JPH02145761A - Manufacture of thin superconductor film - Google Patents
Manufacture of thin superconductor filmInfo
- Publication number
- JPH02145761A JPH02145761A JP63299854A JP29985488A JPH02145761A JP H02145761 A JPH02145761 A JP H02145761A JP 63299854 A JP63299854 A JP 63299854A JP 29985488 A JP29985488 A JP 29985488A JP H02145761 A JPH02145761 A JP H02145761A
- Authority
- JP
- Japan
- Prior art keywords
- sputtering
- thin film
- temperature
- nitrous oxide
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000004544 sputter deposition Methods 0.000 claims abstract description 26
- 239000010409 thin film Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000001272 nitrous oxide Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052786 argon Inorganic materials 0.000 abstract description 6
- 238000003475 lamination Methods 0.000 abstract description 4
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 230000000737 periodic effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910004247 CaCu Inorganic materials 0.000 description 2
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、100に以上の高臨界温度が期待されるビス
マスを含む酸化物超電導体の薄膜の製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a thin film of an oxide superconductor containing bismuth, which is expected to have a high critical temperature of 100 or higher.
従来の技術
高温超電導体とし7て、A15型2元系化合物として窒
化ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge
)などが知られていたが、これらの材料の超電導転移温
度はたかだか24゛にであった。Conventional technology As high-temperature superconductors7, niobium nitride (NbN) and germanium niobium (Nb3Ge) are used as A15 type binary compounds.
), but the superconducting transition temperature of these materials was at most 24°.
一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され、Ba〜L a −Cu−0系の高温超
電導体が提案された( J 、 G、 Bendorz
and K、A、Mulle乙ツァイト シュリフト
フェア フィジーク(Zetshrift、 Fur
physik B)−Condensed Mat
ter 64.189−193(1986))。On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed (J, G, Bendorz
and K, A, Mulle Otzeit Schrift
Fair Physique (Zetshrift, Fur
physik B)-Condensed Mat
ter 64.189-193 (1986)).
さらに、B 1−5r−Ca−Cu−0系の材料が10
0に以上の転移温度を示すことも発見された。 (H,
Maeda、 Y、Tanaka、 M、Fuku
toa+i andT、Asano、ジャパニーズ・
ジャーナル・オブ・アプライド−フィジックス(Jap
anese Journai cfApplied
Physics) Vol、 27. L、209−L
21.0この種の材料の超電導機構の詳細は明らかで
はないが、転移温度が室温以上に高くなる可能性があり
、高温超電導体として従来の2元系化合物より、より有
望な特性が期待される。Furthermore, B 1-5r-Ca-Cu-0 type material is 10
It has also been discovered that they exhibit transition temperatures above 0. (H,
Maeda, Y., Tanaka, M., Fuku.
toa+i andT, Asano, Japanese・
Journal of Applied Physics (Jap
anese Journey cfApplied
Physics) Vol, 27. L, 209-L
21.0 The details of the superconducting mechanism of this type of material are not clear, but the transition temperature may be higher than room temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds. Ru.
発明が解決しようとする課題
この種の材料を実用化する場合、薄膜状に加工すること
が強く要望されている。従来、スパッタリング法等で薄
膜化が行なわれているが、作製時の基板温度が高いため
、実用化には問題がある。Problems to be Solved by the Invention When putting this type of material into practical use, there is a strong demand for processing it into a thin film. Conventionally, film thinning has been carried out by sputtering or the like, but there is a problem in practical use because the substrate temperature during production is high.
このため、基板温度の低l易化が望まれている。Therefore, it is desired to reduce the substrate temperature.
課題を解決するための手段
本発明の薄膜超電導体の製造方法は、850℃以下に加
熱した基体上に、スパッタリング法で、スパッタリング
ガスとして少なくとも亜酸化窒素ガスを含むガスを用い
て、少なくともビスマスを含む物質と、少なくとも銅お
よびアルカリ土類を含む物質とを、周期的に積層させて
作製するというものである。Means for Solving the Problems The method for producing a thin film superconductor of the present invention involves sputtering at least bismuth onto a substrate heated to 850° C. or lower using a gas containing at least nitrous oxide gas as a sputtering gas. It is produced by periodically laminating a substance containing copper and a substance containing at least copper and alkaline earth metals.
作用
亜酸化窒素は酸素に比べて解離エネルギーが小さく活性
な酸素ラジカルやイオンが十分得られやすいため、結晶
成長に必要な運動エネルギーや化合エネルギーが供給さ
れ、膜中に酸素がとりこまれやすい。したがって、スパ
ッタリングガスとして亜酸化窒素を用いることにより、
形成時の基板温度を低温化することが可能となる。Action Nitrous oxide has a lower dissociation energy than oxygen, and active oxygen radicals and ions are easily obtained, so the kinetic energy and combination energy necessary for crystal growth are supplied, and oxygen is easily incorporated into the film. Therefore, by using nitrous oxide as a sputtering gas,
It becomes possible to lower the substrate temperature during formation.
実施例
Y−Ba−Cu−0系等の酸化物超電導体の超電導特性
は、酸素濃度に非常に敏感であり、これらの薄膜形成に
おいては、膜−\の酸素導入が非常に重要な要素である
。このため、スパッタリング法にて、薄膜を作製する場
合、スパッタガスとし7てアルゴンと酸素の混合ガスが
用いられていた。The superconducting properties of oxide superconductors such as the Y-Ba-Cu-0 system are very sensitive to oxygen concentration, and the introduction of oxygen into the film is a very important factor in the formation of these thin films. be. For this reason, when producing a thin film by sputtering, a mixed gas of argon and oxygen has been used as the sputtering gas.
今回、本発明者等は、種々のスパッタリングガスを用い
て、B i −8r−Ca−Cu−0超電導薄膜を作製
した。スパッタリングガスとして、アルゴンガス(Ar
)と酸素原子を含むガスの混合ガスを用いて、Biター
ゲットとS r2Ca2Cu3ターゲットを酸素中で交
互にスパッタリングし、種々の温度のMg0(100)
基体上に周期的に積層さゼだ。その結果、スパッタリン
グガスとして、Ar(!1−02の1昆合ガスを用いる
よりも、Arと亜酸化窒素(N20)の混合ガスを用い
る方が、低い基板温度で、100K以上の臨界温度を持
つ相が、X線回折パターンにより観測された。This time, the present inventors produced a B i -8r-Ca-Cu-0 superconducting thin film using various sputtering gases. Argon gas (Ar
) and a gas containing oxygen atoms, Bi target and S r2Ca2Cu3 target were alternately sputtered in oxygen, and Mg0(100) at various temperatures were sputtered.
It is layered periodically on the substrate. As a result, it is better to use a mixed gas of Ar and nitrous oxide (N20) as a sputtering gas than to use a mixture of Ar (!1-02) to achieve a critical temperature of 100K or more at a lower substrate temperature. This phase was observed by X-ray diffraction pattern.
第1図はArとN20の混合ガスを用いて作製した薄膜
のX線回折パターンである。基体温度が300℃以下の
際は積層周期構造に対応するビークく)が認められるが
、300℃〜500℃と高くすると周期構造が弱くなり
、他の相(×)の出現が認められる。ところがさらに温
度を高(すると、500℃〜850℃の範囲の基体温度
では、意外にも100に以上の臨界温度を持つ相(○)
が作製し得ることを発見した。この場合、F記温度範囲
でBiと5r2Ca2Cu3のスパッタリングレートを
適宜に調整すると、積層周期に対応して100に以上の
相が出現することが分かった。また積層を周期的ではな
く同時に行なっt、−場合には80にの臨界温度を持つ
相しか作製出来なかった。基体温度が特に550℃〜8
50℃の場合には、100に以上の臨界温度の相の結晶
性が非常に良好なものが作製し得ることも合わせて発見
した。基体温度が900℃以上の際は薄膜が蒸発して堆
積しなかった。500℃〜850℃で作製した薄膜は、
そのままの状態でも超電導転移を示すが、酸素中850
℃程度で熱処理を行うとより確実に100に以上の臨界
温度を示した。FIG. 1 is an X-ray diffraction pattern of a thin film produced using a mixed gas of Ar and N20. When the substrate temperature is 300° C. or less, a peak corresponding to the laminated periodic structure is observed, but when the temperature is increased to 300° C. to 500° C., the periodic structure becomes weaker and the appearance of another phase (x) is observed. However, when the temperature is raised further (when the substrate temperature is in the range of 500°C to 850°C, a phase with a critical temperature of 100 or more (○)
We discovered that it is possible to create In this case, it has been found that if the sputtering rate of Bi and 5r2Ca2Cu3 is adjusted appropriately in the temperature range F, more than 100 phases appear depending on the lamination period. Furthermore, when the lamination was carried out simultaneously rather than periodically, only a phase having a critical temperature of 80°C could be produced. Especially when the substrate temperature is 550℃~8
It has also been discovered that when the temperature is 50° C., a phase with a critical temperature of 100° C. or more with very good crystallinity can be produced. When the substrate temperature was 900° C. or higher, the thin film evaporated and was not deposited. The thin film produced at 500°C to 850°C is
Although it exhibits superconducting transition even in its original state, 850
When the heat treatment was performed at a temperature of about 100° C., the critical temperature of 100° C. or more was more reliably shown.
550℃〜850℃で積層した薄膜は、特に再現性に優
れていることも発見した。It has also been discovered that thin films laminated at temperatures between 550°C and 850°C have particularly good reproducibility.
このように、アルゴンと亜酸化窒素の混合ガスをスパッ
タリングガスとして用いると、アルゴンと酸素の混合ガ
スを用いたときと比べて、基板温度を50℃〜100℃
低い温度でも100 K、以上の臨界温度をもつ、Bi
系超電導膜を得ることができる。そして、亜酸化窒素ガ
スを用いると、低温化が可能となるのは、亜酸化窒素は
酸素に比べて解離エネルギーが小さいので、活性な酸素
ラジカルやイオンを得やすく、超電導薄膜を得るのに必
要な活性な酸素が十分得られるためである。ずなわち、
本発明では低い基板温度でも、超電導特性が得られる。In this way, when a mixed gas of argon and nitrous oxide is used as a sputtering gas, the substrate temperature can be lowered by 50°C to 100°C compared to when a mixed gas of argon and oxygen is used.
Bi has a critical temperature of 100 K or more even at low temperatures.
system superconducting film can be obtained. Using nitrous oxide gas makes it possible to lower the temperature because nitrous oxide has a lower dissociation energy than oxygen, making it easier to obtain active oxygen radicals and ions, which are necessary to obtain superconducting thin films. This is because sufficient active oxygen can be obtained. Zunawachi,
In the present invention, superconducting properties can be obtained even at low substrate temperatures.
二次イオン質量分析法で膜中の窒素を調べたが、膜中の
窒素は観測されなかった。Nitrogen in the film was examined using secondary ion mass spectrometry, but no nitrogen was observed in the film.
スパッタ蒸着で異なる物質を積層させる方法きしては、
組成分布を設けた1ケのスパッタリングターゲットの放
電位置を周期的に制御するという方法があるが、組成の
異なる複数個のターゲットのスパッタリングという方法
を用いると比較的簡単に達成することができる。この場
合、複数個のターゲットの各ケのスパッタ量を周期的に
制御したり、あるいはターゲットの前にシャッターを設
けて周期的に開閉したりして、周期的積層膜を作製する
ことができる。また基板を周期的運動させて各々のター
ゲットの上を移動させる方法でも作製が可能である。レ
ーザースパッタあるいはイオンビームスパッタを用いた
場合には、複数個のターゲットを周期運動させてビーム
の照射するターゲットを周期的に変えれば、周期的積層
膜が実現される。このように複数個のターゲットを用い
たスパッタリングにより比較釣部#LIこBi系酸化物
の周期的積層膜が作製可能となる。There is a method of layering different materials using sputter deposition.
There is a method of periodically controlling the discharge position of one sputtering target with a composition distribution, but this can be achieved relatively easily by using a method of sputtering multiple targets with different compositions. In this case, a periodic laminated film can be produced by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and opening and closing it periodically. It can also be manufactured by a method in which the substrate is moved periodically and moved over each target. When laser sputtering or ion beam sputtering is used, periodic laminated films can be realized by periodically moving a plurality of targets and periodically changing the targets irradiated with the beam. In this manner, by sputtering using a plurality of targets, a periodic laminated film of Bi-based oxide can be produced in the comparison section #LI.
以下本発明の内容をさらに深く理解されるために、具体
的な実施例をいくつか示す。In order to further understand the content of the present invention, some specific examples will be shown below.
(実施例1)
Bi、CaCu、Sr2 Cu2個の計・1個のターゲ
ット1−4を用い、第2図に示すように配置させた。(Example 1) A total of one target 1-4, consisting of Bi, CaCu, and two Sr2Cu, was used and arranged as shown in FIG. 2.
すなわち、MgO基体21に焦点を結ぶように各ターゲ
ットが約30°傾いて設置されている。That is, each target is installed at an angle of approximately 30° so as to focus on the MgO substrate 21.
ターゲットの前方には回転するシャッター22があり、
その中に設けられたスリット23の回転により、B i
→S r2Cu→CaCu−8r2(::u−”Biの
サイクルでスパッタ蒸着が行なわれる。基体21をヒー
ター24で約650℃に加熱し、アルボ〕/・亜酸化窒
素(5:1)混合雰囲気3Paのガス中でターゲットの
スパッタリングを行なった。各ターゲットのスパッタ電
流を、Bi・30mA、S r2 Cu : 50mA
、CaCu : 250mAとし、シャッタの回転周期
を10分間として周期的積層を行なったところ、100
に以上の臨界温度を持つ相を作製する、二とが出来た。There is a rotating shutter 22 in front of the target,
By rotating the slit 23 provided therein, B i
→S r2Cu → CaCu-8r2(::u-"Bi) Sputter deposition is performed in a cycle. The substrate 21 is heated to about 650°C with a heater 24, and a mixed atmosphere of albo]/nitrous oxide (5:1) is applied. Target sputtering was performed in a gas of 3 Pa. The sputtering current for each target was Bi: 30 mA, S r2 Cu: 50 mA.
, CaCu: When periodic lamination was carried out at 250 mA and a shutter rotation period of 10 minutes, 100
We were able to create a phase with a critical temperature higher than .
約10時間の蒸着により100OA程度の薄膜が作製さ
れ、組成はBi :Sr:Ca:Cu=2:2:2;3
となっていた。このままの状態でもこの薄膜は100
K 以上の超電導転移を示したが、さらに、酸素中で8
55℃、1時間の熱処理を行なうと非常に再現性良<1
00K以−Fの臨界温度を達成することができた。Bi
系物質の100に以との臨界温度を持つ相の結晶構造は
まだよ(解かっていないが、金属元素がB i −S
r−Cu−Ca−Cu−Ca−Cu−3r−B iの順
序で並んだ酸化物の層から成り立っているとも]われで
おり、本発明の製造方法がこの構造を作るのに非常に役
立っているのではないかと考えられる。A thin film of about 100 OA was produced by vapor deposition for about 10 hours, and the composition was Bi:Sr:Ca:Cu=2:2:2;3
It became. Even in this state, this thin film has a 100%
It showed a superconducting transition of K or more, but in addition, 8
Very good reproducibility <1 after heat treatment at 55℃ for 1 hour
It was possible to achieve a critical temperature of 00K or higher. Bi
The crystal structure of a phase with a critical temperature of 100°C or higher in a system material is still unknown (although it is not understood,
It is also said that it consists of layers of oxides arranged in the order r-Cu-Ca-Cu-Ca-Cu-3r-Bi], and the manufacturing method of the present invention is very useful for creating this structure. It is thought that this may be the case.
(実施例2)
Bi、Sr2個、Ca2個、Cu3個計8個のターゲッ
トを第3図に示すように真空容器31の内側周辺に配置
した。λ□1 g O基体21およびヒーター24は、
容器の中心32の回りを回転できる機構となっている。(Example 2) A total of eight targets, including two targets of Bi, two Sr targets, two targets of Ca, and three targets of Cu, were arranged around the inside of a vacuum vessel 31 as shown in FIG. λ□1 g O base 21 and heater 24 are
It has a mechanism that allows it to rotate around the center 32 of the container.
このように基体を回転させつつスパッタ蒸着を行なうと
、B i−3r −CIJCa−Cu−Ca−Cu−8
r−B iの順序で積層構造が作製される。アルゴン・
亜酸化窒素(5:1)3Paのガス中でスパッタリング
を行ない、各ターゲットの蒸発量を適宜に設定したとこ
ろ、基板温度550℃〜850℃で再現性良く、100
に以上の臨界温度を持つ相が作製できた。When sputter deposition is performed while rotating the substrate in this way, B i-3r -CIJCa-Cu-Ca-Cu-8
A stacked structure is produced in the order r-B i. Argon·
Sputtering was carried out in a nitrous oxide (5:1) gas of 3 Pa, and the amount of evaporation of each target was set appropriately.
We were able to create a phase with a critical temperature higher than .
この方法は基体の数を円周上で増やすことができ、大量
の薄膜超電導体の作製に非常に有効であると考えられる
。This method allows the number of substrates to be increased around the circumference and is considered to be very effective for producing a large amount of thin film superconductors.
発明の効果
以上のように本発明の薄膜超電導体の製造方法は、10
0K以上の超電導臨界温度を持つBi系酸化物超電導薄
膜を低温で再現性良く作製する方法を提供するものであ
り、エレクトロニクス素子等への応用など本発明の工業
的価値は高い。Effects of the Invention As described above, the method for producing a thin film superconductor of the present invention has a
The present invention provides a method for producing a Bi-based oxide superconducting thin film having a superconducting critical temperature of 0 K or more at low temperatures with good reproducibility, and the present invention has high industrial value such as application to electronic devices and the like.
第1図は本発明の基の発見となった基体温度と薄膜のX
線回折パターンの関係を示1図、第2図、第3図は本発
明の実施例におけるl1嗅の製苛の概略図である。
21・・・・・・MgO基体、22・・・・・・シャッ
ター23・・・・・・スリット、24・・・・・・ヒー
ター代理人の氏名 弁理士 粟野重孝 はが1名w
JO
2θ (度つFigure 1 shows the substrate temperature and the X of the thin film, which led to the discovery of the present invention.
1, 2, and 3 are schematic diagrams of the preparation of the l1 olfactory in an example of the present invention. 21...MgO substrate, 22...Shutter 23...Slit, 24...Name of heater agent Patent attorney Shigetaka Awano 1 person lol
JO 2θ
Claims (2)
グ法で、スパッタリングガスとして少なくとも亜酸化窒
素ガスを含むガスを用いて、少なくともビスマスを含む
物質と、少なくとも銅およびアルカリ土類(IIa族)を
含む物質とを、周期的に積層させて超電導薄膜を形成す
ることを特徴とする薄膜超電導体の製造方法。 ここでアルカリ土類は、IIa族元素のうちの少なくとも
一種あるいは二種以上の元素を示す。(1) Sputtering a substance containing at least bismuth and at least copper and alkaline earth (group IIa) onto a substrate set at 850°C or lower using a sputtering gas containing at least nitrous oxide gas. 1. A method for producing a thin film superconductor, the method comprising periodically stacking a superconducting material and a superconducting thin film. Here, alkaline earth refers to at least one or two or more elements of group IIa elements.
組成の複数個のターゲットのスパッタリングで行なうこ
とを特徴とする特許請求の範囲第1項記載の薄膜超電導
体の製造方法。(2) The method for producing a thin film superconductor according to claim 1, wherein the laminated superconducting thin film is formed by sputtering a plurality of targets having at least two types of compositions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63299854A JPH02145761A (en) | 1988-11-28 | 1988-11-28 | Manufacture of thin superconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63299854A JPH02145761A (en) | 1988-11-28 | 1988-11-28 | Manufacture of thin superconductor film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02145761A true JPH02145761A (en) | 1990-06-05 |
Family
ID=17877750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63299854A Pending JPH02145761A (en) | 1988-11-28 | 1988-11-28 | Manufacture of thin superconductor film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02145761A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217461A (en) * | 1989-02-17 | 1990-08-30 | Matsushita Electric Ind Co Ltd | Production of thin oxide film |
WO2004058638A1 (en) * | 2002-12-23 | 2004-07-15 | Universität Tübingen | Method for the production of nitrate-containing precursors for metal oxides and oxocuptrate superconductors |
EP2244298A2 (en) | 2009-04-20 | 2010-10-27 | Unisantis Electronics (Japan) Ltd. | Semiconductor device and manufacturing method thereof |
US8697511B2 (en) | 2012-05-18 | 2014-04-15 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device |
US8759178B2 (en) | 2011-11-09 | 2014-06-24 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing semiconductor device and semiconductor device |
US8829601B2 (en) | 2012-05-17 | 2014-09-09 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US8877578B2 (en) | 2012-05-18 | 2014-11-04 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device |
US9012981B2 (en) | 2012-05-17 | 2015-04-21 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9166043B2 (en) | 2012-05-17 | 2015-10-20 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US10438836B2 (en) | 2011-11-09 | 2019-10-08 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing a semiconductor device |
-
1988
- 1988-11-28 JP JP63299854A patent/JPH02145761A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02217461A (en) * | 1989-02-17 | 1990-08-30 | Matsushita Electric Ind Co Ltd | Production of thin oxide film |
WO2004058638A1 (en) * | 2002-12-23 | 2004-07-15 | Universität Tübingen | Method for the production of nitrate-containing precursors for metal oxides and oxocuptrate superconductors |
EP2244298A2 (en) | 2009-04-20 | 2010-10-27 | Unisantis Electronics (Japan) Ltd. | Semiconductor device and manufacturing method thereof |
US8080458B2 (en) | 2009-04-20 | 2011-12-20 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device and manufacturing method thereof |
US8519475B2 (en) | 2009-04-20 | 2013-08-27 | Unisantis Electronics Singapore Pte Ltd. | Semiconductor device |
US9614075B2 (en) | 2011-11-09 | 2017-04-04 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US10438836B2 (en) | 2011-11-09 | 2019-10-08 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing a semiconductor device |
US8759178B2 (en) | 2011-11-09 | 2014-06-24 | Unisantis Electronics Singapore Pte. Ltd. | Method for manufacturing semiconductor device and semiconductor device |
US9691896B2 (en) | 2011-11-09 | 2017-06-27 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US8829601B2 (en) | 2012-05-17 | 2014-09-09 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US8890236B1 (en) | 2012-05-17 | 2014-11-18 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9012981B2 (en) | 2012-05-17 | 2015-04-21 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9299786B2 (en) | 2012-05-17 | 2016-03-29 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9048315B2 (en) | 2012-05-17 | 2015-06-02 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9166043B2 (en) | 2012-05-17 | 2015-10-20 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9153660B2 (en) | 2012-05-17 | 2015-10-06 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9054085B2 (en) | 2012-05-18 | 2015-06-09 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9202922B2 (en) | 2012-05-18 | 2015-12-01 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9246001B2 (en) | 2012-05-18 | 2016-01-26 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9252276B2 (en) | 2012-05-18 | 2016-02-02 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9029923B2 (en) | 2012-05-18 | 2015-05-12 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9406768B2 (en) | 2012-05-18 | 2016-08-02 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9437732B2 (en) | 2012-05-18 | 2016-09-06 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9466683B2 (en) | 2012-05-18 | 2016-10-11 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9601618B2 (en) | 2012-05-18 | 2017-03-21 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US8877578B2 (en) | 2012-05-18 | 2014-11-04 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device |
US9666728B2 (en) | 2012-05-18 | 2017-05-30 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US9666712B2 (en) | 2012-05-18 | 2017-05-30 | Unisantis Electronics Singapore Pte. Ltd. | Semiconductor device |
US8823066B2 (en) | 2012-05-18 | 2014-09-02 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device |
US8697511B2 (en) | 2012-05-18 | 2014-04-15 | Unisantis Electronics Singapore Pte. Ltd. | Method for producing semiconductor device and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02145761A (en) | Manufacture of thin superconductor film | |
JP3037514B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2669052B2 (en) | Oxide superconducting thin film and method for producing the same | |
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH02122065A (en) | Production of thin film type superconductor | |
JP2502744B2 (en) | Method of manufacturing thin film super-electric body | |
JP2558880B2 (en) | Method for producing copper oxide thin film | |
JP2733368B2 (en) | Superconducting thin film and method for producing the same | |
JP2502743B2 (en) | Method of manufacturing thin film superconductor | |
EP0640994B1 (en) | Superconductor thin film and manufacturing method | |
JPH05170448A (en) | Production of thin ceramic film | |
JP3478543B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH0316920A (en) | Oxide superconductive thin film and its production | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH02310361A (en) | Production of thin-film superconductor | |
JPH02122066A (en) | Production of thin film type superconductor | |
JPH0238313A (en) | Production of thin film superconductor | |
JPH0822740B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH01105416A (en) | Manufacture of thin film superconductor | |
JPH042617A (en) | Oxide superconducting thin film and production thereof | |
JPH0316919A (en) | Superconductive thin film and its production | |
JPH03170333A (en) | Thin filmy super conductor and its preparation | |
JPH04362016A (en) | Production of ceramic thin film | |
JPH01307283A (en) | Manufacture of superconductive thin-film | |
JPH05194095A (en) | Production of thin-film electric conductor |