JPH04116188A - Production of m-hydroxybenzyl alcohol - Google Patents
Production of m-hydroxybenzyl alcoholInfo
- Publication number
- JPH04116188A JPH04116188A JP2230642A JP23064290A JPH04116188A JP H04116188 A JPH04116188 A JP H04116188A JP 2230642 A JP2230642 A JP 2230642A JP 23064290 A JP23064290 A JP 23064290A JP H04116188 A JPH04116188 A JP H04116188A
- Authority
- JP
- Japan
- Prior art keywords
- hba
- hboh
- current efficiency
- electrolytic
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKVJCVWFVRATSG-UHFFFAOYSA-N 3-hydroxybenzyl alcohol Chemical compound OCC1=CC=CC(O)=C1 OKVJCVWFVRATSG-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000002378 acidificating effect Effects 0.000 claims abstract description 11
- DNUYOWCKBJFOGS-UHFFFAOYSA-N 2-[[10-(2,2-dicarboxyethyl)anthracen-9-yl]methyl]propanedioic acid Chemical compound C1=CC=C2C(CC(C(=O)O)C(O)=O)=C(C=CC=C3)C3=C(CC(C(O)=O)C(O)=O)C2=C1 DNUYOWCKBJFOGS-UHFFFAOYSA-N 0.000 claims abstract description 10
- IJFXRHURBJZNAO-UHFFFAOYSA-N meta--hydroxybenzoic acid Natural products OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000006722 reduction reaction Methods 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 230000005611 electricity Effects 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- CQRYARSYNCAZFO-UHFFFAOYSA-N o-hydroxybenzyl alcohol Natural products OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 claims 2
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 12
- 238000005868 electrolysis reaction Methods 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 6
- 150000003839 salts Chemical class 0.000 abstract description 5
- 239000007858 starting material Substances 0.000 abstract description 4
- 239000003513 alkali Substances 0.000 abstract description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract 2
- 229910000029 sodium carbonate Inorganic materials 0.000 abstract 1
- 235000017550 sodium carbonate Nutrition 0.000 abstract 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- MJGFBOZCAJSGQW-UHFFFAOYSA-N mercury sodium Chemical compound [Na].[Hg] MJGFBOZCAJSGQW-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001023 sodium amalgam Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- ZEVCJZRMCOYJSP-UHFFFAOYSA-N sodium;2-(dithiocarboxyamino)ethylcarbamodithioic acid Chemical compound [Na+].SC(=S)NCCNC(S)=S ZEVCJZRMCOYJSP-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はm−ヒドロキシベンジルアルコール(以下、5
−HBOHと略記する)の製造法に関する。更に詳しく
はm−ヒドロキシ安息香酸(以下、+m−HBAと略記
スる)とm−HBOHの分離に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to m-hydroxybenzyl alcohol (hereinafter referred to as 5
-Abbreviated as HBOH). More specifically, it relates to the separation of m-hydroxybenzoic acid (hereinafter abbreviated as +m-HBA) and m-HBOH.
m−HBOHは工薬、あるいは農薬の中間体として有用
な化合物であるが、現状では安価な製造方法による工業
的供給には至っていない。m-HBOH is a compound useful as an intermediate for industrial medicines or agricultural chemicals, but at present it has not been industrially supplied by inexpensive production methods.
m−HBOHの合成法としては、I−クレゾールを原料
とする発酵法、■−ヒドロキシベンズアルデヒドを原料
とするナトリウム、アマルガム、NaBH4、LiAe
Ha等による還元及び水素添加反応等があるが、収率的
に不十分であったりして、実用化には至っていない、ま
た、水素添加反応は高温高圧下の反応であり、工業的製
造方法には種々問題がある。Methods for synthesizing m-HBOH include fermentation using I-cresol as a raw material, ■ sodium, amalgam, NaBH4, and LiAe using hydroxybenzaldehyde as a raw material.
There are reduction reactions and hydrogenation reactions using Ha, etc., but they have not been put into practical use due to insufficient yields.Also, hydrogenation reactions are reactions at high temperatures and high pressures, and are not suitable for industrial production methods. There are various problems.
また、5−HBAを原料とする方法についてはナトリウ
ムアマルガム及び電解還元法(Beilstein 3
81752)が提案されているが、収率的にも低く工業
的方法にはなり得なかった。In addition, regarding the method using 5-HBA as a raw material, sodium amalgam and electrolytic reduction method (Beilstein 3
81752) has been proposed, but the yield was low and it could not be used as an industrial method.
本発明者らは、先にm−HBOHの製造方法について検
討し、m−HBAの電解還元を水溶液、あるいは水溶性
有機溶媒中で行う方法(特開昭6O−234987)、
更に、陰極液中に支持電解質を添加する方法(特開昭6
O−243293)で+1−HBOHを高収率で得る方
法をすでに見出している。The present inventors first investigated the production method of m-HBOH, and found a method in which m-HBA is electrolytically reduced in an aqueous solution or a water-soluble organic solvent (JP-A-6O-234987),
Furthermore, a method of adding a supporting electrolyte to the catholyte (Japanese Unexamined Patent Publication No. 6
We have already found a method to obtain +1-HBOH in high yield with 0-243293).
本発明の電解還元反応は通常、陽・陰両極を分離した電
解槽を用い、陰極側で反応を行う、しかし、本電解還元
反応を完結するには基質濃度の減少する後半の電流効率
が低下するため、理論通電量(4Fr/mole)のお
よそ3倍の通電量が必要となる。即ち、本電解反応をよ
り効果的に実施するためには電流効率の良好な前半で電
解を止める電解通電量の低減が必要である。The electrolytic reduction reaction of the present invention usually uses an electrolytic cell with separate positive and negative electrodes, and the reaction is carried out on the cathode side.However, in order to complete the electrolytic reduction reaction, the current efficiency decreases in the latter half when the substrate concentration decreases. Therefore, an amount of current approximately three times the theoretical amount of current (4Fr/mole) is required. That is, in order to carry out the present electrolytic reaction more effectively, it is necessary to reduce the amount of electrolytic current applied so as to stop electrolysis in the first half when the current efficiency is good.
本発明の課題は通電量を低減することにより生じる未反
応原料のIt−)IBftと生成物のm−)IBOHの
効率的な分離方法を提供することである。An object of the present invention is to provide an efficient method for separating It-)IBft, an unreacted raw material, and m-)IBOH, a product, by reducing the amount of current applied.
〔課題を解決するための手段]
本発明者らは上記課題を解決するために鋭意検討を行っ
た。[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above problems.
m−HBAの電解還元反応の理論通電量は4 Fr/m
olであるが、実際の電解による通電量と反応の転化率
および電流効率の関係は図−1に示すごとくである。即
ち、通電量2 Fr/+no+では転化率50%、電流
効率100%であるが、通電量4 Fr/n+olでは
転化率70%まで高められるが、電流効率は70%に低
下する。更に7 Fr/mo1通電すると転化率は90
%に達するが、電流効率は50%になる。この様に通電
量と転化率と電流効率の関係が明らかとなり、電流効率
をを向上させるには転化率を下げることが必須であるこ
とが判った。The theoretical amount of current for the electrolytic reduction reaction of m-HBA is 4 Fr/m
However, the relationship between the amount of current applied during actual electrolysis, the conversion rate of the reaction, and the current efficiency is as shown in Figure 1. That is, when the current flow amount is 2 Fr/+no+, the conversion rate is 50% and the current efficiency is 100%, but when the current flow amount is 4 Fr/n+ol, the conversion rate is increased to 70%, but the current efficiency decreases to 70%. When 7 Fr/mo1 current is applied, the conversion rate is 90
%, but the current efficiency is 50%. In this way, the relationship between the amount of current applied, the conversion rate, and the current efficiency has been clarified, and it has been found that it is essential to lower the conversion rate in order to improve the current efficiency.
更に、原料のm−HBAと生成物のm−HBOHの反応
混合液をpill製することによりm−HBAを塩とし
てm)IBOHと分離、回収することで電解通電量の低
減が可能であることを見出し、本発明を完成させるに至
った・
即ち、本発明は0l−1(BAを陽・陰極を分離した電
解槽を用いて陰極室で酸性水溶液中で電解還元反応し、
m−HBOIIを製造するに際し、箭電流効率を維持し
ている期間、通電後、未反応m−11BAを含む混合液
をpH6〜8に調製し生成物と出発原料を分離すること
を特徴とするm−HBOIIの製造法である。Furthermore, by preparing a reaction mixture of m-HBA as a raw material and m-HBOH as a product in a pill, it is possible to reduce the amount of electrolytic current applied by separating and recovering m-HBA as a salt from m)IBOH. That is, the present invention involves electrolytically reducing 0l-1 (BA in an acidic aqueous solution in a cathode chamber using an electrolytic cell with separate anodes and cathodes,
When producing m-HBOII, after applying electricity for a period of time while maintaining the current efficiency, the mixed solution containing unreacted m-11BA is adjusted to pH 6 to 8, and the product and the starting material are separated. This is a method for producing m-HBOII.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の方法において使用する酸性水溶液としては陰極
での電解還元反応に不活性な酸性物質であれば、特に限
定するものではないが、コスト的に通常鉱酸を用いるの
が望ましく、特に材質及び収率の点から硫酸が好ましい
鉱酸であり通常5〜30重量%の硫酸水溶液が用いられ
る。The acidic aqueous solution used in the method of the present invention is not particularly limited as long as it is an acidic substance that is inactive to the electrolytic reduction reaction at the cathode. From the viewpoint of yield, sulfuric acid is a preferred mineral acid, and a 5-30% by weight aqueous sulfuric acid solution is usually used.
m−HBAの酸性水溶液中の濃度は通常5〜20重量%
である。ii電解還元反応20〜70°C1好ましくは
40〜60°Cの温度範囲で実施する。又、電解還元反
応に用いる電極のうち陰極材料は水素過電圧の高いもの
、具体的には亜鉛、鉛、カドミウム、水銀が用いられる
。対する陽極については通常の電極であれば特に限定は
ないが、例えば鉛、カーボン、白金、DSE(Dime
nsinally 5table Electrde)
等が用いられる。The concentration of m-HBA in acidic aqueous solution is usually 5 to 20% by weight.
It is. ii Electrolytic reduction reaction 20-70°C1 Preferably carried out at a temperature range of 40-60°C. Further, among the electrodes used in the electrolytic reduction reaction, the cathode material is one having a high hydrogen overvoltage, specifically, zinc, lead, cadmium, or mercury. There are no particular limitations on the anode as long as it is a normal electrode, but examples include lead, carbon, platinum, DSE (Dime
nsinally 5table Electrde)
etc. are used.
電解槽は陽極室、陰極室を隔離することが必要である。It is necessary to separate the anode chamber and cathode chamber of the electrolytic cell.
隔離する隔膜の材質としては、例えばイオン交換膜、ア
スベスト、セラミックス、シンクタートグラス等が挙げ
られるが、好ましくはイオン交換膜が使用される。Examples of the material for the separating diaphragm include ion exchange membranes, asbestos, ceramics, and cinctate glass, but ion exchange membranes are preferably used.
本発明の電解還元反応において、電流密度は5〜30A
/dTat、好ましくは10〜2OA/dm”である。In the electrolytic reduction reaction of the present invention, the current density is 5 to 30 A.
/dTat, preferably 10 to 2 OA/dm''.
即ち、本発明はm−HBAを陽・陰極を分離した電解槽
を用いて、陰極室で酸性水溶液中電解還元するに際し、
高電流効率を維持している間、具体的には電流効率50
%以上、好ましくは70%以上を達成するのに相当する
電気量を通電後、未反応m−1(BAを含む混合液をp
HtWJr製により生成物と出発原料を分離する…−R
BOHの製造法である。That is, in the present invention, when m-HBA is electrolytically reduced in an acidic aqueous solution in a cathode chamber using an electrolytic cell in which an anode and a cathode are separated,
While maintaining high current efficiency, specifically current efficiency 50
% or more, preferably 70% or more, after passing the unreacted m-1 (mixture containing BA) to p
Separate the product and starting materials using HtWJr...-R
This is a method for producing BOH.
本発明の具体的な実施態様は次のとおりである。Specific embodiments of the present invention are as follows.
陽・陰両極を隔離した電解槽を用い、両極に所定濃度の
硫酸水溶液を装入する。電解槽を所定の温度に加熱し、
直流の定電流を通電する。原料のm−)18^は陰極室
中に一括、分割又は連続的に添加する。所定時間、通電
し電解還元反応を行う。An electrolytic cell with isolated positive and negative electrodes is used, and a sulfuric acid aqueous solution of a predetermined concentration is charged to both electrodes. Heat the electrolytic cell to a predetermined temperature,
A constant DC current is applied. The raw material m-)18^ is added all at once, in portions, or continuously into the cathode chamber. Electricity is applied for a predetermined period of time to perform an electrolytic reduction reaction.
所定時間通電後、陰極室の未反応m−11BAとm −
tl BOHを含む酸性の混合液に例えば、水酸化ナト
リウム、炭酸水素ナトリウム等のアルカリを添加しpH
6〜8、好ましくはpH6,5〜7に調製する0図−2
に示したTI−HBA 、 m−IIBOHのpt1曲
線からも明らかなように、反応混合液のpHを6未満と
するとm−1(BA、m−HBOHの水と有機溶媒の分
配比が小となり抽出が困難となる。また、pl+が8を
越えるとm−HBA と共にm−HBOHも塩を形成し
水層に熔解し分離が困難となり好ましくない。未反応m
−HBAは金属塩として水層に溶解しm−HBOHはフ
リーの状態になる。有機溶媒で生成物のm−118OH
を抽出する。その結果、m−NBAの塩は水相に、+n
−1(Boilは有機相に分離できる。水相は再度酸性
にすることでm−flBAが回収され次回の電解還元反
応に使用することができる。After energizing for a predetermined time, unreacted m-11BA and m − in the cathode chamber
For example, add an alkali such as sodium hydroxide or sodium hydrogen carbonate to an acidic mixture containing BOH to adjust the pH.
6 to 8, preferably pH 6, 5 to 7 Figure-2
As is clear from the pt1 curves of TI-HBA and m-IIBOH shown in , when the pH of the reaction mixture is less than 6, the distribution ratio of water and organic solvent in m-1(BA, m-HBOH becomes small). Extraction becomes difficult. In addition, when pl+ exceeds 8, m-HBOH and m-HBOH also form salts and dissolve in the aqueous layer, making separation difficult, which is not preferable.
-HBA is dissolved in the aqueous layer as a metal salt, and m-HBOH becomes free. m-118OH of the product in organic solvent
Extract. As a result, the salt of m-NBA is in the aqueous phase and +n
-1 (Boil can be separated into an organic phase. By making the aqueous phase acidic again, m-flBA can be recovered and used for the next electrolytic reduction reaction.
また有機相は有機溶媒を留去してm−HBOHを得るこ
とができる。Moreover, m-HBOH can be obtained from the organic phase by distilling off the organic solvent.
m−HBAを酸性水溶液中で電解還元してm−IIBA
を得る場合、理論通電量に対して過大な通電量が必要で
あり、電流効率の低下を招き問題である。m-HBA is electrolytically reduced in an acidic aqueous solution to produce m-IIBA.
In order to obtain this, it is necessary to apply an excessive amount of current compared to the theoretical amount of current, which leads to a decrease in current efficiency, which is a problem.
本発明の方法では高電流効率の期間内通電後、未反応原
料と電解性成物の混合液のpuを調製することにより簡
単にff1−HBAとm−HBOHを分離、回収するこ
とができ、工業的に価値あるものである。In the method of the present invention, after applying current within a period of high current efficiency, ff1-HBA and m-HBOH can be easily separated and recovered by preparing a pu of a mixed solution of unreacted raw materials and electrolytic components. It is industrially valuable.
〔実施例] 以下、実施例により本発明の方法を詳しく説明する。〔Example] Hereinafter, the method of the present invention will be explained in detail with reference to Examples.
実施例1
両極とも300dの溶量を有し、隔膜としてセレミオン
(旭硝子輛製) CMVで隔離されたH型のセルを使用
して、両極室に10%の硫酸水溶液を200dづつ仕込
む、陰極として25c++1の鉛板、陽極として25c
jの白金板を用いた。!解セルを60°Cに保ちつつ、
4Aの直流定電流を通電しつつ、m−HBA 25gを
マイクロフィーダーを用いて6.4 g /Hrの割合
で陰極中に添加し、3.9時間でw−NBAを全量添加
した。Example 1 Both electrodes have a solubility of 300 d, and an H-type cell isolated by Selemion (manufactured by Asahi Glass Co., Ltd.) CMV is used as a diaphragm, and 200 d of 10% sulfuric acid aqueous solution is charged into both electrode chambers, each serving as a cathode. 25c++1 lead plate, 25c as anode
J platinum plate was used. ! While keeping the solution cell at 60°C,
While applying a constant DC current of 4 A, 25 g of m-HBA was added to the cathode at a rate of 6.4 g/Hr using a microfeeder, and the entire amount of w-NBA was added in 3.9 hours.
この後さらに電解を1時間継続した(4.OFr/mo
le)。After this, electrolysis was further continued for 1 hour (4.OFr/mo
le).
電解終了後、陰極液は抜き取り98%NaOH18,3
gを加えてp)l−7に調製した。つぎにエーテルで抽
出し、エーテル留去後16.7gの結晶を得た。CC分
析の結果、m−HBOH純度98%、単離収率73%(
消費m−HB^に対して97%)であった、また抽出残
液をHLC分析した結果、m−HBA転化率75%、電
解電流効率は75%であった。After electrolysis, the catholyte is extracted and replaced with 98% NaOH18,3
g was added to prepare p)l-7. Next, the mixture was extracted with ether, and after distilling off the ether, 16.7 g of crystals were obtained. As a result of CC analysis, the purity of m-HBOH was 98%, and the isolation yield was 73% (
As a result of HLC analysis of the extraction residue, the m-HBA conversion rate was 75% and the electrolytic current efficiency was 75%.
実施例2
実施例1と同様の電解セルの両極に10%硫酸水溶液を
200d仕込む。陰極として25cJの鉛板、陽極とし
て25c+aの白金板を用いた。電解セルを50’Cに
保ちつつ、4Aの直流電流を通電しつつ、m−HBA2
5gをマイクロフィーダーを用いて6.4 g /Hr
の割合で陰極中に添加し、4.9時間でm−NBAを全
量添加した。この後さらに電解を1.1時間継続した(
5Fr/mole)、電解終了後、陰極液は抜き取り9
8%NaOH17,8gを加えてpl!=7に調製した
。つぎにエーテルで抽出し、エーテル留去後17.9
gの結晶を得た。CC分析の結果、m−HBOH純度9
7%、単離収率78%(消費m−HBAに対して98%
)であった、また抽出残液をHLC分析した結果、m−
HBA転化率80%、電解電流効率は64%であった。Example 2 200 d of 10% sulfuric acid aqueous solution was charged to both electrodes of an electrolytic cell similar to Example 1. A 25cJ lead plate was used as the cathode, and a 25c+a platinum plate was used as the anode. m-HBA2 while keeping the electrolytic cell at 50'C and applying 4A of DC current.
5g using a micro feeder at 6.4g/Hr
The total amount of m-NBA was added in 4.9 hours. After this, electrolysis was continued for another 1.1 hours (
5Fr/mole), after electrolysis, the catholyte is drained 9
Add 17.8g of 8% NaOH and pl! =7. Next, extract with ether, and after distilling off the ether, 17.9
Crystals of g were obtained. As a result of CC analysis, m-HBOH purity was 9.
7%, isolated yield 78% (98% based on consumed m-HBA)
), and as a result of HLC analysis of the extraction residue, m-
The HBA conversion rate was 80%, and the electrolysis current efficiency was 64%.
比較例1
両極とも300Inlの溶量を有し、隔膜としてセレミ
オン(旭硝子■製) CMVで隔離されたH型のセルを
使用して、両極室に10%の硫酸水溶液を200−づつ
仕込む、陰極として25cnの鉛板、陽極として25c
fflの白金板を用いた。1:1解セルを60’Cに保
ちつつ、4Aの直流電流を通電しつつ、m−HBA25
gをマイクロフィーダーを用いて6.4 g /Hr
の割合で陰極中に添加し、4.9時間でm−)18M全
量を添加した。Comparative Example 1 Both electrodes have a solubility of 300 Inl, and an H-type cell isolated by Selemion (manufactured by Asahi Glass) CMV is used as a diaphragm, and a 10% sulfuric acid aqueous solution is charged into both electrode chambers at a rate of 200 Inl. 25cn lead plate as anode, 25cn as anode
ffl platinum plate was used. While maintaining the 1:1 solution cell at 60'C and applying 4A of DC current, m-HBA25
g using a microfeeder at 6.4 g/Hr
The total amount of m-)18M was added in 4.9 hours.
この後さらに電解を9.7時間継続した(12 Fr/
+note)。After this, electrolysis was further continued for 9.7 hours (12 Fr/
+note).
電解終了後、陰極液は抜き取り98%NaOH16,7
gを加えてpH=7に中和した。つぎにエーテルで抽出
し、エーテル留去後21.3 gの結晶を得た。CC分
析の結果、m−HBO)I純度98%、単離収率93%
、消費鋼HBAに対し95%であった。また抽出残液を
HLC分析の結果、m−HBAの転化率98%、電解電
流効率は33%であった。After electrolysis is complete, the catholyte is extracted and replaced with 98% NaOH16,7
g was added to neutralize to pH=7. Next, the mixture was extracted with ether, and after distilling off the ether, 21.3 g of crystals were obtained. As a result of CC analysis, m-HBO)I purity is 98%, isolation yield is 93%.
, 95% of the consumed steel HBA. Further, as a result of HLC analysis of the extraction residual liquid, the conversion rate of m-HBA was 98%, and the electrolytic current efficiency was 33%.
比較例2 実施例1と同様の反応を行った。Comparative example 2 The same reaction as in Example 1 was carried out.
反応終了後、陰極液を抜取98%Na0I(16,7g
を加えてpH4に調製した。つぎにエーテルで抽出し、
エーテルを留去して18.8gの結晶を得た。After the reaction was completed, the catholyte was extracted and 98% Na0I (16.7 g
was added to adjust the pH to 4. Next, extract with ether,
Ether was distilled off to obtain 18.8 g of crystals.
CC分析の結果、m−HBOI(87%、m−HBAI
I%、単離収率73%、消費m−NBAに対し97%で
あった。抽出残液をHLCで分析した結果、残存5−H
BAは4.2gであった。As a result of CC analysis, m-HBOI (87%, m-HBAI
I%, isolated yield was 73%, 97% based on consumed m-NBA. As a result of HLC analysis of the extraction residue, residual 5-H
BA was 4.2g.
比較例3 実施例2と同様の反応を行った。Comparative example 3 The same reaction as in Example 2 was carried out.
反応終了後、陰極液を抜取98%NaOH19,1gを
加えてpH10に調製した。つぎにエーテルで抽出し、
エーテルを留去して16.1gの結晶を得た。After the reaction was completed, the catholyte was extracted and adjusted to pH 10 by adding 19.1 g of 98% NaOH. Next, extract with ether,
Ether was distilled off to obtain 16.1 g of crystals.
CC分析の結果、m4BOl(純度99%、単離収率7
1%、消費m−HB’Aに対し89%であった。抽出残
液をHLCで分析した結果、残存m−HBA5g、m−
HBO)11.6gであった。As a result of CC analysis, m4BOl (purity 99%, isolation yield 7
1%, and 89% relative to the consumed m-HB'A. As a result of HLC analysis of the extraction residue, 5 g of residual m-HBA, m-
HBO) was 11.6 g.
実施例からも明らかな様にm−HBAの電解還元による
m−HBOHの製造において、電解反応液のpHtFI
製により未反応an−HBAとm−HBOHの分離が可
能となった。即ち、本発明以前は理論通電量以上の過大
な電力を要し、電解還元プロセスとしての電流効率は著
しく低かった。しかし、pH1!製により有効な分離法
が確立されたので電流効率の向上、及び反応時間短縮に
よる容積効率の向上が可能となった。As is clear from the examples, in the production of m-HBOH by electrolytic reduction of m-HBA, the pHtFI of the electrolytic reaction solution
This method made it possible to separate unreacted an-HBA and m-HBOH. That is, prior to the present invention, an excessive amount of electric power exceeding the theoretical amount of current was required, and the current efficiency as an electrolytic reduction process was extremely low. However, pH1! Since an effective separation method has been established by manufacturing, it has become possible to improve current efficiency and improve volumetric efficiency by shortening reaction time.
第1図はm−H’BAの通電量に対する転化率及び電流
効率を示す。FIG. 1 shows the conversion rate and current efficiency of m-H'BA with respect to the amount of current applied.
Claims (1)
槽を用い陰極室で酸性水溶液中、電解還元反応し、m−
ヒドロキシベンジルアルコールを製造するに際し、高電
流効率を維持している期間、通電後、未反応m−ヒドロ
キシ安息香酸を含む混合液をpH6〜8に調製し、m−
ヒドロキシベンジルアルコールとm−ヒドロキシ安息香
酸を分離することを特徴とするm−ヒドロキシベンジル
アルコールの製造法。1. Electrolytic reduction reaction of m-hydroxybenzoic acid is carried out in an acidic aqueous solution in the cathode chamber using an electrolytic cell with separated anode and cathode, and m-
When producing hydroxybenzyl alcohol, after applying electricity for a period of time while maintaining high current efficiency, a mixed solution containing unreacted m-hydroxybenzoic acid is adjusted to pH 6 to 8, and m-
A method for producing m-hydroxybenzyl alcohol, which comprises separating hydroxybenzyl alcohol and m-hydroxybenzoic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2230642A JP2902755B2 (en) | 1990-09-03 | 1990-09-03 | Method for producing m-hydroxybenzyl alcohol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2230642A JP2902755B2 (en) | 1990-09-03 | 1990-09-03 | Method for producing m-hydroxybenzyl alcohol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04116188A true JPH04116188A (en) | 1992-04-16 |
JP2902755B2 JP2902755B2 (en) | 1999-06-07 |
Family
ID=16910988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2230642A Expired - Lifetime JP2902755B2 (en) | 1990-09-03 | 1990-09-03 | Method for producing m-hydroxybenzyl alcohol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2902755B2 (en) |
-
1990
- 1990-09-03 JP JP2230642A patent/JP2902755B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2902755B2 (en) | 1999-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1321973C (en) | Method for producing high purity quaternary ammonium hydroxides | |
JP3793586B2 (en) | Process for producing high purity hydroxides and alkoxides | |
CA1335973C (en) | Process for preparing quaternary ammonium hydroxides | |
US4938854A (en) | Method for purifying quaternary ammonium hydroxides | |
JPS60243293A (en) | Manufacture of m-hydroxybenzyl alcohol | |
JPH04116188A (en) | Production of m-hydroxybenzyl alcohol | |
JPH0832655B2 (en) | Method for producing quinone compound | |
EP0228181B1 (en) | Process for producing m-hydroxybenzyl alcohol | |
JPS60234987A (en) | Manufacture of m-hydroxybenzyl alcohol | |
JP2622115B2 (en) | Method for producing benzyl alcohols | |
JPH0734275A (en) | Production of m-hydroxy benzyl alcohol | |
JPH03107490A (en) | Preparation of aminobenzyl alcohol | |
JPS63157891A (en) | Production of m-hydroxybenzyl alcohol | |
JPS597356B2 (en) | Method for producing 3-methyl-2-cyclopentenone | |
JPH0725715B2 (en) | Method for producing 3-hydroxybenzyl alcohol | |
JPH0143030B2 (en) | ||
JPS6347791B2 (en) | ||
JPH0718033B2 (en) | Process for producing 3-hydroxybenzyl alcohol | |
JPS63149389A (en) | Production of m-hydroxybenzyl alcohol | |
JPS62133093A (en) | Continuous production of m-hydroxybenzyl alcohol | |
JPH0676671B2 (en) | Method for producing m-hydroxybenzyl alcohol | |
JPH01157924A (en) | Production of bromofluoromethane | |
JPS63206489A (en) | Production of m-hydroxybenzyl alcohol by electrolysis | |
JPS63103093A (en) | Production of 3-hydroxybenzyl alcohol | |
JPS63192883A (en) | Production of m-substituted benzyl alcohol |