JPH0373509A - Manufacturing method of solid electrolytic capacitor - Google Patents
Manufacturing method of solid electrolytic capacitorInfo
- Publication number
- JPH0373509A JPH0373509A JP20958789A JP20958789A JPH0373509A JP H0373509 A JPH0373509 A JP H0373509A JP 20958789 A JP20958789 A JP 20958789A JP 20958789 A JP20958789 A JP 20958789A JP H0373509 A JPH0373509 A JP H0373509A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic
- manufacturing
- polymer
- solid electrolytic
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、導電性高分子膜を固体電解買占して用いた固
体電解コンデンサの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte.
(従来の技術〉
近年、小形高性能化の要請に応えた固体電解コンデンサ
として、特r!a01160−244017号公報又は
特開昭63−181308@公報に開示されたものがあ
る。(Prior Art) In recent years, solid electrolytic capacitors that meet the demand for smaller size and higher performance have been disclosed in Japanese Patent Publication No. r!a01160-244017 or Japanese Patent Application Laid-open No. 181308/1983.
これら公報に開示された技術は、表面を粗面化した弁作
用金属を化成し、酸化皮膜を形成して得た一極体を陽極
εして電解液に浸漬して通電し、・前記酸化皮膜量に形
成した電解重合膜を固体電解質として用いるものである
が、酸化皮膜が絶縁物であるため、II!極と効果的な
通電が行われず、酸化皮膜の欠陥部、あるいは陰極この
距離が近いところに電流が集中し、固体電解質としての
均一な電解重合膜を得ることが極めて困難であった。The techniques disclosed in these publications involve chemically converting a valve metal with a roughened surface, forming an oxide film, and using the unipolar body as an anode, immersing it in an electrolytic solution and energizing it. An electrolytic polymer film formed in a film amount is used as a solid electrolyte, but since the oxide film is an insulator, II! Effective current conduction with the electrodes was not carried out, and current was concentrated in defective parts of the oxide film or in areas close to the cathode, making it extremely difficult to obtain a uniform electrolytic polymer film as a solid electrolyte.
そのため、陽極体に例えばビロール、チオフェン、又は
フラン溶液に浸漬し、しかる後酸化剤IIに浸漬するこ
kによる化学酸化重合手段を講じて陽極体上にあらかじ
め化学重合膜を形威し、この化学重合膜を陽極として例
えばビロール、チオフェン、フランからなるモノマー及
び支持電解質を含む電解液中で電解酸化重合を行い、化
学重合膜上に効果的に電解重合膜を形成するようにして
いる。Therefore, a chemical polymerization film is formed on the anode body in advance by immersing the anode body in a solution of virol, thiophene, or furan, and then immersing it in oxidizing agent II. Electrolytic oxidation polymerization is carried out in an electrolytic solution containing monomers such as virol, thiophene, and furan and a supporting electrolyte using the polymeric membrane as an anode, thereby effectively forming an electrolytic polymeric membrane on the chemically polymerized membrane.
しかして、このような手段によって形成される電解重合
膜に残留した電解液を除去するため、後処理として洗浄
−乾燥工程を必要とする。Therefore, in order to remove the electrolytic solution remaining on the electrolytic polymerized membrane formed by such a method, a cleaning and drying process is required as a post-treatment.
従来、洗浄手段としては、水洗いを行っているが、ポリ
ビ0−ル、ポリチオフェン、ポリフランなどの電解重合
膜に対する水の浸透性は非常に悪く、また電解液を構成
するモノマーとしてのビO−ル、チオフェン、フランな
どは水に対する溶解性が悪いため長時間の浸漬洗浄を必
要とする。Conventionally, washing with water has been used as a cleaning means, but the permeability of water to electrolytic polymer membranes such as polyvinyl, polythiophene, and polyfuran is extremely poor, and the rinsing with water as a monomer constituting the electrolyte is extremely difficult. , thiophene, furan, etc., have poor solubility in water and require long immersion cleaning.
しかしながら、このような水洗いによる洗浄工程に起因
し、次のような問題をもつものとなっていた。However, due to the washing process using water, the following problems have arisen.
すなわち、長時間の水洗い過程で電解重合膜にそれなり
の水の浸透が成されるが、同時に電解重合膜及び化学重
合膜の顕著な1firaが起こり、その後の乾燥工程で
これら重合膜は@激に収縮するため、これら重合膜及び
これら重合膜に密着した酸化皮膜にクラックが生じ、t
anδ特性が悪化し、更にその後のグラファイト、銀ペ
ースト層形成時にクラックにグラファイトや銀ペースト
が浸漬し、漏れ電流特性劣化及びショート不良発生の原
因となっていた。In other words, a certain amount of water permeates into the electrolytic polymerized membrane during the long-time washing process, but at the same time, remarkable 1 fira occurs in the electrolytic polymerized membrane and the chemically polymerized membrane, and in the subsequent drying process, these polymeric membranes are severely damaged. Due to the shrinkage, cracks occur in these polymer films and the oxide film that adheres to these polymer films, and t
The and[delta] characteristics deteriorated, and the graphite and silver paste were immersed in the cracks during the subsequent formation of the graphite and silver paste layers, causing deterioration of the leakage current characteristics and occurrence of short circuits.
また、洗浄不足はまぬがれず、ビロール、チオフェン、
フランなどを完全に除去することは困難で、電解液を構
成するモノマー及び支持電解質の残留による寿命特性悪
化の原因となっていた。In addition, insufficient cleaning is inevitable, and virol, thiophene,
It is difficult to completely remove furan and the like, and the remaining monomers and supporting electrolyte constituting the electrolytic solution cause deterioration in life characteristics.
(発明が解決しようとする課題)
以上のように導電性高分子膜を固体電解質として用いる
固体電解コンデンサは、小形高性能化の要請に応えたも
のとして注目に鍍するが、電解重合膜形成後の処理方法
、特に洗浄方法において解決すべき課題をもつものであ
った。(Problems to be Solved by the Invention) As described above, solid electrolytic capacitors that use a conductive polymer film as a solid electrolyte are attracting attention as they meet the demand for smaller size and higher performance. There were problems to be solved in the treatment method, especially the cleaning method.
本発明は、上記の点に鑑みてなされたもので、優れたt
anδ、Ilれ電流、及び寿命特性、並びにショート不
良低減を得る上の条件となる電解重合膜形成後の洗浄手
段を改良した固体電解コンデンサの製造方法を提供する
ことを目的とするものである。The present invention has been made in view of the above points, and has an excellent t
The object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that improves an δ, Il leakage current, life characteristics, and cleaning means after forming an electrolytic polymer film, which is a condition for reducing short-circuit defects.
(H題を解決するための手段)
本発明の固体電解コンデンサの製造方法は、弁作用金属
に形成した酸化皮膜上に化学酸化重合により導電性高分
子からなる化学重合膜を形成した後、この化学重合膜上
に電解酸化重合により導電性高分子からなる電解重合膜
を形成し、しかる後、この電解重合膜に残留した電解酸
化重合液を洗浄する固体電解コンデンサの製造方法にお
いて、前記洗浄を極性有機溶媒にて行うことを特徴とす
るものである。(Means for Solving Problem H) The method for manufacturing a solid electrolytic capacitor of the present invention involves forming a chemically polymerized film made of a conductive polymer by chemical oxidative polymerization on an oxide film formed on a valve metal. A method for manufacturing a solid electrolytic capacitor in which an electrolytic polymeric film made of a conductive polymer is formed on a chemically polymeric film by electrolytic oxidative polymerization, and then the electrolytic oxidative polymer solution remaining on the electrolytic polymeric film is washed. This method is characterized by being carried out using a polar organic solvent.
(作用)
以上の構成によれば、電解重合膜に対する極性有機溶媒
の浸透性はよく、また電解酸化重合液は、極性有機溶媒
に対する溶wi性が大きいため、短時間で電解重合膜に
残留した電解酸化重合液が完全に除去できる。(Function) According to the above configuration, the permeability of the polar organic solvent to the electrolytically polymerized membrane is good, and since the electrolytically oxidized polymer solution has a high solubility in the polar organic solvent, it remains in the electrolytically polymerized membrane in a short time. Electrolytic oxidation polymerization solution can be completely removed.
また、極性有機溶媒は、重合膜の膨潤作用が極めて小さ
く、かつ短時間洗浄となるためその後の乾燥工程での重
合膜収縮はほとんどなく、重合膜及び酸化皮膜のクラッ
ク発生の要因は解酒される。In addition, polar organic solvents have an extremely small swelling effect on the polymer film, and because the cleaning process is short, there is almost no shrinkage of the polymer film in the subsequent drying process, and the cause of cracks in the polymer film and oxide film is dissolved. Ru.
(実施例〉 以下、本発明の一実施例につき説明する。(Example> An embodiment of the present invention will be described below.
すなわち、第1図に示すように、エツチングによって表
面積を拡大し化成工程を経て表面に酸化皮膜1を形成し
た、例えば高純度アルミニウムからなる陽極箔2に陽極
リード線3を取着し、次にこのN極倍2をビロール又は
チオフェン、あるいはフラン/エタノール水溶液に浸漬
した後、更に過硫酸アンモニウム水溶液に浸漬して化学
酸化重合を施し、酸化皮膜1上に導電性高分子からなる
化学重合WA4を形成する。That is, as shown in FIG. 1, an anode lead wire 3 is attached to an anode foil 2 made of, for example, high-purity aluminum, whose surface area has been expanded by etching and an oxide film 1 has been formed on the surface through a chemical conversion process. After this N pole 2 is immersed in an aqueous solution of virol, thiophene, or furan/ethanol, it is further immersed in an aqueous ammonium persulfate solution to perform chemical oxidation polymerization to form a chemically polymerized WA4 made of conductive polymer on the oxide film 1. do.
しかして、この化学重合114を形成した陽極箭2を巻
回し得たコンデンサ素子を再化成し酸化皮膜の修復を行
い、しかる後、前記コンデンサ素子を支持電解質及びビ
ロール、チオフェン。The capacitor element wrapped around the anode 2 with the chemical polymerization 114 formed thereon is re-formed to repair the oxide film, and then the capacitor element is coated with the supporting electrolyte, virol, and thiophene.
フランなどのモノマーを含む電解酸化重合液中に浸漬し
電解酸化重合を施し、前記化学重合膜4上に導電性高分
子からなる電解重合lI5を生成する。It is immersed in an electrolytic oxidative polymerization solution containing a monomer such as furan, and subjected to electrolytic oxidative polymerization, thereby producing an electrolytic polymer II5 made of a conductive polymer on the chemically polymerized film 4.
次に、この電解重合m5を生成したコンデンサ素子をア
セトン、アセトニトリル、メタノール、エタノールなど
の20℃において、誘電率20以上(双極子能率1.5
以上)の水に対する相溶性が無限大である極性有機溶媒
に5秒〜30分間浸漬し洗浄し、前記電解重合m5に付
着した電解酸化重合液を除去し、しかる後、乾燥工程で
洗浄剤としての極性有機溶媒を除去する。Next, the capacitor element that has produced this electrolytic polymerization m5 is heated in acetone, acetonitrile, methanol, ethanol, etc. at 20°C with a dielectric constant of 20 or more (dipole efficiency 1.5).
(above)) is immersed in a polar organic solvent with infinite compatibility with water for 5 seconds to 30 minutes to remove the electrolytically oxidized polymer solution adhering to the electrolytically polymerized m5, and then used as a cleaning agent in the drying process. Remove the polar organic solvent.
なお、極性有機溶媒への浸漬時間はコンデンサ素子の大
きさにより適宜設定する。Note that the immersion time in the polar organic solvent is appropriately set depending on the size of the capacitor element.
次に、このコンデンサ素子をコロイダルカーボンに浸漬
−銀ペースト塗布にて陰極層6を設け、この11m極層
6の部分に陰極リード〈図示せず)を取着し、最後に外
装を施してなるものである。Next, this capacitor element is immersed in colloidal carbon and coated with silver paste to form a cathode layer 6, a cathode lead (not shown) is attached to this 11m electrode layer 6, and finally an exterior is applied. It is something.
以上の構成になる固体電解コンデンサの製造方法によれ
ば、電解酸化重合後に行う洗浄手段における洗浄剤とし
て極性有機溶媒を用いるため、電解重合膜に対する浸透
性がよく、かつ電解酸化重合液の溶解性が大きいため、
電解重合膜に残留した電解酸化重合液が短時間で除去で
き、更に、・極性有機溶媒に対する重合膜の膨潤が極め
て小さいため、その後の乾燥工程での重合膜収縮はほと
んどなく、重合膜及び酸化皮膜のクラック発生はなくな
り、tanδ及び漏れ電流特性、並びにショート不良の
改善をはじめ寿命特性向上に大きく寄与する。According to the manufacturing method of a solid electrolytic capacitor having the above structure, since a polar organic solvent is used as a cleaning agent in the cleaning means performed after electrolytic oxidation polymerization, the permeability to the electrolytic polymer membrane is good, and the solubility of the electrolytic oxidative polymerization liquid is high. is large, so
The electrolytically oxidized polymer solution remaining on the electrolytically polymerized membrane can be removed in a short time, and furthermore, since the swelling of the polymerized membrane against polar organic solvents is extremely small, there is almost no shrinkage of the polymerized membrane in the subsequent drying process, and the polymerized membrane and oxidation This eliminates the occurrence of cracks in the film, and greatly contributes to improvements in tan δ, leakage current characteristics, short-circuit defects, and life characteristics.
次に、本発明によって得られた固体電解コンデンサと、
従来例によって得られた固体電解コンデンサの緒特性比
較について述べる。Next, a solid electrolytic capacitor obtained by the present invention,
A comparison of the characteristics of solid electrolytic capacitors obtained using conventional examples will be described.
法衣は、以下に記した実施例Aと従来例日による定格1
0V−3μFの固体電解コンデンサの特性比較を示すも
ので、第2図〜第4図は105℃下における時間に対す
る寿命特性を示すものである。The robe is rated 1 according to Example A and the conventional example day described below.
This shows a comparison of the characteristics of 0V-3μF solid electrolytic capacitors, and Figures 2 to 4 show the life characteristics versus time at 105°C.
なお、表中の数値でショート不良を除いたものは試料1
00個の平均位で、()内はバラツキを示す。In addition, the values in the table excluding short-circuit defects are for sample 1.
The average value is 0.00, and the numbers in parentheses indicate variations.
実施例A
(1)化学酸化重合条件
ビロール/エタノール溶液に化成処理したアルミニウム
陽極箔を5分浸漬後、支持電解質としてトルエンスルホ
ン酸テトラエチルアンモニウム0.05m0 l/jを
含む0.1mol/j過硫酸アンモニウム水溶液に5分
間浸漬。Example A (1) Chemical oxidative polymerization conditions After immersing a chemically treated aluminum anode foil in a virol/ethanol solution for 5 minutes, 0.1 mol/j ammonium persulfate containing 0.05 ml/j tetraethylammonium toluenesulfonate as a supporting electrolyte. Immerse in aqueous solution for 5 minutes.
(2)コンデンサ素子構造
巻回形状
(3)電解酸化重合条件
ビロールモノマー1m01/j及び支持電解質として、
パラトルエンスルホン酸ナトリウム1mol/jを含む
アセトニトリルからなる’HIM液中に浸漬し、定電流
酸化重合(1mA/d、30分)を行う。(2) Capacitor element structure and winding shape (3) Electrolytic oxidation polymerization conditions As pyrrole monomer 1 m01/j and supporting electrolyte,
It is immersed in 'HIM solution consisting of acetonitrile containing 1 mol/j of sodium para-toluenesulfonate, and constant current oxidative polymerization (1 mA/d, 30 minutes) is performed.
(4)電解酸化重合後の洗浄条件 アセトンに5分間浸漬。(4) Cleaning conditions after electrolytic oxidation polymerization Soak in acetone for 5 minutes.
堡」り4旦 (1)化学酸化重合条件 実施例Aと同じ (2)コンデンサ素子構造 実施例Aと同じ (3)電解酸化重合条件 実施例Aと同じ (4) l!M[化重合後の洗浄条件 水に10分間浸漬。4th day of bastion (1) Chemical oxidative polymerization conditions Same as Example A (2) Capacitor element structure Same as Example A (3) Electrolytic oxidative polymerization conditions Same as Example A (4) l! M [Cleaning conditions after chemical polymerization Soak in water for 10 minutes.
表 1
上表から明らかなように、実施例Aに係るものは従来例
Bに係るものと比較しtanδ、漏れ1!流特性が著し
く改善されるとともに、ショート不良の大l1iIな改
善効果がみられる。Table 1 As is clear from the above table, the tan δ and leakage of Example A are 1! compared to Conventional Example B. The flow characteristics are significantly improved, and short-circuit defects are significantly improved.
また、第2図〜第4図から明らかなように、寝酒変化率
及びtanδの寿命特性の改善に貢献すると同時に、寿
命特性における漏れ電流の大幅な改善に貢献することが
わかる。Moreover, as is clear from FIGS. 2 to 4, it can be seen that it contributes to the improvement of the nightcap change rate and the life characteristics of tan δ, and at the same time contributes to a significant improvement of the leakage current in the life characteristics.
なお、上記実施例では陽極筋としてアルミニウム簡を用
いたものを例示して説明したが、タンタル消又はニオブ
簡なとの弁作用金属箔を用いたものに適用できることは
もとより、これらの弁作用金属からなる粉末を焼結し、
焼結体としたものに適用できることは勿論である。In the above embodiments, an example in which an aluminum strip was used as the anode strip was explained, but it can be applied to a valve-acting metal foil such as tantalum or niobium foil. Sinter the powder consisting of
Of course, it can be applied to a sintered body.
[発明の効果]
本発明によれば、電解重合膜に付着した電解酸化重合液
の除去が容易に可能となり、重合膜の膨潤・収縮がなく
初期の緒特性改善に太き(貢献するとrF48Iに、寿
命特性の改善に貢献できる固体電解コンデンサの製造方
法を得ることができる。[Effects of the Invention] According to the present invention, it is possible to easily remove the electrolytically oxidized polymerization solution adhering to the electrolytically polymerized membrane, and there is no swelling or shrinkage of the polymerized membrane, which greatly improves the initial properties (contributing to rF48I). , it is possible to obtain a method for manufacturing a solid electrolytic capacitor that can contribute to improving life characteristics.
第1図は本発明の一実施例に係る製造途中のコンデンサ
素子構成を示す一部切欠概略断面図、第2図は時間−容
量変化率特性曲線図、第3図は時間−tanδ特性曲I
I図、第4図は時間−漏れ電流特性dbIIa図である
。
1・・・酸化段112・・・陽極箔
4・・・化学重合膜 5・・・電解重合膜特 許
出 願 人
マルコン電子株式会社
日本カーリット株式会社
第 3 図
時
間 (h)
第 4 図
時
間 (h)
第 2 図FIG. 1 is a partially cutaway schematic sectional view showing the configuration of a capacitor element in the process of manufacturing according to an embodiment of the present invention, FIG. 2 is a time-capacitance change rate characteristic curve, and FIG. 3 is a time-tan δ characteristic curve I.
Figure I and Figure 4 are time-leakage current characteristic dbIIa diagrams. 1...Oxidation stage 112...Anode foil 4...Chemical polymerized membrane 5...Electrolytic polymerized membrane Patent application Person Marcon Electronics Co., Ltd. Nippon Carlit Co., Ltd. Figure 3 Time (h) Figure 4 Time (h) Figure 2
Claims (2)
合により導電性高分子からなる化学重合膜を形成した後
、この化学重合膜上に電解酸化重合により導電性高分子
からなる電解重合膜を形成し、しかる後、この電解重合
膜に残留した電解酸化重合液を洗浄する固体電解コンデ
ンサの製造方法において、前記洗浄を極性有機溶媒にて
行うことを特徴とする固体電解コンデンサの製造方法。(1) After forming a chemical polymer film made of a conductive polymer by chemical oxidative polymerization on the oxide film formed on the valve metal, an electrolytic polymer film made of a conductive polymer is formed on this chemical polymer film by electrolytic oxidative polymerization. 1. A method for manufacturing a solid electrolytic capacitor in which the electrolytically oxidized polymer solution remaining on the electrolytically polymerized film is washed using a polar organic solvent.
トン、アセトニトリルである請求項(1)記載の個体電
解コンデンサの製造方法。(2) The method for manufacturing a solid electrolytic capacitor according to claim (1), wherein the polar organic solvent is methanol, ethanol, acetone, or acetonitrile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20958789A JPH0373509A (en) | 1989-08-15 | 1989-08-15 | Manufacturing method of solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20958789A JPH0373509A (en) | 1989-08-15 | 1989-08-15 | Manufacturing method of solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0373509A true JPH0373509A (en) | 1991-03-28 |
Family
ID=16575303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20958789A Pending JPH0373509A (en) | 1989-08-15 | 1989-08-15 | Manufacturing method of solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0373509A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092232A (en) * | 2001-09-19 | 2003-03-28 | Nippon Chemicon Corp | Method for manufacturing solid electrolytic capacitor |
CN112530704A (en) * | 2020-12-10 | 2021-03-19 | 肇庆绿宝石电子科技股份有限公司 | Solid-state capacitor and manufacturing method thereof |
US11270847B1 (en) | 2019-05-17 | 2022-03-08 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor with improved leakage current |
-
1989
- 1989-08-15 JP JP20958789A patent/JPH0373509A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092232A (en) * | 2001-09-19 | 2003-03-28 | Nippon Chemicon Corp | Method for manufacturing solid electrolytic capacitor |
US11270847B1 (en) | 2019-05-17 | 2022-03-08 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor with improved leakage current |
CN112530704A (en) * | 2020-12-10 | 2021-03-19 | 肇庆绿宝石电子科技股份有限公司 | Solid-state capacitor and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3245567B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH09306788A (en) | Capacitor and manufacture thereof | |
JPH0373509A (en) | Manufacturing method of solid electrolytic capacitor | |
JP4926131B2 (en) | Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor | |
JP3864651B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2811648B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2657932B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2001110685A (en) | Solid electrolytic capacitor | |
JP3750476B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP3542613B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3974706B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH0442912A (en) | Manufacture of solid electrolytic capacitor | |
JP2995109B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2001155965A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2006135191A (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH11121280A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
JP2006147900A (en) | Manufacturing method of solid electrolytic capacitor | |
JPH04137517A (en) | Manufacture of solid electrolytic capacitor | |
JPH03139816A (en) | Manufacturing method of solid electrolytic capacitor | |
JPH0883735A (en) | Manufacture of capacitor | |
JP2003109850A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2000340462A (en) | Solid electrolytic capacitor | |
JPH10321474A (en) | Solid electrolytic capacitor and its manufacture | |
JP2004128033A (en) | Method of manufacturing solid state electrolytic capacitor | |
JP2003092232A (en) | Method for manufacturing solid electrolytic capacitor |