAL FIELD The present invention relates to a bismuth-containing oxide superconductor thin film expected to have a high critical temperature of 100 ° K or higher and a method for producing the same.
(従来の技術) 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge)などが知
られていたが、これらの材料の超電導転移温度はたかだ
か23゜Kであった。一方、ペロブスカイト系化合物は、
さらに高い転移温度が期待され、Ba−La−Cu−O系の高
温超電導体が提案された[J.G.Bendnorz and K.A.Mulle
r,ツァイトシュリフト・フュア・フィジーク(Zetshrif
t Fr Physik B)−Condensed Matter,Vol.64,189−19
3(1986)]。(Prior art) As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (Nb 3 Ge) have been known as A15 type binary compounds, but the superconducting transition temperature of these materials is at most 23 ゜ K. Met. On the other hand, perovskite compounds
Higher transition temperatures are expected and Ba-La-Cu-O based high-temperature superconductors have been proposed [JGBendnorz and KAMulle
r, Zetshrif
t Fr Physik B) -Condensed Matter, Vol. 64, 189-19
3 (1986)].
さらに、Bi−Sr−Ca−Cu−O系の材料が100゜K以上の
転移温度を示すことも発見された[H.Maeda,Y.Tanaka,
M.Fukutomi and T.Asano,ジャパニーズ・ジャーナル・
オブ・アプライド・フィジックス(Japanese Journal o
f Applied Physics)Vol.27,L209−210(1988)]。こ
の種の材料の超電導機構の詳細は明らかではないが、転
移温度が室温以上に高くなる可能性があり、高温超電導
体として従来の2元系化合物より、より有望な特性が期
待される。Furthermore, it has been discovered that Bi-Sr-Ca-Cu-O-based materials exhibit a transition temperature of 100 K or higher [H. Maeda, Y. Tanaka,
M.Fukutomi and T.Asano, Japanese Journal
Of Applied Physics (Japanese Journal o
f Applied Physics) Vol.27, L209-210 (1988)]. Although the details of the superconducting mechanism of this type of material are not clear, the transition temperature may be higher than room temperature, and more promising properties are expected as a high-temperature superconductor than conventional binary compounds.
さらに超電導体と磁性体とのを交互に積層することに
より、より高い臨界電流密度およびより高い臨界磁場が
従来から期待されている。Further, a higher critical current density and a higher critical magnetic field have been conventionally expected by alternately laminating a superconductor and a magnetic material.
(発明が解決しようとする課題) しかしながら、Bi−Sr−Ca−Cu−O系の材料は、現在
の技術では主として焼結という過程でしか形成できない
ため、セラミックの粉末あるいはブロックの形状でしか
得られない。一方、この種の材料を実用化する場合、薄
膜状に加工することが強く要望されているが、従来の技
術では、良好な超電導特性を有する薄膜作製は難しいも
のであった。すなわち、Bi−Sr−Ca−Cu−O系には超電
導転移温度の異なるいくつかの相が存在することが知ら
れているが、特に転移温度が100゜K以上の相を薄膜の形
態で達成するのは、非常に困難とされていた。(Problems to be Solved by the Invention) However, Bi-Sr-Ca-Cu-O-based materials can be formed only in the process of sintering with the current technology, and are obtained only in the form of ceramic powder or blocks. I can't. On the other hand, when this kind of material is put to practical use, it is strongly desired to process it into a thin film, but it has been difficult to produce a thin film having good superconducting properties with the conventional technology. That is, it is known that there are several phases having different superconducting transition temperatures in the Bi-Sr-Ca-Cu-O system, and in particular, a phase having a transition temperature of 100 ° K or more is achieved in the form of a thin film. It was very difficult to do.
また、従来のこのBi系において良好な超電導特性を示
す薄膜を形成するためには少なくとも700℃以上の熱処
理あるいは形成時の加熱が必要であり、そのため高い臨
界電流密度、高い臨界磁場が期待される磁性薄膜との周
期的な積層構造を得ることは極めて困難と考えられ、ま
たこの構造を利用した集積化デバイスを構成することも
たいへん困難であるとされていた。In addition, in order to form a thin film showing good superconductivity in this conventional Bi system, heat treatment of at least 700 ° C. or heating at the time of formation is necessary, so that a high critical current density and a high critical magnetic field are expected It was considered extremely difficult to obtain a periodic laminated structure with a magnetic thin film, and it was also very difficult to construct an integrated device using this structure.
本発明の目的は、従来の欠点を解消し、100゜K以上の
高臨界温度が期待されるビスマスを含む酸化物超電導薄
膜およびその製造方法を提供することである。An object of the present invention is to solve the conventional disadvantages and to provide a bismuth-containing oxide superconducting thin film expected to have a high critical temperature of 100 ° K or more and a method for producing the same.
(課題を解決するための手段) 本発明者らによる第1の発明の薄膜超電導体は、主体
成分が少なくともビスマス(Bi)、銅(Cu)、およびア
ルカリ土類(II a族)を含む層状酸化物超電導薄膜と、
EuOからなる磁性薄膜が交互に積層された構造を持つも
のである。(Means for Solving the Problems) The thin-film superconductor of the first invention by the present inventors has a layered structure in which a main component contains at least bismuth (Bi), copper (Cu), and alkaline earth (IIa group). An oxide superconducting thin film;
It has a structure in which magnetic thin films made of EuO are alternately stacked.
さらに第2の発明の薄膜超電導体の製造方法は、基体
上に、少なくともBiを含む酸化物と少なくとも銅および
アルカリ土類(II a族)を含む酸化物とを周期的に積層
させて形成する酸化物薄膜と、EuOからなる磁性薄膜と
を、交互に積層させて得る薄膜超電導体の製造方法であ
る。Further, in the method for manufacturing a thin film superconductor according to the second invention, an oxide containing at least Bi and an oxide containing at least copper and an alkaline earth (Group IIa) are periodically laminated on a substrate. This is a method for manufacturing a thin film superconductor obtained by alternately laminating oxide thin films and magnetic thin films made of EuO.
ここでアルカリ土類は、II a族元素のうち少なくとも
一種あるいは二種以上の元素を示す。Here, the alkaline earth refers to at least one element or two or more elements among the group IIa elements.
(作 用) 本発明者らによる第1の発明においては、安定なBi2O
2酸化膜層またはこれを主体とした層によりともに覆わ
れた結晶構造となっているところの、Bi系超電導薄膜
と、EuOからなる磁性薄膜とが、交互に積層された構造
をとることによって、超電導膜と磁性薄膜との間での相
互拡散の少ない積層が可能となる。また、磁性薄膜のも
つ磁気モーメントまたはスピンと超電導体との相互作用
により、Bi系超電導薄膜における臨界電流密度および臨
界磁場の向上が実現されたものである。(Operation) In the first invention by the present inventors, stable Bi 2 O
By taking a structure in which a Bi-based superconducting thin film and a magnetic thin film made of EuO, which have a crystal structure covered together by a 2 oxide film layer or a layer mainly composed of this, are alternately laminated, Lamination with less interdiffusion between the superconducting film and the magnetic thin film becomes possible. Further, the critical current density and the critical magnetic field of the Bi-based superconducting thin film are improved by the interaction between the magnetic moment or spin of the magnetic thin film and the superconductor.
さらに第2の発明においては上記構造を達成するた
め、少なくともBiを含む酸化物と、少なくとも銅および
アルカリ土類(II a族)を含む酸化物あるいはEuOと
を、周期的に積層させて分子レベルの制御による薄膜の
作製を行うことによって、再現性良くBi系超電導薄膜と
磁性薄膜との積層を得ることに成功したものである。Further, in the second invention, in order to achieve the above structure, an oxide containing at least Bi and an oxide containing at least copper and an alkaline earth (Group IIa) or EuO are periodically laminated to form a molecule. By producing a thin film under the control of the above, a stack of a Bi-based superconducting thin film and a magnetic thin film was successfully obtained with good reproducibility.
(実施例) まず、Bi系超電導薄膜と磁性薄膜との周期的な積層構
造を実現するため、Bi系超電導薄膜と種々の磁性薄膜と
の界面での相互作用について検討した。(Example) First, in order to realize a periodic laminated structure of a Bi-based superconducting thin film and a magnetic thin film, the interaction at the interface between the Bi-based superconducting thin film and various magnetic thin films was examined.
通常、Bi系超電導薄膜は500〜700℃に加熱した基体上
に蒸着して得る。蒸着後、そのままでも薄膜は超電導特
性を示すが、そののち800〜950℃の熱処理を施し、超電
導特性を向上させる。Usually, a Bi-based superconducting thin film is obtained by vapor deposition on a substrate heated to 500 to 700 ° C. After deposition, the thin film shows superconducting properties as it is, but is then subjected to a heat treatment at 800 to 950 ° C. to improve the superconducting properties.
しかしながら、基体温度が高いときに磁性薄膜をBi系
超電導薄膜に続いて積層したり、磁性薄膜を形成後熱処
理を行った場合、超電導薄膜と磁性薄膜との間で、元素
の相互拡散が起こり超電導特性が大きく劣化することが
判明した。相互拡散を起こさないためには、超電導薄
膜,磁性薄膜の結晶性が優れていること、超電導薄膜,
磁性薄膜間での格子の整合性が優れていること、磁性薄
膜が800〜950℃の熱処理に対して安定であることが不可
欠と考えられる。However, if the magnetic thin film is laminated next to the Bi-based superconducting thin film or the heat treatment is performed after the formation of the magnetic thin film when the substrate temperature is high, mutual diffusion of elements occurs between the superconducting thin film and the magnetic thin film, and the superconducting thin film is formed. It was found that the characteristics were greatly deteriorated. To prevent mutual diffusion, superconducting thin films and magnetic thin films must have excellent crystallinity,
It is indispensable that the lattice matching between the magnetic thin films is excellent and that the magnetic thin films are stable against heat treatment at 800 to 950 ° C.
種々の検討を行った結果、EuOが磁性薄膜として適し
ていることを見いだした。この理由としては明らかでは
ないが、EuOは、Bi系超電導体との格子の整合性がきわ
めて優れており、また高温の熱処理においても、Bi系超
電導体との界面が非常に安定であると考えられる。As a result of various studies, it was found that EuO is suitable as a magnetic thin film. Although the reason for this is not clear, it is thought that EuO has extremely excellent lattice matching with the Bi-based superconductor and that the interface with the Bi-based superconductor is very stable even at high temperature heat treatment. Can be
さらにBi系超電導薄膜とEuO薄膜を周期的に積層した
とき、Bi系超電導薄膜本来の臨界電流密度および臨界磁
場が向上することを見いだした。Furthermore, it was found that when Bi-based superconducting thin films and EuO thin films were periodically laminated, the intrinsic critical current density and critical magnetic field of Bi-based superconducting thin films were improved.
第1の発明の内容を更に深く理解されるために、第1
図を用い具体的な実施例を示す。In order to better understand the contents of the first invention, the first invention
Specific examples will be described with reference to the drawings.
(実施例1) 第1図は、本実施例で用いた高周波二元マグネトロン
スパッタ装置内部の概略図であり、11はBi−Sr−Ca−Cu
−Oターゲット、12はEuOターゲット、13はシャッタ
ー、14はアパーチャー、15は基体、16は基体加熱用ヒー
ターを示す。焼結体をプレス成形加工して作製した2個
のターゲット11,12を用い、第1図に示すように配置さ
せた。すなわち、MgO(100)基体15に焦点を結ぶように
各ターゲットが約30゜傾いて設置されている。ターゲッ
トの前方には回転するシャッター13があり、その中には
アパーチャー14が設けられている。シャッター13の回転
をパルスモータで制御することにより、アパーチャー14
をBi−Sr−Ca−Cu−OターゲットまたはEuOターゲット
上に停止させることができる。このようにして、Bi−Sr
−Ca−Cu−O→EuO→Bi−Sr−Ca−Cu−O→EuO→Bi−Sr
−Ca−Cu−Oのサイクルでスパッタ蒸気を行うことがで
きる。Bi−Sr−Ca−Cu−O膜、EuO膜の積層の様子を概
念的に第2図に示す。同図において、21はEuO膜、22はB
i−Sr−Ca−Cu−O膜を示す。ターゲット11,12への入力
電力、およびそれぞれのターゲットのスパッタ時間を制
御することにより、基体15上に蒸着するEuO膜21、Bi−S
r−Ca−Cu−O膜22の膜厚を変えることができる。基体1
5をヒーター16で約700℃に加熱し、アルゴン・酸素(1:
1)混合雰囲気0.5Paのガス中の各ターゲットのスパッタ
リングを行なった。薄膜作製後は酸素雰囲気中におい
て、800℃の熱処理を2時間施した。本実施例では、各
ターゲットのスパッタ電力を、Bi−Sr−Ca−Cu−O:150
w,EuO:100wとし、ターゲット11,12のスパッタ時間を制
御した。Bi−Sr−Ca−Cu−O膜22の元素の組成比率がB
i:Sr:Ca:Cu=2:2:2:3になるよう、ターゲット11の元素
組成比率を調整した。また、EuO膜の組成比率がEu:O=
1:1になるようスパッタ条件を最適化した。Bi−Sr−Ca
−Cu−O膜22をEuO膜21と積層せずに基体15上に形成し
た場合、すなわちBi−Sr−Ca−Cu−O膜22そのものの特
性は、110゜Kで超電導転移を起こし、100゜Kで抵抗値が
ゼロになるものであった。また、EuO3膜だけを成膜し、
磁化を測定したところ磁化容易軸は膜面に平行であっ
た。また磁化の値はバルクの値と同一であった。EuO膜
およびBi2Sr2Ca2Cu3Oy膜の膜厚をそれぞれ500Åとし1
層ずつ積層した。この積層膜の磁化を測定したところ当
然のことながらEuOだけの膜の値と同じであった。この
膜の抵抗の温度特性を第3図に示す。超電導転移温度
(オンセット温度)は、110゜KでありEuO膜を積層して
いない場合とかわらなかった。外部磁場10kOeを積層膜
の膜面に平行に印加し、磁性体膜を磁化させたのちに外
部磁場を取り除いた状態で測定した臨界電流密度の温度
依存性を第4図に示す。臨界電流密度は磁界をかける前
の値に対して各温度において約20%大きくなっている。
第5図には外部磁場を印加した状態における電気抵抗の
温度特性を示す。EuO膜を積層していないBi−Sr−Ca−C
u−O膜自身の結果を比較すると積層膜においては、磁
場による超電導転移温度領域の広がりが小さくなること
がわかった。このことは上部臨界磁場の向上を意味して
いる。これらの臨界電流密度および上部臨界磁界の向上
の理由は明らかではないがEuO膜の磁化またはスピンがB
i−Sr−Ca−Cu−O膜の超電導機構に影響をもたらした
結果であると考えられる。また、EuO膜およびBi−Sr−C
a−Cu−O膜単独で成膜したとき、膜厚がそれぞれ100Å
および50Å以上のとき結晶性の薄膜が得られることがわ
かった。第2図において、EuO膜21の膜厚を100Åとして
Bi−Sr−Ca−Cu−O膜22の膜厚が100Å,300Å,500Å,
繰り返し回数を20回としたときの特性をそれぞれ第6図
において、特性61,62,63に示す。特性61においてはゼロ
抵抗温度が約30゜KとBi−Sr−Ca−Cu−O膜22の特性が
劣化することがわかった。この理由として、Bi−Sr−Ca
−Cu−O膜22とEuO膜21との間で元素の相互拡散による
膜21,22の結晶性の破壊が考えられる。さらに特性63に
おいては、EuO膜21との周期的な積層なしに基体15上に
つけたときのBi−Sr−Ca−Cu−O膜22本来の超電導特性
とほとんど同じであり、磁性薄膜EuO膜21との積層効果
は確認されなかった。しかし、特性62において、臨界電
流密度は磁性膜を積層していない膜と比較して約20%向
上し、77゜Kで320万A/oとなった。上記臨界磁場はBi−S
r−Ca−Cu−O膜本来のものより約20%向上した。4.2゜
Kにおいて、c軸に平行方向に磁場を加えたときの値は3
0テスラ、またc軸に垂直方向では450テスラであった。
現在、これらの効果の詳細な理由については未だ不明で
あるが、EuO膜21が持つ磁気モーメントまたはスピンの
影響、または、薄いEuO膜21を介して複数のBi−Sr−Ca
−Cu−O膜22を積層することによりBi−Sr−Ca−Cu−O
膜22において超電導機構になんらかの変化が引き起こさ
れたことが考えられる。(Example 1) Fig. 1 is a schematic view of the inside of a high-frequency dual magnetron sputtering apparatus used in this example, and 11 is Bi-Sr-Ca-Cu.
-O target, 12 is an EuO target, 13 is a shutter, 14 is an aperture, 15 is a substrate, and 16 is a heater for heating the substrate. Using two targets 11 and 12 produced by press-forming a sintered body, they were arranged as shown in FIG. That is, each target is set to be inclined by about 30 ° so as to focus on the MgO (100) base 15. In front of the target is a rotating shutter 13, in which an aperture 14 is provided. By controlling the rotation of the shutter 13 with a pulse motor, the aperture 14 is controlled.
Can be stopped on the Bi—Sr—Ca—Cu—O target or the EuO target. In this way, Bi-Sr
-Ca-Cu-O->EuO->Bi-Sr-Ca-Cu-O->EuO-> Bi-Sr
The sputtering vapor can be performed in a cycle of -Ca-Cu-O. FIG. 2 conceptually shows how the Bi—Sr—Ca—Cu—O film and the EuO film are stacked. In the figure, 21 is an EuO film, 22 is B
3 shows an i-Sr-Ca-Cu-O film. By controlling the input power to the targets 11 and 12, and the sputtering time of each target, the EuO film 21, Bi-S
The thickness of the r-Ca-Cu-O film 22 can be changed. Substrate 1
5 is heated to about 700 ° C. by the heater 16 and argon / oxygen (1:
1) Each target was sputtered in a mixed atmosphere of 0.5 Pa gas. After forming the thin film, a heat treatment at 800 ° C. was performed for 2 hours in an oxygen atmosphere. In this embodiment, the sputtering power of each target is set to Bi-Sr-Ca-Cu-O: 150
w, EuO: 100 w, and the sputtering time of the targets 11 and 12 was controlled. The composition ratio of the elements of the Bi-Sr-Ca-Cu-O film 22 is B
The element composition ratio of the target 11 was adjusted so that i: Sr: Ca: Cu = 2: 2: 2: 3. Further, the composition ratio of the EuO film is Eu: O =
The sputter conditions were optimized to be 1: 1. Bi-Sr-Ca
-When the Cu-O film 22 is formed on the substrate 15 without being laminated with the EuO film 21, that is, the characteristics of the Bi-Sr-Ca-Cu-O film 22 itself cause a superconducting transition at 110 ° K, At 値 K, the resistance became zero. Also, only the EuO 3 film is formed,
When the magnetization was measured, the axis of easy magnetization was parallel to the film surface. The value of magnetization was the same as the value of bulk. The thickness of each of the EuO film and the Bi 2 Sr 2 Ca 2 Cu 3 O y film was 500
The layers were laminated one by one. When the magnetization of this laminated film was measured, the value was naturally the same as that of the film of EuO alone. FIG. 3 shows the temperature characteristics of the resistance of this film. The superconducting transition temperature (onset temperature) was 110 ° K, which was not different from the case where no EuO film was laminated. FIG. 4 shows the temperature dependence of the critical current density measured in a state where an external magnetic field of 10 kOe was applied in parallel to the film surface of the laminated film and the external magnetic field was removed after the magnetic film was magnetized. The critical current density is about 20% larger at each temperature than the value before applying the magnetic field.
FIG. 5 shows a temperature characteristic of electric resistance in a state where an external magnetic field is applied. Bi-Sr-Ca-C without EuO film
Comparing the results of the u-O film itself, it was found that the superconducting transition temperature region due to the magnetic field was less widened in the laminated film. This means that the upper critical magnetic field is improved. It is not clear why these critical current densities and upper critical magnetic fields are improved, but the magnetization or spin of the EuO film is B
This is considered to be the result of affecting the superconducting mechanism of the i-Sr-Ca-Cu-O film. In addition, EuO film and Bi-Sr-C
When the a-Cu-O film is formed alone, the film thickness is 100 mm each.
It was found that a crystalline thin film was obtained when the temperature was 50 ° or more. In FIG. 2, the thickness of the EuO film 21 is set to 100 °.
When the film thickness of the Bi-Sr-Ca-Cu-O film 22 is 100 mm, 300 mm, 500 mm,
The characteristics when the number of repetitions is 20 are shown in FIG. 6 as characteristics 61, 62, and 63, respectively. In the characteristic 61, it was found that the zero resistance temperature was about 30 ° K and the characteristic of the Bi—Sr—Ca—Cu—O film 22 was deteriorated. The reason for this is that Bi-Sr-Ca
It is conceivable that the crystallinity of the films 21 and 22 may be destroyed due to mutual diffusion of elements between the Cu—O film 22 and the EuO film 21. Further, the characteristic 63 is almost the same as the original superconducting characteristic of the Bi-Sr-Ca-Cu-O film 22 when the film is provided on the base 15 without periodic lamination with the EuO film 21. No laminating effect was observed. However, in the characteristic 62, the critical current density was improved by about 20% as compared with the film without the magnetic film laminated, and became 3.2 million A / o at 77 ° K. The critical magnetic field is Bi-S
The r-Ca-Cu-O film was improved by about 20% from the original one. 4.2 ゜
In K, the value when a magnetic field is applied in the direction parallel to the c-axis is 3
It was 0 Tesla and 450 Tesla in the direction perpendicular to the c-axis.
At present, the detailed reasons for these effects are still unknown, but the influence of the magnetic moment or spin of the EuO film 21 or a plurality of Bi-Sr-Ca
-Bi-Sr-Ca-Cu-O by laminating -Cu-O film 22
It is possible that some change in the superconducting mechanism was caused in the film 22.
なお、ターゲット11、もしくは12に鉛(Pb)を添加し
てスパッタしたとき、基体15の温度が上記実施例よりも
約100℃低くても、上記実施例と同等な結果が得られる
ことを見いだした。It should be noted that, when lead (Pb) is added to the target 11 or 12 and sputtered, even if the temperature of the substrate 15 is about 100 ° C. lower than that of the above-described embodiment, the same result as that of the above-described embodiment is obtained. Was.
さらに、Biの酸化物と、Sr,Ca,Cuの酸化物を異なる蒸
発源から真空中で別々に蒸発させ、基体上にBi−O−Sr
−Cu−O−Ca−Cu−O−Sr−Cu−O−Bi−Oの順に周期
的に積層させた場合、さらにEuOターゲットを用いて真
空中で蒸発させ、積層させた場合、(実施例1)に示し
た積層構造作製方法より極めて制御性良く、安定した膜
質の、しかも膜表面が極めて平坦なBi−Sr−Ca−Cu−O
超電導薄膜およびEuO磁性薄膜が得られることを見いだ
した。Further, Bi oxide and oxides of Sr, Ca and Cu are separately evaporated in vacuum from different evaporation sources, and Bi-O-Sr
In the case where the layers were periodically laminated in the order of -Cu-O-Ca-Cu-O-Sr-Cu-O-Bi-O, and further evaporated in a vacuum using an EuO target, and the layers were laminated (Example Bi-Sr-Ca-Cu-O with very good controllability, stable film quality, and extremely flat film surface than the method for fabricating a laminated structure shown in 1).
It was found that superconducting thin films and EuO magnetic thin films could be obtained.
さらに、Bi−O、Sr−Cu−O、Ca−Cu−O、EuOを別
々の蒸発源から蒸発させ、Bi−Sr−Ca−Cu−O超電導薄
膜とEuO磁性薄膜を周期的に積層したとき、極めて制御
性良くm(Bi−Sr−Ca−Cu−O)・n(EuO)の周期構
造を持つ薄膜を形成できることを見いだした。ここでm,
nはそれぞれ少なくとも1以上の正の整数を示す。さら
に、このm(Bi−Sr−Ca−Cu−O)・n(EuO)薄膜
は、(実施例1)に示したBi−Sr−Ca−Cu−Oを同時に
蒸着して得る超電導薄膜と、EuOを同時に蒸着して得る
酸化物磁性薄膜とを周期的に積層して得た薄膜に比べ
て、はるかに結晶性が優れ、臨界電流密度および上部臨
界磁場の特性において勝っていることも併せて見いだし
た。さらに、上記の方法で作製したBi−Sr−Ca−Cu−O
超電導薄膜とEuO磁性薄膜ともに薄膜表面が極めて平坦
であることを見いだした。Further, when Bi-O, Sr-Cu-O, Ca-Cu-O, and EuO are evaporated from separate evaporation sources, and a Bi-Sr-Ca-Cu-O superconducting thin film and a EuO magnetic thin film are periodically laminated. It has been found that a thin film having a periodic structure of m (Bi-Sr-Ca-Cu-O) .n (EuO) can be formed with extremely high controllability. Where m,
n represents a positive integer of at least 1 or more. Further, the m (Bi-Sr-Ca-Cu-O) .n (EuO) thin film is a superconducting thin film obtained by simultaneously depositing Bi-Sr-Ca-Cu-O shown in (Example 1), Compared to a thin film obtained by periodically laminating an oxide magnetic thin film obtained by simultaneously depositing EuO, it has much better crystallinity, and also has superior characteristics of critical current density and upper critical magnetic field. I found it. Further, Bi-Sr-Ca-Cu-O prepared by the above method
It has been found that both the superconducting thin film and the EuO magnetic thin film have extremely flat surfaces.
これらのことは、異なる元素を別々に順次積層してい
くことにより、基体表面に対し平行な面内だけで積層さ
れた蒸着元素が動くだけで、基体表面に対し垂直方向へ
の元素が移動がないことによるものと考えられる。This is because, by sequentially stacking different elements separately, the deposited elements only move in a plane parallel to the substrate surface, and the elements move in the direction perpendicular to the substrate surface. It is thought that it is not.
さらに、良好な超電導特性を得るに必要な基体の温
度、熱処理温度も、従来より低いことを見いだした。Further, they have also found that the temperature of the substrate and the heat treatment temperature necessary for obtaining good superconducting properties are lower than before.
Bi−O、Sr−Cu−O、Ca−Cu−O、Eu−Oを周期的に
積層させる方法としては、いくつか考えられる。一般
に、MBE装置あるいは多元のEB蒸着装置で蒸発源の前を
開閉シャッターで制御したり、気相成長法で作製する際
にガスの種類を切り替えたりすることにより、周期的積
層を達成することができる。しかしこの種の非常に薄い
層の積層には従来スパッタリング蒸着は不向きとされて
いた。この理由は、成膜中のガス圧の高さに起因する不
純物の混入およびエネルギーの高い粒子によるダメージ
と考えられている。しかし、このBi系酸化物超電導体に
対してスパッタリングによる異なる薄い層の積層を行な
ったところ、意外にも良好な積層膜作製が可能なことを
発見した。スパッタ中の高い酸素ガス圧をおよびスパッ
タ放電が、Bi系の100゜K以上の臨界温度を持つ相の形
成、およびEuO絶縁膜の形成に都合がよいためではなか
ろうかと考えられる。There are several possible methods for periodically stacking Bi-O, Sr-Cu-O, Ca-Cu-O, and Eu-O. In general, periodic stacking can be achieved by controlling the front of the evaporation source with an opening / closing shutter using an MBE device or a multi-source EB evaporation device, or by switching the type of gas when manufacturing by vapor phase growth. it can. However, sputtering deposition has heretofore been unsuitable for stacking very thin layers of this type. It is considered that the reason for this is that impurities are mixed due to the high gas pressure during the film formation and damage is caused by high energy particles. However, when different thin layers were laminated on this Bi-based oxide superconductor by sputtering, it was discovered that a surprisingly good laminated film could be produced. It is considered that the high oxygen gas pressure and the sputter discharge during the sputtering are convenient for the formation of a Bi-based phase having a critical temperature of 100 ° K or more and the formation of an EuO insulating film.
スパッタ蒸着で異なる物質を積層させる方法として
は、組成分布を設けた1個のスパッタリングターゲット
の放電位置を周期的に制御するという方法があるが、組
成の異なる複数個のターゲットのスパッタリングという
方法を用いると比較的簡単に達成することができる。こ
の場合、複数個のターゲットの各々のスパッタ量を周期
的に制御したり、あるいはターゲットの前にシャッター
を設けて周期的に開閉したりして、周期的積層膜を作製
することができる。また基板を周期的運動させて各々タ
ーゲットの上を移動させる方法でも作製が可能である。
レーザースパッタあるいはイオンビームスパッタを用い
た場合には、複数個のターゲットを周期運動させてビー
ムの照射するターゲットを周期的に変えれば、周期的積
層膜が実現される。このような複数個のターゲットを用
いたスパッタリングにより比較的簡単にBi系酸化物の周
期的積層が作製可能となる。As a method of laminating different materials by sputter deposition, there is a method of periodically controlling the discharge position of one sputtering target having a composition distribution, but a method of sputtering a plurality of targets having different compositions is used. And can be achieved relatively easily. In this case, a periodic laminated film can be manufactured by periodically controlling the amount of sputtering of each of the plurality of targets, or by providing a shutter in front of the targets and periodically opening and closing them. Further, it can also be manufactured by a method in which the substrate is moved periodically over the target by periodically moving the substrate.
In the case of using laser sputtering or ion beam sputtering, a periodic laminated film can be realized by periodically moving a plurality of targets to change the target to be irradiated with a beam periodically. The periodic lamination of the Bi-based oxide can be relatively easily produced by sputtering using such a plurality of targets.
以下第2の発明の内容をさらに深く理解するために、
具体的な実施例を示す。In order to better understand the content of the second invention,
A specific example will be described.
(実施例2) 第7図に本実施例で用いた4元マグネトロンスパッタ
装置の概略図を示す。第7図において、71はBiターゲッ
ト、72はSrCu合金ターゲット、73はCaCu合金ターゲッ
ト、74はEuターゲット、75はシャッター、76はアパーチ
ャー、77は基体、78は基体加熱用ヒーターを示す。計4
個のターゲット71,72,73,74は第7図に示すのと同様に
配置させた。すなわち、MgO(100)基体77に焦点を結ぶ
ように各ターゲットが約30゜傾いて設置されている。タ
ーゲットの前方には回転するシャッター75があり、パル
スモータで駆動することによりその中に設けられたアパ
ーチャー76の回転が制御され、各ターゲットのサイクル
およびスパッタ時間を設定することができる。基体77の
ヒーター78で約600℃に加熱し、アルゴン・酸素(5:1)
混合雰囲気3Paのガス中でBi,SrCuおよびCaCuターゲット
のスパッタリングを行なった。また、Euターゲットのス
パッタリング時にEuターゲットの酸化を防止するため、
雰囲気ガスをArだけにした。そののち、酸素ガスを導入
し成膜したEuを酸化しEuOとした。各ターゲットのスッ
パタ電流を、Bi:30mA,SrCu:80mA,CaCu:300mA,Eu:80mAに
して実験を行った。Bi→SrCu→CaCu→SrCu→Biサイクル
でスパッタし、Bi−Sr−Ca−Cu−O膜の元素の組成比率
がBi:Sr:Ca:Cu=2:2:2:3となる各ターゲットのスパッタ
時間を調整し、上記サイクルを20周期行った結果、110
゜K以上の臨界温度を持つ相を作製することができた。
このまま状態でもこのBi−Sr−Ca−Cu−O膜は110゜K以
上の超電導転移を示したが、さらに酸素中で600℃、1
時間の熱処理を行うと非常に再現性がよくなり、超電導
転移温度は115゜Kで抵抗値がゼロになる温度は100゜Kに
なった。超電導転移温度が100゜Kを超す相は金属元素が
Bi−Sr−Cu−Ca−Cu−Ca−Cu−Sr−Biの順序で並んだ酸
化物の層から成り立っているとも言われており、本発明
の製造方法がこの構造を作るのに非常に役だっているの
ではないかと考えられる。Embodiment 2 FIG. 7 is a schematic diagram of a quaternary magnetron sputtering apparatus used in this embodiment. In FIG. 7, 71 is a Bi target, 72 is a SrCu alloy target, 73 is a CaCu alloy target, 74 is an Eu target, 75 is a shutter, 76 is an aperture, 77 is a substrate, and 78 is a substrate heating heater. 4 in total
The targets 71, 72, 73, 74 were arranged in the same manner as shown in FIG. That is, each target is set to be inclined by about 30 ° so as to focus on the MgO (100) base 77. In front of the target, there is a rotating shutter 75, which is driven by a pulse motor to control the rotation of an aperture 76 provided therein, so that the cycle and sputtering time of each target can be set. Heated to about 600 ° C with heater 78 of substrate 77, argon and oxygen (5: 1)
Bi, SrCu and CaCu targets were sputtered in a mixed atmosphere of 3 Pa gas. In addition, to prevent oxidation of the Eu target during sputtering of the Eu target,
The atmosphere gas was only Ar. Then, oxygen gas was introduced to oxidize the formed Eu to form EuO. The experiment was performed with the sputter current of each target set to Bi: 30 mA, SrCu: 80 mA, CaCu: 300 mA, and Eu: 80 mA. Sputtering in the cycle of Bi → SrCu → CaCu → SrCu → Bi, and for each target where the elemental composition ratio of the Bi-Sr-Ca-Cu-O film is Bi: Sr: Ca: Cu = 2: 2: 2: 3 After adjusting the sputtering time and performing the above cycle for 20 cycles, 110
A phase with a critical temperature of ゜ K or more could be produced.
Even in this state, the Bi-Sr-Ca-Cu-O film showed a superconducting transition of 110 ° K or more.
After a long heat treatment, the reproducibility became very good. The superconducting transition temperature was 115 ゜ K and the temperature at which the resistance value became zero was 100 ゜ K. Phases with a superconducting transition temperature exceeding 100 K
It is also said that it consists of an oxide layer arranged in the order of Bi-Sr-Cu-Ca-Cu-Ca-Cu-Sr-Bi. It is thought that it may be a role.
Bi→SrCu→CaCu→SrCuの積層を1周期としてn周期積
層しその上にEuOを膜厚d(Å)になるよう各ターゲッ
トをスパッタし、n(Bi−Sr−Ca−Cu−O)・d(Eu
O)薄膜を基体77上に作製した。ここでnは1以上の正
の整数を示す。n=10のとき、EuO薄膜の膜厚dを変化
させて積層して得た膜の超電導特性を調べた。このとき
Bi−Sr−Ca−Cu−O薄膜/EuO薄膜の積層繰り返し回数は
10回とした。第8図にd=70,200,1000Åのときに得た
多層膜の抵抗の温度変化をそれぞれ特性81,82,83に示
す。第8図において、d=200Åのとき、最も高い超電
導転移温度およびゼロ抵抗温度、すなわち特性82が得ら
れた。特性82の超電導転移温度、ゼロ抵抗温度はBi−Sr
−Ca−Cu−O膜本来のそれらの値と同等である。臨界電
流密度は77゜Kにおいて、360万A/oとなり、磁性体薄膜
を積層していない薄膜の値より45%高くなった。また、
上部臨界磁場はBi−Sr−Ca−Cu−O膜本来のものより約
30%向上する。4.2゜Kにおいて、c軸に平行方向に磁場
を加えたときの値は33テスラ、またc軸に垂直方向では
490テスラであった。この効果の詳細な理由については
未だ不明であるが、本実施例に示した方法でBi−Sr−Ca
−Cu−O膜とEuO膜とを周期的に積層することによっ
て、Bi−Sr−Ca−Cu−O膜とEuO膜がエピタキシャル成
長していることにより積層界面での元素の相互拡散の影
響がなく、かつ結晶性に優れた薄いEuO膜を介して同じ
く結晶性に優れたBi−Sr−Ca−Cu−O膜を積層すること
によりBi−Sr−Ca−Cu−O膜において超電導機構になん
らかの変化が引き起こされたことが考えられる。The stacking of Bi → SrCu → CaCu → SrCu is defined as one cycle, and n cycles are stacked. Then, each target is sputtered with EuO to a thickness d (Å), and n (Bi-Sr-Ca-Cu-O). d (Eu
O) A thin film was formed on the substrate 77. Here, n represents a positive integer of 1 or more. When n = 10, the superconducting characteristics of the films obtained by laminating the EuO thin films while changing the film thickness d were examined. At this time
Bi-Sr-Ca-Cu-O thin film / EuO thin film
10 times. FIG. 8 shows the temperature changes of the resistance of the multilayer film obtained when d = 70, 200, and 1000 °, as characteristics 81, 82, and 83, respectively. In FIG. 8, when d = 200 °, the highest superconducting transition temperature and zero resistance temperature, that is, the characteristic 82 were obtained. The superconducting transition temperature and zero resistance temperature of characteristic 82 are Bi-Sr
-These are equivalent to the original values of the Ca-Cu-O film. The critical current density at 77 ゜ K was 3.6 million A / o, 45% higher than that of the thin film without the magnetic thin film. Also,
The upper critical magnetic field is about twice that of the original Bi-Sr-Ca-Cu-O film.
30% improvement. At 4.2 ゜ K, the value when a magnetic field is applied in the direction parallel to the c-axis is 33 Tesla, and in the direction perpendicular to the c-axis,
It was 490 Tesla. Although the detailed reason for this effect is not yet known, Bi-Sr-Ca
-By stacking the Cu-O film and the EuO film periodically, the Bi-Sr-Ca-Cu-O film and the EuO film are epitaxially grown, so that there is no influence of interdiffusion of elements at the stack interface. Some change in the superconducting mechanism in the Bi-Sr-Ca-Cu-O film by stacking the Bi-Sr-Ca-Cu-O film also having excellent crystallinity via the thin EuO film having excellent crystallinity May have been caused.
さらに、ターゲット71、もしくは74に鉛(Pb)を添加
してスパッタしたとき、基体77の温度が上記実施例より
も約100℃低くても、上記実施例と同等な結果が得られ
ることを見いだした。Furthermore, it has been found that when lead (Pb) is added to the target 71 or 74 and sputtered, even if the temperature of the substrate 77 is about 100 ° C. lower than that of the above-described embodiment, the same result as that of the above-described embodiment can be obtained. Was.
(発明の効果) 第1の発明の薄膜超電導体は、Bi系薄膜超電導体の臨
界電流密度、臨界磁場の向上をはかる構造を提供するも
のであり、第2の発明の薄膜超電導体の製造方法は第1
の発明をより効果的に実現し、デバイス等の応用には必
須の低温でのプロセスを確立したものであり、本発明の
工業的価値は大きい。(Effect of the Invention) The thin-film superconductor of the first invention provides a structure for improving the critical current density and the critical magnetic field of the Bi-based thin-film superconductor, and the method of manufacturing the thin-film superconductor of the second invention Is the first
The invention of the present invention has been realized more effectively, and a low-temperature process essential for application of devices and the like has been established, and the industrial value of the present invention is great.
第1図は第1の発明の実施例における薄膜の製造装置の
概略図、第2図は第1の発明の構造概念図、第3図,第
6図は第1図の装置により得た薄膜における抵抗値の温
度特性図、第4図は第1図の装置により得た薄膜におけ
る臨界電流密度の温度依存性を示す図、第5図は第1図
の装置により得た薄膜における外部磁場下における抵抗
値の温度特性図、第7図は第2の発明の実施例における
薄膜の製造装置の概略図、第8図は第7図の装置により
得た薄膜における抵抗値の温度特性図である。 11,12,71,72,73,74……スパッタリングターゲット、13,
75……シャッター、14,76……アパーチャー、15,77……
MgO基体、16,78……ヒーター、21……EuO膜、22……Bi
−Sr−Ca−Cu−O膜、61,62,63,81,82,83……薄膜の抵
抗の温度特性。FIG. 1 is a schematic view of an apparatus for manufacturing a thin film according to an embodiment of the first invention, FIG. 2 is a conceptual diagram of the structure of the first invention, and FIGS. 3 and 6 are thin films obtained by the apparatus of FIG. FIG. 4 shows the temperature dependence of the critical current density in the thin film obtained by the apparatus shown in FIG. 1, and FIG. 5 shows the temperature dependence of the thin film obtained by the apparatus shown in FIG. , FIG. 7 is a schematic view of an apparatus for manufacturing a thin film according to the second embodiment of the present invention, and FIG. 8 is a temperature characteristic view of a resistance value of the thin film obtained by the apparatus of FIG. . 11,12,71,72,73,74 …… Sputtering target, 13,
75 …… Shutter, 14,76 …… Aperture, 15,77 ……
MgO substrate, 16,78 heater, 21 EuO film, 22 Bi
-Sr-Ca-Cu-O films, 61, 62, 63, 81, 82, 83 ... Temperature characteristics of resistance of thin films.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D H01F 10/26 H01F 10/26 H01L 39/02 ZAA H01L 39/02 ZAAD (72)発明者 八田 真一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 和佐 清孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−318014(JP,A) 特開 平3−105807(JP,A)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01B 12/06 ZAA H01B 12/06 ZAA 13/00 565 13/00 565D H01F 10/26 H01F 10/26 H01L 39/02 ZAA H01L 39/02 ZAAD (72) Inventor Shinichiro Hatta 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 72) Inventor Kiyotaka Wasa 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-318014 (JP, A) JP-A-3-105807 (JP, A)
Claims (4)
(Cu)、およびアルカリ土類(II a族)を含む層状酸化
物超電導薄膜と、EuOからなる磁性薄膜が交互に積層さ
れた構造を持つことを特徴とする薄膜超電導体。 ここでアルカリ土類は、II a族元素のうち少なくとも一
種あるいは二種以上の元素を示す。1. A structure in which a layered oxide superconducting thin film containing at least bismuth (Bi), copper (Cu) and alkaline earth (IIa group) as main components and a magnetic thin film made of EuO are alternately laminated. A thin-film superconductor characterized by having. Here, the alkaline earth refers to at least one element or two or more elements among the group IIa elements.
なくとも銅およびアルカリ土類(II a族)を含む酸化物
とを周期的に積層させて形成する酸化物薄膜と、EuOか
らなる磁性薄膜とを、交互に積層させて得ることを特徴
とする薄膜超電導体の製造方法。 ここでアルカリ土類は、II a族元素のうちの少なくとも
一種あるいは二種以上の元素を示す。2. An oxide thin film formed by periodically laminating an oxide containing at least Bi and an oxide containing at least copper and an alkaline earth (Group IIa) on a substrate, and a magnetic thin film made of EuO. A method for manufacturing a thin-film superconductor, comprising alternately laminating thin films. Here, the alkaline earth refers to at least one or two or more of the Group IIa elements.
発源で行うことを特徴とする請求項(2)記載の薄膜超
電導体の製造方法。3. The method of manufacturing a thin film superconductor according to claim 2, wherein the evaporation of the laminated material is performed by at least two or more types of evaporation sources.
ことを特徴とする請求項(2)記載の薄膜超電導体の製
造方法。4. The method for manufacturing a thin film superconductor according to claim 2, wherein the evaporation of the laminated material is performed by sputtering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101616A JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101616A JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH042181A JPH042181A (en) | 1992-01-07 |
JP2741277B2 true JP2741277B2 (en) | 1998-04-15 |
Family
ID=14305341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2101616A Expired - Lifetime JP2741277B2 (en) | 1990-04-19 | 1990-04-19 | Thin film superconductor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2741277B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8194132B2 (en) | 2006-01-20 | 2012-06-05 | Old World Industries, Llc | System for monitoring an area adjacent a vehicle |
CN108022751B (en) * | 2016-10-31 | 2022-01-11 | 北京北方华创微电子装备有限公司 | Deposition method of magnetic thin film lamination, magnetic thin film lamination and micro-inductance device |
-
1990
- 1990-04-19 JP JP2101616A patent/JP2741277B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH042181A (en) | 1992-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP3037514B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2733368B2 (en) | Superconducting thin film and method for producing the same | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2979422B2 (en) | Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film | |
JP3478543B2 (en) | Oxide superconducting thin film and method for producing the same | |
JP2669052B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH0316920A (en) | Oxide superconductive thin film and its production | |
JPH05170448A (en) | Production of thin ceramic film | |
JP2866476B2 (en) | Laminated superconductor and manufacturing method thereof | |
JPH0822742B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2502744B2 (en) | Method of manufacturing thin film super-electric body | |
JPH0465320A (en) | Superconducting thin film and its production | |
JPH04275470A (en) | Product composed of superconductor/insulator structure and manufacture of said product | |
JPH05171414A (en) | Superconducting thin film and its production | |
JPH0822740B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH02122065A (en) | Production of thin film type superconductor | |
JPH0822741B2 (en) | Superconducting thin film and manufacturing method thereof | |
JPH0437609A (en) | Oxide superconducting thin film and its production | |
JPH03170333A (en) | Thin filmy super conductor and its preparation | |
JP2558880B2 (en) | Method for producing copper oxide thin film | |
JP2555477B2 (en) | Superconducting thin film and manufacturing method thereof | |
JPH0714817B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH042617A (en) | Oxide superconducting thin film and production thereof | |
JPH02167827A (en) | Thin-film superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 13 |