JPS63192883A - Production of m-substituted benzyl alcohol - Google Patents
Production of m-substituted benzyl alcoholInfo
- Publication number
- JPS63192883A JPS63192883A JP62023658A JP2365887A JPS63192883A JP S63192883 A JPS63192883 A JP S63192883A JP 62023658 A JP62023658 A JP 62023658A JP 2365887 A JP2365887 A JP 2365887A JP S63192883 A JPS63192883 A JP S63192883A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- soln
- benzyl alcohol
- formula
- substd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
意!上皇剋里公国
本発明は、m−置換ベンジルアルコールの製造法に関す
る。[Detailed description of the invention] Meaning! The present invention relates to a method for producing m-substituted benzyl alcohol.
更に詳しくは、本発明は電解還元方法により一般式(2
)
(式中R1は、ハロゲン原子で置換されてもよいフェニ
ル基又はアルキル基を表す、)
で表されるm−アルコキシベンジルアルコールまたはm
−フェノキシベンジルアルコール類を、相応する一般式
(1)
(R’ は一般式(2)のR1と同じであり、Rtは−
H1またはアルキル基)
で示されるm−置換安息香酸誘導体から収率よく得る新
規合成法に関する。More specifically, the present invention provides the general formula (2) by an electrolytic reduction method.
) (In the formula, R1 represents a phenyl group or an alkyl group which may be substituted with a halogen atom.)
-phenoxybenzyl alcohols according to the corresponding general formula (1) (R' is the same as R1 in the general formula (2), and Rt is -
The present invention relates to a novel synthetic method for obtaining a m-substituted benzoic acid derivative represented by H1 or an alkyl group in good yield.
上記式(2)で示されるm−H換ベンジルアルコール類
は医薬、農薬、工業薬品の中間体として有用な化合物で
ある。The m-H substituted benzyl alcohol represented by the above formula (2) is a compound useful as an intermediate for medicines, agricultural chemicals, and industrial chemicals.
従来の ′(び 日が7ンしようと るシ 占従来−最
式(2)で表される、例えばm−フェノキシベンジルア
ルコールの製造法としては、m−フェノキシトルエンを
ハロゲン化し、次いで加水分解することにより製造され
ている。しかしながらこの方法は、ハロゲン化の転化率
をあげれば、選択率が低下する。すなわち、転化率を維
持した工業的実施において副生物の生成はさけられず、
その分離、精製が必要である。The conventional method for producing m-phenoxybenzyl alcohol, for example, expressed by formula (2), is to halogenate m-phenoxytoluene and then hydrolyze it. However, in this method, if the conversion rate of halogenation is increased, the selectivity decreases.In other words, in industrial practice where the conversion rate is maintained, the production of by-products cannot be avoided.
It is necessary to separate and purify it.
更に次工程の加水分解も煩雑である。またm−フェノキ
シ安息香酸アルキルを水素添加する方法が提案(特開昭
60−214753 )されているが高温窩圧下の反応
であり、工業的製造法には種々問題がある。Furthermore, the next step of hydrolysis is also complicated. Furthermore, a method of hydrogenating alkyl m-phenoxybenzoate has been proposed (Japanese Patent Application Laid-Open No. 60-214753), but the reaction is carried out under pressure in a high-temperature oven, and there are various problems with the industrial production method.
また電解還元による方法も知られており、m −フェノ
キシ安息香酸をエタノール含を酸性水溶液中で電解還元
し、m−フェノキシベンジルアルコールを得る方法が提
案(シンセチック コミユニケイジョン 5ynthe
tic Co+w+wunication、11(6)
。Methods using electrolytic reduction are also known, and a method has been proposed in which m-phenoxybenzoic acid is electrolytically reduced in an acidic aqueous solution containing ethanol to obtain m-phenoxybenzyl alcohol (Synthetic Comunication 5ynthe
tic Co+w+wunication, 11(6)
.
439(1981) lされてい゛るが、電解還元反応
を工業化する上で重要な要因となる基質、濃度、電流効
率等については何ら記載がない。439 (1981), but there is no description of substrates, concentrations, current efficiency, etc., which are important factors in industrializing electrolytic reduction reactions.
該方法を本発明者らが追試したところ、m−フェノキシ
ベンジルアルコールを収率良く得るためには多量の電気
を通電する必要があり電流効率が低いことがわかった(
比較例2参照)。When the present inventors tried this method again, it was found that in order to obtain m-phenoxybenzyl alcohol in a good yield, it was necessary to apply a large amount of electricity, and the current efficiency was low (
(See Comparative Example 2).
また上記文献には、m−フェノキシ安息香酸以外のm−
アルコキシ安息香酸類の電解還元に関する記載はまった
くなく、これに関しても本発明者らは、上記文献の反応
条件に従い、電解還元反応を実施したところ、電流効率
は同様に低かった。Furthermore, the above-mentioned literature describes m- other than m-phenoxybenzoic acid.
There is no description whatsoever regarding the electrolytic reduction of alkoxybenzoic acids, and when the present inventors carried out an electrolytic reduction reaction in accordance with the reaction conditions of the above-mentioned document, the current efficiency was similarly low.
さらに特開昭60−234987には水素過電圧の高い
金属材料を陰極に用い、硫酸などの酸性水溶液中、好ま
しくはメタノールなどの水可性有N’18媒を共存させ
て、m−ヒドロキシ安息香酸あるいはm−ヒドロキシ安
息香酸のエステルを電解還元してm−ヒドロキシベンジ
ルアルコールを製造する方法は開示されている。しかし
ながら該方法を本発明に適用しても、前記文献と同様電
流効率が悪かった。Furthermore, in JP-A-60-234987, a metal material with high hydrogen overvoltage is used as a cathode, and m-hydroxybenzoic acid is Alternatively, a method for producing m-hydroxybenzyl alcohol by electrolytically reducing an ester of m-hydroxybenzoic acid has been disclosed. However, even when this method was applied to the present invention, the current efficiency was poor as in the above-mentioned literature.
すなわち、本発明のm−アルコキシ安息香酸の電解還元
反応はm−ヒドロキシ安息香酸の電解とはまったく異な
ったものであり、新たに反応条件を設計する必要があっ
た。That is, the electrolytic reduction reaction of m-alkoxybenzoic acid of the present invention is completely different from the electrolysis of m-hydroxybenzoic acid, and it was necessary to newly design reaction conditions.
例えば該特開昭60−234987方法では、原料のm
−ヒドロキシ安息香酸は、水に対する溶解度は低いが、
反応で逐次生成するm−ヒドロキシヘンシルアルコール
は水に高い溶解度を示すため、これとの相互溶解性を利
用できるので第4級アンモニウム塩は必ずしも必要では
ないが、本発明の電解反応においては、対象化合物をm
−ヒドロキシ化合物から本発明の式(1)及び式(2)
で示されるm−アルコキシ化合物に変えた場合、両者と
も水への溶解性が極端に悪くなり、反応がうまく進行し
ないことはわかった。For example, in the method of JP-A-60-234987, m
-Hydroxybenzoic acid has low solubility in water, but
Since m-hydroxyhensyl alcohol, which is sequentially produced in the reaction, exhibits high solubility in water, a quaternary ammonium salt is not necessarily required since mutual solubility with water can be utilized; however, in the electrolytic reaction of the present invention, target compound m
-Hydroxy compounds to the formulas (1) and (2) of the present invention
It has been found that when the m-alkoxy compounds shown in the following are used, the solubility in water of both becomes extremely poor, and the reaction does not proceed well.
−を ゛するための
本発明者らは上記課題を解決するために鋭意検討した結
果、強酸性水溶液中で、特定量の第4級アンモニウム塩
を共存させて電解還元を行えば、反応の電流効率が飛躍
的に向上することを見出し、本発明を完成した。The present inventors conducted intensive studies to solve the above problems, and found that if electrolytic reduction is carried out in a strongly acidic aqueous solution with a specific amount of quaternary ammonium salt coexisting, the reaction current will be reduced. They discovered that the efficiency was dramatically improved and completed the present invention.
すなわち、本発明の一般式(1)で表されるm−置換安
息香酸誘導体の電解還元は通常中央に隔膜を設け:、′
:陽極室、陰極室よりなる電解層を用い、陰極室中で反
応は行われるが、本発明はその際陰極液として強酸性水
溶液中に第4級アンモニウム塩を酸性水に対して3〜6
帽1%、好ましくは5〜30重量%共存させて電解を行
うm−置換ベンジルアルコールの製造方法である。That is, in the electrolytic reduction of the m-substituted benzoic acid derivative represented by the general formula (1) of the present invention, a diaphragm is usually provided in the center:
: An electrolytic layer consisting of an anode chamber and a cathode chamber is used, and the reaction is carried out in the cathode chamber. In this case, the present invention uses a quaternary ammonium salt in a strongly acidic aqueous solution as a catholyte at a concentration of 3 to 6
This is a method for producing m-substituted benzyl alcohol, in which electrolysis is carried out in the coexistence of 1%, preferably 5 to 30% by weight of m-substituted benzyl alcohol.
本発明において、強性水溶液を作るために添加する酸性
物質としては、陰極での電解反応に不活性な酸性物質で
あれば、特に限定するものではないが、コスト的に通常
硫酸、塩酸等の鉱酸を用いるのが望ましい。酸性水溶液
の濃度としては10〜10M量%で、強酸性、好ましく
はPill以下に調整して用いる。P)11以下では、
電流効率が芳干悪くなる。In the present invention, the acidic substance added to make the strong aqueous solution is not particularly limited as long as it is inert to the electrolytic reaction at the cathode, but from the viewpoint of cost, sulfuric acid, hydrochloric acid, etc. are usually used. Preferably, mineral acids are used. The concentration of the acidic aqueous solution is 10 to 10 M%, and is strongly acidic, preferably adjusted to below Pill level. P) Below 11,
Current efficiency deteriorates considerably.
本発明においてはその際、水可溶性有機溶媒を強酸水に
加えて混合ン容媒として使用してもよい。In the present invention, a water-soluble organic solvent may be added to the strong acid water and used as a mixing medium.
また本発明法で用いる第4級アンモニウム塩としては、
一般式
(式中、R+ 、Rx、R3+ R4は低級アルキル
基であり、Xはp−t−ルエンスルホン酸、硫酸、塩酸
または臭酸のいずれかの残基を示す。)で示され、これ
らのアンモニウム塩としては、テトラエチルアンモニウ
ムP−)ルエンスルホネート、テトラメチルアンモニウ
ムP−トルエンスルホネート、テトラプロピルアンモニ
ウムp−トルエンスルホネート、テトラブチルアンモニ
ウムp−トルエンスルホネート及びこれらのP−)ルエ
ンスルホン酸塩に代わる硫酸塩、塩酸塩、臭酸塩が挙げ
られる。これらの塩は使用する酸性水に対し、3〜60
重量%用いる。Furthermore, as the quaternary ammonium salt used in the method of the present invention,
It is represented by the general formula (wherein R+, Rx, R3+ R4 are lower alkyl groups, and X represents a residue of pt-toluenesulfonic acid, sulfuric acid, hydrochloric acid or hydrobromic acid), and these Examples of ammonium salts include tetraethylammonium P-) toluenesulfonate, tetramethylammonium P-toluenesulfonate, tetrapropylammonium p-toluenesulfonate, tetrabutylammonium p-toluenesulfonate, and sulfuric acid in place of these P-)toluenesulfonates. Examples include salt, hydrochloride, and bromate. These salts have a concentration of 3 to 60% of the acidic water used.
Use % by weight.
使用量が3重量%以下では反応が遅く電流効率が十分で
ない、また使用量が60重量%以上になると、反応液が
粘性を増して取扱が困難になる。If the amount used is less than 3% by weight, the reaction will be slow and the current efficiency will not be sufficient, and if the amount used is more than 60% by weight, the reaction liquid will increase in viscosity and become difficult to handle.
また本発明方法では、−M式(2)で示される化合物と
してはm−メトキシベンジルアルコール、m−エトキシ
ベンジルアルコール、m−フェノキシベンジルアルコー
ル、m−(3−クロロ)フェノキシベンジルアルコール
、m−(4−クロロ)フェノキシベンジルアルコール等
が挙げられる。In addition, in the method of the present invention, the compounds represented by -M formula (2) include m-methoxybenzyl alcohol, m-ethoxybenzyl alcohol, m-phenoxybenzyl alcohol, m-(3-chloro)phenoxybenzyl alcohol, m-( Examples include 4-chloro)phenoxybenzyl alcohol.
また強酸と共存可能の水可溶性溶媒としては、メタノー
ル、エタノール、プロパツール、ブクノール等のアルコ
ール類、アセトニトリル、N、JJ’−ジメチルイミダ
ゾリジノン、N、 N’−ジメチルホルムアミド、N−
メチル−2−ピロリドン、スルホラン等が挙げられる。Water-soluble solvents that can coexist with strong acids include alcohols such as methanol, ethanol, propatool, and buknol, acetonitrile, N, JJ'-dimethylimidazolidinone, N, N'-dimethylformamide, N-
Examples include methyl-2-pyrrolidone and sulfolane.
本発明方法において、電解還元反応は20〜70℃の温
度範囲で実施する。又、電解に用いる電極のうち特に陰
極材料は水素過電圧の高いもの、具体的には亜鉛、鉛、
カドミウム、水銀を用いる。対する陽極については、通
常の電極材料であれば特に限定しない。In the method of the present invention, the electrolytic reduction reaction is carried out at a temperature range of 20 to 70°C. In addition, among the electrodes used for electrolysis, the cathode material is one with a high hydrogen overvoltage, specifically zinc, lead,
Uses cadmium and mercury. The anode, on the other hand, is not particularly limited as long as it is made of a normal electrode material.
隔膜の材質としては、イオン交換膜、アスベスト、サラ
ミックス、シンダードグラス等が使用できる。As the material of the diaphragm, ion exchange membrane, asbestos, salamix, cinder glass, etc. can be used.
また反応においては、界面活性剤、消泡剤などを併用す
ると、さらに電流効率が向上する。Further, in the reaction, if a surfactant, an antifoaming agent, etc. are used in combination, the current efficiency is further improved.
本発明の電解還元において、電流密度は好ましくは1〜
30^/drrfである。理論的には4電子還元であり
、4 Fr/moleの通電量であるが、電流効率は4
0〜60%である為、反応を完結させるには6〜8 F
r/mole電気槍を通す電気炉ある。In the electrolytic reduction of the present invention, the current density is preferably 1 to
30^/drrf. Theoretically, it is a 4-electron reduction and the amount of current is 4 Fr/mole, but the current efficiency is 4
Since it is 0 to 60%, it takes 6 to 8 F to complete the reaction.
There is an electric furnace that runs the r/mole electric spear.
丈族五
以下、実施例により本発明の方法を詳しく説明する。以
下「%」は重量%を示す。EXAMPLES The method of the present invention will now be explained in detail with reference to Examples. Hereinafter, "%" indicates weight %.
実施例1
両極室とも300111の容量を有し、隔膜としてセレ
ミオンCMV (旭硝子(株)の商品名の陽イオン交
換膜)で隔離されたH型の電解セルに陰極として50c
jの亜鉛、陽極として50cdの白金板を取り付けた。Example 1 Both electrode chambers had a capacity of 300,111 cm, and 50 cm was used as a cathode in an H-type electrolytic cell separated by Selemion CMV (cation exchange membrane, trade name of Asahi Glass Co., Ltd.) as a diaphragm.
A platinum plate of 50 cd was attached as the anode.
陽陰両極室には10%の硫酸水200sNをそれぞれ仕
込、陰極室にはさらにテトラエチルアンモニウムP−)
ルエンスルホネートを20g仕込んだ。10% sulfuric acid water (200 sN) was charged in both the anode and cathode chambers, and tetraethylammonium P-) was added in the cathode chamber.
20g of luenesulfonate was charged.
電解セルを40°Cに保ちつつ陰極室にm−メトキシ安
息香酸メチルエステル5gを加えて、3Aの直流定電流
を100分間通電した(6.2Fr1モル)。While maintaining the electrolytic cell at 40° C., 5 g of m-methoxybenzoic acid methyl ester was added to the cathode chamber, and a constant DC current of 3 A was applied for 100 minutes (6.2 Fr 1 mol).
電解終了後陰極液は抜取、エーテル抽出した。After the electrolysis was completed, the catholyte was taken out and extracted with ether.
エーテル層は高速液体クロマトグラフィー()IPLC
)分析すると、m−メトキシ安息香酸メチルエステルの
転化率95%、m−メトキシベンジルアルコールの収率
は93%であった。The ether layer is high performance liquid chromatography () IPLC.
) Analysis showed that the conversion rate of m-methoxybenzoic acid methyl ester was 95% and the yield of m-methoxybenzyl alcohol was 93%.
次にエーテル溶媒を留出した後、残渣をシリカゲルカラ
ムで精製するとm−メトキシベンジルアルコールが3.
82g (単離収率92%)得られた(電流効率61
%)。Next, after distilling off the ether solvent, the residue was purified with a silica gel column, and m-methoxybenzyl alcohol was obtained by 3.0% m-methoxybenzyl alcohol.
82 g (isolated yield 92%) was obtained (current efficiency 61
%).
実施例2
実施例1と同様の反応装置の陽極室に15%硫酸水20
0rI11を仕込、陰極室には30%硫酸水150Jt
j!とアセトニトリル50−とを仕込さらに硫酸テトラ
メチルアンモニウムを20g仕込んだ。Example 2 20 ml of 15% sulfuric acid water was placed in the anode chamber of the same reactor as in Example 1.
0rI11 is charged, and 150 Jt of 30% sulfuric acid water is placed in the cathode chamber.
j! and 50 g of acetonitrile, and further 20 g of tetramethylammonium sulfate.
電解セルを40℃に保ちつつm−(3−クロロ)フェノ
キシ安息香酸5gを加えて2.5Aの直流電流を100
分間通電した(7.5Fr1モル)。While keeping the electrolytic cell at 40°C, 5g of m-(3-chloro)phenoxybenzoic acid was added and a DC current of 2.5A was applied to the cell at 100°C.
Electricity was applied for a minute (7.5Fr 1 mol).
電解終了後実施例1と同様の後処理を行ったところ、エ
ーテル層のIIPLc分析より、m−(3−クロロ)フ
ェノキシ安息香酸の転化率99%、m−(3−クロロ)
フェノキシベンジルアルコールの収率は94%であった
。エーテル溶媒留出後さらにシリカゲルカラムで精製す
るとm−(3−クロロ)フェノキシベンジルアルコール
が4.3g (単離収率92%)得られた(を流動率5
3%)。After the electrolysis was completed, the same post-treatment as in Example 1 was performed, and IIPLc analysis of the ether layer showed that the conversion rate of m-(3-chloro)phenoxybenzoic acid was 99%, and the conversion rate of m-(3-chloro)phenoxybenzoic acid was 99%.
The yield of phenoxybenzyl alcohol was 94%. After distilling off the ether solvent, further purification with a silica gel column yielded 4.3 g (isolated yield: 92%) of m-(3-chloro)phenoxybenzyl alcohol (with a flow rate of 5).
3%).
実施例3
実施例1と同様の反応装置の陽極室に15%の硫酸水を
仕込、陰極室には30%硫酸水100dとメタノール1
0(ldを仕込んだ。Example 3 In the anode chamber of the same reactor as in Example 1, 15% sulfuric acid water was charged, and in the cathode chamber, 100 d of 30% sulfuric acid water and 1 d of methanol were charged.
0 (I prepared ld.
電解セルを50°Cに保ちつつm−エトキシ安息香酸5
gを加えて3Aの直流電流を120分間通電した(7.
5Fr1モル)。m-ethoxybenzoic acid 5 while keeping the electrolytic cell at 50°C.
g was added and a 3A direct current was applied for 120 minutes (7.
5Fr1 mole).
電解終了後、陰極液をエーテル抽出した。エーテル層の
)IPLC分析より、m−エトキシ安息香酸の転化率9
7%、m−エトキシベンジルアルコールの収率は91%
であった。After the electrolysis was completed, the catholyte was extracted with ether. From the IPLC analysis of the ether layer, the conversion rate of m-ethoxybenzoic acid was 9.
7%, yield of m-ethoxybenzyl alcohol is 91%
Met.
さらにエーテル溶媒を留去した後、残渣をシルカゲルカ
ラムで精製するとm−エトキシベンジルアルコールが4
.2g (単離収率92%)得られた(電流効麿52%
)。After further distilling off the ether solvent, the residue was purified using a silica gel column, and m-ethoxybenzyl alcohol was
.. 2g (isolated yield 92%) was obtained (current effect 52%).
).
実施例4
陰極室にジステアリルジメチルアンモニウムクロライド
(界面活性剤 コータミン24P 花王製品) 0.
2gおよびトーμ・シリコーン 5R−200(東し製
品) 0.01gをさらに加えた以外は実施例1と同様
の反応を行った。Example 4 Distearyldimethylammonium chloride (surfactant Cortamine 24P, Kao product) was added to the cathode chamber.
The same reaction as in Example 1 was carried out except that 2 g and 0.01 g of Tomu Silicone 5R-200 (Toshi product) were further added.
電解終了後陰極液をエーテル抽出した。エーテル層のH
PLC分析よりm−メトキシ安息香酸メチルエステルの
転化率98%、m−メトキシベンジルアルコールの収率
は94%であった。After the electrolysis was completed, the catholyte was extracted with ether. H of the ether layer
PLC analysis showed that the conversion rate of m-methoxybenzoic acid methyl ester was 98% and the yield of m-methoxybenzyl alcohol was 94%.
次にエーテル溶媒を留去した後、残渣をシリカゲルカラ
ムで精製するとm−メトキシベンジルアルコールが3.
90g (単離収率94%)得られた(電流効率63
%)。Next, after distilling off the ether solvent, the residue was purified using a silica gel column, and m-methoxybenzyl alcohol was obtained by 3.0% m-methoxybenzyl alcohol.
90 g (isolated yield 94%) was obtained (current efficiency 63
%).
実施例5.6および比較例1.2.3
実施例1と同様の反応装置の陽極室に10%の硫酸水2
00dを仕込、陰極液をそれぞれ変えてm−フェノキシ
安息香酸の電解還元反応を試みた。Example 5.6 and Comparative Example 1.2.3 10% sulfuric acid water 2 was placed in the anode chamber of the same reactor as in Example 1.
00d was charged, and the electrolytic reduction reaction of m-phenoxybenzoic acid was attempted by changing the catholyte.
すなわち、電解セルを40℃に保ちつつLAの直流定電
流を通電した。陰極室にはm−フェノキシ安息香酸5g
を4時間かけてゆつくり添加した後、さらに1時間通電
した(トータル5時間、8.0Fr1モル)。That is, while maintaining the electrolytic cell at 40° C., a constant LA DC current was applied. 5g of m-phenoxybenzoic acid in the cathode chamber
was slowly added over 4 hours, and then electricity was applied for another 1 hour (total 5 hours, 1 mol of 8.0Fr).
電解終了後陰極液は抜取、エーテル抽出した後)IPL
cで分析した。その結果を表に示す。After electrolysis, the catholyte is extracted and extracted with ether) IPL
Analyzed at c. The results are shown in the table.
実施例と比較例の結果から明らかなように一般式(1)
で表されるメタ置換安息香酸誘導体の電解還元による反
応する一般式(2)で表されるメタ置換ヘンシルアルコ
ールの製造において酸性水溶液中、特定量の第4級アン
モニウム塩を共存させて電解すれば電流効率良く高収率
でメタ置換ヘンシルアルコールを得ることができる。As is clear from the results of Examples and Comparative Examples, general formula (1)
In the production of meta-substituted hensyl alcohol represented by the general formula (2), which is reacted by electrolytic reduction of the meta-substituted benzoic acid derivative represented by Meta-substituted hensyl alcohol can be obtained with high current efficiency and high yield.
このように本発明は工業的に極めて価値あるものである
。As described above, the present invention is extremely valuable industrially.
Claims (2)
フェニル基、または低級アルキル基であり、R^2は水
素原子またはアルキル基を表す。)で示される安息香酸
誘導体を電流還元反応により一般式(2) ▲数式、化学式、表等があります▼(2) (式中R^1は、式(1)のR^1と同じ。)で示され
るm−置換ベンジルアルコールを得るに際し、陰極液に
強酸性水溶液と、下式で示される第4級アンモニウム塩
類を強酸性水溶液に対し3〜60重量%用いることを特
徴とするm−置換ベンジルアルコールを製造する方法。 ▲数式、化学式、表等があります▼ (式中、R_1〜R_4は低級アルキル基であり、Xは
p−トルエンスルホン酸、硫酸、塩酸または、臭酸のい
ずれかの残基を示す。)(1) General formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (1) (In the formula, R^1 is a phenyl group or a lower alkyl group that may be substituted with a halogen atom, and R^ 2 represents a hydrogen atom or an alkyl group.) A benzoic acid derivative represented by the general formula (2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2) (In the formula, R^1 is the formula ( 1) When obtaining the m-substituted benzyl alcohol shown by % of m-substituted benzyl alcohol. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R_1 to R_4 are lower alkyl groups, and X represents a residue of p-toluenesulfonic acid, sulfuric acid, hydrochloric acid, or hydrobromic acid.)
囲第(1)項記載の方法。(2) The method according to claim (1), wherein the strongly acidic aqueous solution has a pH of 1 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62023658A JPS63192883A (en) | 1987-02-05 | 1987-02-05 | Production of m-substituted benzyl alcohol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62023658A JPS63192883A (en) | 1987-02-05 | 1987-02-05 | Production of m-substituted benzyl alcohol |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63192883A true JPS63192883A (en) | 1988-08-10 |
Family
ID=12116608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62023658A Pending JPS63192883A (en) | 1987-02-05 | 1987-02-05 | Production of m-substituted benzyl alcohol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63192883A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002236970A (en) * | 2001-02-07 | 2002-08-23 | Sanyo Electric Co Ltd | Cup type vending machine |
-
1987
- 1987-02-05 JP JP62023658A patent/JPS63192883A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002236970A (en) * | 2001-02-07 | 2002-08-23 | Sanyo Electric Co Ltd | Cup type vending machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4714530A (en) | Method for producing high purity quaternary ammonium hydroxides | |
JPH09286774A (en) | 2-alkylmercapto-4-(trifluoromethyl) benzoic acid ester and its production | |
JP4538114B2 (en) | Novel process for the preparation of derivatives of 4-phenyl-1,2,3,6-tetrahydropyridine and intermediates used | |
JPS63192883A (en) | Production of m-substituted benzyl alcohol | |
JPS6342713B2 (en) | ||
JPS63171889A (en) | Production of m-substituted benzyl alcohol | |
JPS60234987A (en) | Manufacture of m-hydroxybenzyl alcohol | |
EP0063608B1 (en) | Cyclohexadiene derivatives and process for their preparation | |
US4493755A (en) | Electrolytic preparation of orthoalkyl-2-halo-N-acylanilides | |
JP2009503266A (en) | Process for producing 1,1,4,4-tetraalkoxy-but-2-ene derivative | |
JPS63157891A (en) | Production of m-hydroxybenzyl alcohol | |
JPH0245434A (en) | Production of benzole derivative and novel benzole derivative | |
JP2632832B2 (en) | Method for producing polyfluorobenzyl alcohol | |
JPH05279885A (en) | Halogenated pyridine carbaldehyde derivative and its production | |
JP2622115B2 (en) | Method for producing benzyl alcohols | |
JP3743867B2 (en) | Process for producing 2-fluorocyclopropanecarboxylic acids | |
JPS58117887A (en) | Manufacture of para-substituted benzyl alcohol | |
JPH0526877B2 (en) | ||
JPH0535232B2 (en) | ||
JPS60200993A (en) | Manufacture of 2-(nitrophenyl) ethanols | |
JP2003313181A (en) | Method for producing fluorinated phthalide | |
JPS58117886A (en) | Manufacture of 4-substituted phenylacetic acids | |
JPS62202091A (en) | Production of 2-(nitrophenyl)-1-substituted-ethanol | |
JPH0338350B2 (en) | ||
JPH0715151B2 (en) | Method for producing m-hydroxybenzyl alcohol |