JP2003092232A - Method for manufacturing solid electrolytic capacitor - Google Patents
Method for manufacturing solid electrolytic capacitorInfo
- Publication number
- JP2003092232A JP2003092232A JP2001285407A JP2001285407A JP2003092232A JP 2003092232 A JP2003092232 A JP 2003092232A JP 2001285407 A JP2001285407 A JP 2001285407A JP 2001285407 A JP2001285407 A JP 2001285407A JP 2003092232 A JP2003092232 A JP 2003092232A
- Authority
- JP
- Japan
- Prior art keywords
- conductive polymer
- polymer layer
- capacitor element
- solid electrolytic
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 118
- 239000007787 solid Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 5
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 75
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 69
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000005406 washing Methods 0.000 claims description 44
- 239000000126 substance Substances 0.000 claims description 31
- 239000003960 organic solvent Substances 0.000 claims description 29
- 239000000178 monomer Substances 0.000 claims description 25
- 238000004140 cleaning Methods 0.000 claims description 16
- 239000007800 oxidant agent Substances 0.000 claims description 16
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229930192474 thiophene Natural products 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 150000003577 thiophenes Chemical class 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 23
- 229920000642 polymer Polymers 0.000 abstract description 19
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 8
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical class [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract 2
- 239000003054 catalyst Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 96
- 239000000243 solution Substances 0.000 description 29
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical group CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 26
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 24
- 238000001035 drying Methods 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 20
- 238000005755 formation reaction Methods 0.000 description 20
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 16
- 229910052709 silver Inorganic materials 0.000 description 16
- 239000004332 silver Substances 0.000 description 16
- 230000007547 defect Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000009740 moulding (composite fabrication) Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000007598 dipping method Methods 0.000 description 10
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 10
- 229910000679 solder Inorganic materials 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- 239000003973 paint Substances 0.000 description 8
- 238000001721 transfer moulding Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000012467 final product Substances 0.000 description 7
- 238000007689 inspection Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 230000004580 weight loss Effects 0.000 description 7
- 229920000123 polythiophene Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000010407 anodic oxide Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 229920000128 polypyrrole Polymers 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- -1 tantalum wire Chemical compound 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、導電性高分子を
固体電解質に用いた固体電解コンデンサの製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.
【0002】[0002]
【従来の技術】近年、低ESR化を目的として導電性高
分子を固体電解質として用いる固体電解コンデンサが実
用化されている。一般に、これら導電性高分子として
は、ポリチオフェン,ポリピロール又はポリアニリン等
があり、中でもポリチオフェンは、ポリピロール又はポ
リアニリンと比較して、導電率が高く熱安定性が特に優
れていることから近年注目されており、ポリチオフェン
を固体電解質として用いた固体電解コンデンサとして特
開平2−15611号公報等に開示されているものがあ
る。2. Description of the Related Art In recent years, solid electrolytic capacitors using a conductive polymer as a solid electrolyte have been put into practical use for the purpose of lowering ESR. Generally, as these conductive polymers, there are polythiophene, polypyrrole, polyaniline, and the like. Among them, polythiophene has been attracting attention in recent years because it has high electrical conductivity and excellent thermal stability as compared with polypyrrole or polyaniline. As a solid electrolytic capacitor using polythiophene as a solid electrolyte, there is a solid electrolytic capacitor disclosed in JP-A-2-15611.
【0003】しかして、ポリチオフェンは、化学酸化重
合及び電解重合によって製作できるが、電解重合手段を
講じた場合、一個に数点の重合用電極を取り付けること
が必要であることと、導電性高分子が電極上にフィルム
状に形成されるため大量に製造することに困難性が伴う
問題を抱えているのに対して、化学酸化重合手段の場合
は、そのような問題はなく、電解重合と比較して大量の
導電性高分子層を容易に得ることができることは当業者
の中では良く知られている。Polythiophene can be produced by chemical oxidative polymerization and electrolytic polymerization. However, when electrolytic polymerization means is adopted, it is necessary to attach several polymerization electrodes to one piece, and a conductive polymer. Since it is formed as a film on the electrode, it has a problem that it is difficult to manufacture in large quantities, whereas in the case of the chemical oxidative polymerization means, there is no such problem, and it is compared with electrolytic polymerization. It is well known to those skilled in the art that a large amount of conductive polymer layers can be easily obtained.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、ポリチ
オフェンは、他のポリピロール又はポリアニリン等他の
導電性高分子に比べて、化学酸化重合の際の重合速度が
小さいため、所望の重合度以上の導電性高分子層を形成
するためには、重合時間を長くしたり、重合速度を上げ
る工夫をしなければならず、生産性が悪く、コスト高と
なる問題を抱え、また溶媒に水を用いた場合は重合反応
が著しく抑制される問題を有していた。However, since polythiophene has a smaller polymerization rate in the chemical oxidative polymerization than other conductive polymers such as polypyrrole or polyaniline, the conductivity of polythiophene is higher than the desired degree of polymerization. In order to form the polymer layer, it is necessary to lengthen the polymerization time or devise to increase the polymerization rate, which causes problems such as poor productivity and high cost, and when water is used as the solvent. Had a problem that the polymerization reaction was significantly suppressed.
【0005】そして、化学重合で得られる導電性高分子
層は、残留モノマー及び低融点のオリゴマーから高融点
の高重合体まで広い分子量分布となるため、トランスフ
ァーモールド法による樹脂外装構造では、モールド成型
時の温度により低沸点の低分子量物質が蒸発・飛散す
る。この場合、導電性高分子層が多孔質化して電導度が
低下し、更に強度も低下してモールド成形時のストレス
が誘電体酸化皮膜を損傷することになり、ショート、漏
れ電流増大やESR増大となる問題をも抱える結果とな
っていた。同様にコンデンサを回路基板にはんだ付けす
る場合の温度によっても前記問題が顕在化しており、今
後鉛フリー対応のはんだ付けによってますます高温(約
260℃)になろうとした時、このような欠点は大きな
問題であった。Since the conductive polymer layer obtained by chemical polymerization has a wide molecular weight distribution from residual monomers and low melting point oligomers to high melting point high polymers, in the resin exterior structure by the transfer molding method, molding is performed. The low boiling point low molecular weight substance evaporates and scatters depending on the temperature. In this case, the conductive polymer layer is made porous to lower the electrical conductivity, and the strength is also lowered, and the stress at the time of molding damages the dielectric oxide film, resulting in a short circuit, an increase in leakage current and an increase in ESR. It also resulted in the problem of becoming. Similarly, the above-mentioned problem becomes apparent depending on the temperature when the capacitor is soldered to the circuit board, and when the temperature becomes higher (about 260 ° C) due to lead-free soldering in the future, such a defect will occur. It was a big problem.
【0006】本発明は、上記問題を解決するもので、コ
ンデンサ素子に低沸点の低分子量物質を含まない所望の
重合度以上の高分子層を形成し、モールド成形時の温度
・ストレスに耐え、また、はんだ耐熱性にも優れた導電
性高分子層を形成した特性良好な固体電解コンデンサを
提供することを目的とするものである。The present invention solves the above problems by forming a polymer layer having a desired degree of polymerization or higher containing no low boiling point low molecular weight substance on a capacitor element and enduring temperature and stress during molding. Another object of the present invention is to provide a solid electrolytic capacitor having excellent characteristics in which a conductive polymer layer having excellent solder heat resistance is formed.
【0007】[0007]
【課題を解決するための手段】本発明は、上記従来技術
の課題を解決すべく検討した結果、完成するに至ったも
のである。すなわち、陽極となる弁作用金属基体の表面
に誘電体酸化皮膜を形成したコンデンサ素子に重合性モ
ノマーと酸化剤を含浸し、前記誘電体酸化皮膜の表面に
導電性高分子層を形成してなる固体電解コンデンサの製
造方法において、前記コンデンサ素子内に導電性高分子
層を形成した後、前記コンデンサ素子を有機溶媒で洗浄
を行い、前記導電性高分子層内の300℃以下で蒸発す
る物質を5%以下に減少させたことを特徴としている。The present invention has been completed as a result of studies to solve the above-mentioned problems of the prior art. That is, a capacitor element in which a dielectric oxide film is formed on the surface of a valve action metal base serving as an anode is impregnated with a polymerizable monomer and an oxidizing agent, and a conductive polymer layer is formed on the surface of the dielectric oxide film. In the method for manufacturing a solid electrolytic capacitor, after forming a conductive polymer layer in the capacitor element, the capacitor element is washed with an organic solvent to remove a substance in the conductive polymer layer that evaporates at 300 ° C. or less. It is characterized by reducing to 5% or less.
【0008】前述したように、鉛フリーはんだでのはん
だの融解温度は260℃程度となると考えられるが、3
00℃以下で蒸発する低沸点の低分子物質の含有量を低
く(重量比で5%以下)することでモールド成形時の温
度又ははんだ付け時の温度による該物質の蒸発量を抑え
ることができ、従って蒸発・飛散による高分子層の構造
変化あるいは特性劣化を防ぎ、緻密な導電性高分子層を
維持することができる。このことにより、機械的強度が
向上し、樹脂外装時あるいははんだ付け時の応力、温度
にも耐え、ショート、漏れ電流増大やESR増加のない
良好な固体電解コンデンサを得ることができる。As described above, the melting temperature of solder in lead-free solder is considered to be about 260 ° C.
By lowering the content of low-boiling low-molecular substances that evaporate below 00 ° C (5% or less by weight), it is possible to suppress the amount of evaporation of these substances due to the temperature during molding or the temperature during soldering. Therefore, it is possible to prevent the structural change or characteristic deterioration of the polymer layer due to evaporation / scattering, and to maintain the dense conductive polymer layer. As a result, the mechanical strength is improved, and it is possible to obtain a good solid electrolytic capacitor that can withstand stress and temperature during resin coating or soldering, and that is free from short circuit, increase in leakage current, and increase in ESR.
【0009】前記洗浄工程を、導電性高分子層を形成
し、さらに再化成を行った後に行うと好適である。It is preferable that the washing step is performed after the conductive polymer layer is formed and the chemical conversion is further performed.
【0010】再化成時にも低沸点、低分子量物が生成さ
れるが、洗浄工程を導電性高分子層を形成し、さらに再
化成を行った後に行うと、再化成時に生成される低沸
点、低分子量物の物質を洗浄工程によって効果的に除く
ことができる。A low boiling point and a low molecular weight product are also produced during re-formation, but if the washing step is performed after forming the conductive polymer layer and further re-formation, the low boiling point produced during re-formation, Low molecular weight substances can be effectively removed by the washing process.
【0011】前記洗浄工程の後に、導電性高分子層の最
終重合を行うと好適である。It is preferable to carry out final polymerization of the conductive polymer layer after the washing step.
【0012】この最終重合は、コンデンサ素子表層部の
緻密な状態を得るために行うものであり、その後のカー
ボン層形成時のカーボン微粒子の内部進入を阻止するこ
とで更にショート、漏れ電流増大を抑制できるようにな
る。なお、最終重合でも低沸点、低分子量物が生成され
るが、導電性高分子層全体からみるとわずかな量であ
り、固体電解コンデンサの特性に及ぼす影響は少ない。This final polymerization is carried out in order to obtain a dense state of the surface layer of the capacitor element, and further prevents short-circuiting and increase in leakage current by preventing the carbon fine particles from entering the inside during the subsequent formation of the carbon layer. become able to. Although low boiling point and low molecular weight substances are produced even in the final polymerization, the amount is small when seen from the whole conductive polymer layer, and the influence on the characteristics of the solid electrolytic capacitor is small.
【0013】前記重合性モノマーがチオフェン又はその
誘導体からなるモノマーであると好適である。It is preferable that the polymerizable monomer is a monomer composed of thiophene or a derivative thereof.
【0014】チオフェンの誘導体としては次に掲げる構
造のものを例示できる。チオフェン又はその誘導体は、
ポリピロール又はポリアニリンと比較して、導電率が高
いとともに熱安定性が特に優れているため、低ESRで
耐熱特性に優れた固体電解コンデンサを得ることができ
る。Examples of thiophene derivatives include those having the following structures. Thiophene or its derivative is
As compared with polypyrrole or polyaniline, the solid electrolytic capacitor has a high electric conductivity and particularly excellent thermal stability, and thus a solid electrolytic capacitor having low ESR and excellent heat resistance can be obtained.
【0015】[0015]
【化1】
XはOまたはS
XがOのとき、Aはアルキレン、又はポリオキシアルキ
レン
Xの少なくとも一方がSのとき、Aはアルキレン、ポリ
オキシアルキレン、置換アルキレン、置換ポリオキシア
ルキレン:ここで、置換基はアルキル基、アルケニル
基、アルコキシ基[Chemical 1] X is O or S When X is O, A is alkylene, or polyoxyalkylene When at least one of X is S, A is alkylene, polyoxyalkylene, substituted alkylene, substituted polyoxyalkylene: where the substituent is Alkyl group, alkenyl group, alkoxy group
【0016】チオフェンの誘導体の中でも、3,4−エ
チレンジオキシチオフェンを用いると好適である。Among the derivatives of thiophene, it is preferable to use 3,4-ethylenedioxythiophene.
【0017】3,4−エチレンジオキシチオフェンは、
酸化剤と接触することで、緩やかな重合反応によってポ
リ−(3,4−エチレンジオキシチオフェン)を生成す
るため、3,4−エチレンジオキシチオフェンのモノマ
ー溶液を微細な構造を有するコンデンサ素子の内部にま
で浸透した状態で重合させることができる。この結果、
コンデンサ素子の内部にまで導電性高分子層を形成する
ことができるようになり、固体電解コンデンサの静電容
量の増大を図ることができる。3,4-ethylenedioxythiophene is
Upon contact with an oxidant, poly- (3,4-ethylenedioxythiophene) is generated by a gradual polymerization reaction, so that a monomer solution of 3,4-ethylenedioxythiophene is used in a capacitor element having a fine structure. It is possible to polymerize while penetrating to the inside. As a result,
The conductive polymer layer can be formed even inside the capacitor element, and the capacitance of the solid electrolytic capacitor can be increased.
【0018】さらに、この発明では、コンデンサ素子の
洗浄を有機溶媒中で20分以上行うことを特徴としてい
る。Further, the present invention is characterized in that the capacitor element is washed in an organic solvent for 20 minutes or more.
【0019】コンデンサ素子を有機溶媒中で20分以上
洗浄することにより、導電性高分子層内の300℃以下
で蒸発する物質を5%以下に減少させることができる。By washing the capacitor element in the organic solvent for 20 minutes or more, the amount of substances that evaporate at 300 ° C. or less in the conductive polymer layer can be reduced to 5% or less.
【0020】[0020]
【発明の実施の形態】次にこの発明の実施の形態につい
てより詳細に説明する。図1は固体電解コンデンサの内
部構造を示す断面図である。1はコンデンサ素子であ
り、タンタル微粉末を所定形状に成型するとともに、タ
ンタル線等の陽極導出線を埋設して、さらに焼結してタ
ンタル焼結体を得、さらにリン酸水溶液等に浸漬し、所
定電圧を印加してタンタル微粉末の表面に誘電体となる
陽極酸化皮膜を形成したものである。なお、焼結体はタ
ンタルに限らず、アルミニウム、ニオブ、チタン等の弁
作用金属を用いることができる。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in more detail. FIG. 1 is a sectional view showing the internal structure of a solid electrolytic capacitor. Reference numeral 1 is a capacitor element, which is formed by molding fine tantalum powder into a predetermined shape, embedding an anode lead wire such as tantalum wire, and further sintering to obtain a tantalum sintered body, which is further dipped in a phosphoric acid aqueous solution or the like. A predetermined voltage is applied to form an anodized film as a dielectric on the surface of the tantalum fine powder. The sintered body is not limited to tantalum, and valve metal such as aluminum, niobium, or titanium can be used.
【0021】2は陽極酸化皮膜の上に形成された導電性
高分子層である。導電性高分子層は、3,4−エチレン
ジオキシチオフェンを所定溶媒で希釈したモノマー溶液
にコンデンサ素子を浸漬し、さらに酸化剤溶液に浸漬す
る工程を繰り返すことにより、3,4−エチレンジオキ
シチオフェンを酸化重合して形成する。Reference numeral 2 is a conductive polymer layer formed on the anodized film. The conductive polymer layer is prepared by dipping the capacitor element in a monomer solution prepared by diluting 3,4-ethylenedioxythiophene with a predetermined solvent, and further dipping the capacitor element in an oxidant solution to obtain 3,4-ethylenedioxythiophene. It is formed by oxidative polymerization of thiophene.
【0022】導電性高分子層が形成されたコンデンサ素
子は、燐酸水溶液中で所定の電圧を印加して再化成し、
さらに、脱イオン水の流水により洗浄して乾燥を行う。
その後前記高分子層が所望の厚さになるまで、モノマー
溶液への浸漬−乾燥までの重合回数を繰り返す。The capacitor element on which the conductive polymer layer is formed is re-formed by applying a predetermined voltage in phosphoric acid aqueous solution,
Further, it is washed with running deionized water and dried.
Thereafter, the number of polymerizations from dipping in the monomer solution to drying is repeated until the polymer layer has a desired thickness.
【0023】その後に、コンデンサ素子をクロロホルム
等の有機溶媒中に20分以上浸漬して、コンデンサ素子
の洗浄を行う。有機溶媒での洗浄は、導電性高分子層の
形成(重合工程)毎に行っても良く、重合工程を複数回
繰り返した後に行っても良い。Thereafter, the capacitor element is immersed in an organic solvent such as chloroform for 20 minutes or more to wash the capacitor element. The washing with the organic solvent may be performed each time the conductive polymer layer is formed (polymerization step), or may be performed after repeating the polymerization step a plurality of times.
【0024】有機溶媒での洗浄を行った後に、コンデン
サ素子を再度3,4−エチレンジオキシチオフェンを所
定溶媒で希釈したモノマー溶液にコンデンサ素子を浸漬
し、さらに酸化剤溶液に浸漬し、最終重合を行う。この
最終重合はコンデンサ素子表層部の緻密な状態を得るた
めに行うものであり、その後のカーボン層形成時のカー
ボン微粒子の内部進入を阻止することで更にショート、
漏れ電流増大を抑制できるようになる。最終重合はモノ
マー溶液及び酸化剤溶液に1回ずつ浸漬し、1回の重合
を行うだけでなく、複数回の重合工程を繰り返して行っ
ても良い。After washing with an organic solvent, the capacitor element is again immersed in a monomer solution prepared by diluting 3,4-ethylenedioxythiophene with a predetermined solvent, and further immersed in an oxidant solution for final polymerization. I do. This final polymerization is carried out in order to obtain a dense state of the surface layer part of the capacitor element, and further short-circuits by blocking the ingress of carbon fine particles during the subsequent carbon layer formation,
It becomes possible to suppress an increase in leakage current. The final polymerization may be carried out by immersing the monomer solution and the oxidant solution once, and performing the polymerization once, or by repeating the polymerization step a plurality of times.
【0025】3は導電性高分子層2の上に形成されたカ
ーボン層であり、4は、カーボン層の上に形成された銀
ペースト層である。カーボン層および銀ペースト層の形
成は、公知の手段で形成することができる。Reference numeral 3 is a carbon layer formed on the conductive polymer layer 2, and reference numeral 4 is a silver paste layer formed on the carbon layer. The carbon layer and the silver paste layer can be formed by known means.
【0026】5は陽極リード線であり、コンデンサ素子
の陽極導出線と溶接され、外部と電気的に連絡する。6
は陰極リード線であり、銀ペースト層によって接続さ
れ、外部と電気的に連絡する。Reference numeral 5 denotes an anode lead wire, which is welded to the anode lead wire of the capacitor element and electrically connected to the outside. 6
Is a cathode lead wire, which is connected by a silver paste layer and is in electrical communication with the outside.
【0027】そして、陽極リード線および陰極リード線
は表面実装が可能となるよう後述する外装樹脂に端面に
沿って折り曲げられる。Then, the anode lead wire and the cathode lead wire are bent along the end faces of the exterior resin to be described later so that they can be surface-mounted.
【0028】7は外装樹脂であり、コンデンサ素子を陽
極リード線及び陰極リード線の一部を除き、トランスフ
ァーモールドによって樹脂被覆することによって形成さ
れる。Reference numeral 7 denotes an exterior resin, which is formed by coating the capacitor element with transfer molding except for a part of the anode lead wire and the cathode lead wire.
【0029】[0029]
【実施例】(実施形態1)陽極として大きさが3.9×
3.3×1.6mm3のタンタル焼結体を用い、陽極線
としてタンタル線を用いた重量が約100mgの陽極体
を0.05%燐酸水溶液中で90℃、40Vで180分
陽極酸化し、脱イオン水の流水により水洗して、乾燥を
行いコンデンサ素子とした。なお、この状態をコンデン
サと見立て、化成液中の容量を測定した結果104μF
であった。Example (Embodiment 1) The size of the anode is 3.9 ×
Using a tantalum sintered body of 3.3 × 1.6 mm 3 and using a tantalum wire as an anode wire, an anode body having a weight of about 100 mg was anodized in a 0.05% phosphoric acid aqueous solution at 90 ° C. and 40 V for 180 minutes. It was washed with running deionized water and dried to obtain a capacitor element. Assuming that this state is a condenser, the result of measuring the capacity in the chemical conversion liquid is 104 μF
Met.
【0030】次に、このコンデンサ素子をブタノール5
0gと3,4−エチレンジオキシチオフェン50gとを
混ぜ合わせてなるモノマー溶液に7分間浸漬し、次に遷
移金属イオンを含む酸化剤としてパラトルエンスルホン
酸第二鉄40gを60gのブタノールに溶解させて得た
酸化剤溶液に15分間浸漬し、化学酸化重合を行い、コ
ンデンサ素子を構成する陽極酸化皮膜上に導電性高分子
層を形成した。さらに、酸化剤溶液を除去するためのブ
タノールによる洗浄を5分間行った後、105℃で5分
間乾燥した。次いで、前記コンデンサ素子を0.4%の
燐酸水溶液中で60℃、20Vで30分再化成し、脱イ
オン水の流水により水洗して乾燥を行った。その後前記
高分子層が所望の厚さになるまで、モノマー溶液への浸
漬−乾燥までの重合回数を60回繰り返した。Next, this capacitor element was replaced with butanol 5
Immersion in a monomer solution prepared by mixing 0 g and 50 g of 3,4-ethylenedioxythiophene for 7 minutes, and then dissolving 40 g of ferric paratoluenesulfonate as an oxidizing agent containing a transition metal ion in 60 g of butanol. The obtained oxidant solution was immersed in the solution for 15 minutes to carry out chemical oxidative polymerization to form a conductive polymer layer on the anodic oxide film constituting the capacitor element. Further, after washing with butanol for removing the oxidizing agent solution for 5 minutes, it was dried at 105 ° C. for 5 minutes. Next, the capacitor element was re-formed in a 0.4% phosphoric acid aqueous solution at 60 ° C. and 20 V for 30 minutes, washed with running deionized water, and dried. Then, the number of times of polymerization from dipping in a monomer solution to drying was repeated 60 times until the polymer layer had a desired thickness.
【0031】このコンデンサ素子の重量を測定し、導電
性高分子層の形成前の重量差から導電性高分子の重量を
求め、クロロホルム中で10分〜60分、有機溶媒洗浄
し、ポリマーの重量減少率を測定したところ、10分以
内で導電性高分子の溶解・除去による急激な重量減少が
見られるが20分から30分で重量減少が飽和し約7%
であった(図2)。The weight of this capacitor element was measured, the weight of the conductive polymer was obtained from the weight difference before the formation of the conductive polymer layer, and the weight of the polymer was washed in chloroform for 10 to 60 minutes with an organic solvent. When the rate of decrease was measured, a rapid weight loss due to the dissolution and removal of the conductive polymer was observed within 10 minutes, but the weight loss was saturated in 20 to 30 minutes and was about 7%.
Was (Fig. 2).
【0032】前述の有機溶媒で20分間洗浄したコンデ
ンサ素子を加熱し、その前後での重量変化を見ると、2
00℃から300℃ではほぼ一定で5%以下であった
(図3)。一方、300℃を超える温度範囲では、重量
減少が著しい。これは、300℃以上では高分子量化し
た導電性高分子の分解が始まり、重量減少を引き起こし
ているものと考えられる。When the capacitor element washed with the above-mentioned organic solvent for 20 minutes is heated and the weight change before and after the heating is observed, it is 2
From 00 ° C to 300 ° C, it was almost constant and was 5% or less (Fig. 3). On the other hand, in the temperature range exceeding 300 ° C., the weight reduction is remarkable. It is considered that at 300 ° C. or higher, the conductive polymer having a high molecular weight starts to decompose and causes a weight reduction.
【0033】この結果より、有機溶媒中で20分以上洗
浄することにより、300℃以下で蒸発する物質を5重
量%以下とすることができることが判明した。From these results, it was found that the substance evaporated at 300 ° C. or lower can be reduced to 5% by weight or less by washing in an organic solvent for 20 minutes or longer.
【0034】次に、この洗浄を施したコンデンサ素子の
導電性高分子層の上に、カーボン層、このカーボン層の
上に陰極となる銀塗料層を形成し、この銀塗料層の上に
陰極引出端子を、前記陽極体から引出した陽極線に陽極
引出端子をそれぞれ取付け、トランスファーモールドに
より樹脂外装を行い、前記陰極引出端子及び陽極引出端
子を所定の位置に折曲げてチップ状の固体電解コンデン
サを完成した。当該コンデンサは、最終製品検査で3.
5%のショート、10.8%のLC不良の発生をみた。
さらに、この不良を除いて初期特性を測定し、その後は
んだリフロー試験での評価を行った。この結果を図4に
示す。Next, a carbon layer is formed on the conductive polymer layer of the washed capacitor element, and a silver paint layer serving as a cathode is formed on the carbon layer, and the cathode is formed on the silver paint layer. Attaching the lead-out terminals to the anode wire drawn out from the anode body, mounting the anode lead-out terminals with resin by transfer molding, and bending the cathode lead-out terminal and the anode lead-out terminal to predetermined positions to form a chip-shaped solid electrolytic capacitor. Was completed. The final product inspection of the capacitor is 3.
Occurrence of short circuit of 5% and LC failure of 10.8% was observed.
Furthermore, the initial characteristics were measured excluding this defect, and then evaluation was performed in a solder reflow test. The result is shown in FIG.
【0035】コンデンサ素子の洗浄を実施した製品のE
SRは、洗浄時間によって異なる特性を示し、洗浄時間
が長いほど、ESRは増加する傾向にあるが、洗浄時間
が20分から30分でほぼ一定の値をとるようになる。
リフローによるショート不良は、コンデンサ素子の洗浄
を行わなかった場合には数%の発生を見るが、コンデン
サ素子の洗浄によって低減し、コンデンサ素子の洗浄を
20分以上行うと、ほぼ最小値を取ることが判明した。
この結果により、コンデンサ素子を有機溶媒で洗浄する
ことにより、リフロー時のショート発生の低減が図られ
ることが確認できた。E of the product after cleaning the capacitor element
The SR exhibits different characteristics depending on the cleaning time, and the ESR tends to increase as the cleaning time increases, but the SR takes a substantially constant value in 20 to 30 minutes.
Short-circuit defects due to reflow are seen to occur at a few% when the capacitor element is not washed, but it is reduced by washing the capacitor element, and takes a minimum value when the capacitor element is washed for 20 minutes or more. There was found.
From this result, it was confirmed that the occurrence of short circuit during reflow can be reduced by cleaning the capacitor element with an organic solvent.
【0036】また、この結果より、コンデンサ素子の洗
浄は20分以上で行うことで安定した特性のコンデンサ
が得られる事が判り、この場合、300℃以下の範囲で
蒸発する低沸点の低分子量物質は、5%重量以下となっ
ていることが判った。The results also show that washing of the capacitor element for 20 minutes or more provides a capacitor having stable characteristics. In this case, a low boiling point low molecular weight substance that evaporates in the range of 300 ° C. or less is used. Was found to be 5% by weight or less.
【0037】なお、重合工程で行われるブタノール洗浄
は、コンデンサ素子に付着した酸化剤を除去するために
行うものであり、酸化剤の溶媒と同じブタノールを用い
ている。この実施例の中でブタノール洗浄を行っている
時間は5分と短く、低分子量の物質を十分に除去するこ
とはできない(ブタノール洗浄を行っても、その後にク
ロロホルム洗浄を行わなかった場合でのショート発生、
LC不良発生率が高いことより、推定される)。従っ
て、ここでのブタノール洗浄はこの発明の範疇に入るも
のではない。The butanol cleaning performed in the polymerization step is performed to remove the oxidant adhering to the capacitor element, and the same butanol as the solvent for the oxidant is used. In this example, the time for butanol washing was as short as 5 minutes, and it was not possible to sufficiently remove low-molecular-weight substances (in the case where the butanol washing was carried out and the chloroform washing was not carried out thereafter). Short circuit occurred,
It is estimated from the high LC failure rate). Therefore, butanol cleaning here is not within the scope of the present invention.
【0038】(実施形態2)次に別の実施形態について
詳細に説明する。すなわち、以下に示す実施例1〜5の
モールド成形時のショート、LC不良率、及びESR特
性、240℃はんだリフローを4回繰り返した後のショ
ート、LC不良とその時のESRの増加量を測定した結
果、表1に示す通りであった。(Second Embodiment) Next, another embodiment will be described in detail. That is, the short circuit at the time of molding, LC defect rate, and ESR characteristics of the following Examples 1 to 5, short circuit after repeating 240 ° C. solder reflow four times, LC defect and the increase amount of ESR at that time were measured. The results are as shown in Table 1.
【0039】(実施例1)先に示した実施の形態と同様
な手段で、コンデンサ素子を構成する陽極酸化皮膜上に
導電性高分子層を形成し、次いで、前記コンデンサ素子
を同様な手段で再化成、純水洗浄、乾燥を行った。その
後前記コンデンサ素子をクロロホルム中で30分洗浄
し、高分子層が所望の厚さになるまで、モノマー溶液へ
の浸漬−洗浄までの重合を50回繰り返した。(Example 1) A conductive polymer layer was formed on an anodized film constituting a capacitor element by the same means as in the above-described embodiment, and then the capacitor element was formed by the same means. Reforming, washing with pure water, and drying were performed. Thereafter, the capacitor element was washed in chloroform for 30 minutes, and the polymerization from dipping in a monomer solution to washing was repeated 50 times until the polymer layer had a desired thickness.
【0040】次に、このようにして導電性高分子層を形
成したコンデンサ素子を、再び前記モノマー溶液に7分
間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合
を行い、ブタノールによる洗浄を5分間行った後、10
5℃で5分間乾燥し、次いで先の実施の形態と同様な手
段で再化成、洗浄、乾燥を行う工程を10回繰り返し、
コンデンサ素子表面に所望の厚さの導電性高分子層を形
成した。Next, the capacitor element having the conductive polymer layer thus formed is again immersed in the monomer solution for 7 minutes and in the oxidant solution for 15 minutes to carry out chemical oxidative polymerization and washed with butanol. After 5 minutes, 10
The steps of drying at 5 ° C. for 5 minutes and then performing re-formation, washing, and drying by the same means as in the previous embodiment are repeated 10 times,
A conductive polymer layer having a desired thickness was formed on the surface of the capacitor element.
【0041】すなわち、この実施例1は、重合・再化成
・純水洗浄・乾燥した後、有機溶媒によりコンデンサ素
子を洗浄する工程を50回行い、さらに最終重合(重合
・再化成・純水洗浄・乾燥までの工程を10回)した場
合の実施例である。That is, in Example 1, the step of washing the capacitor element with an organic solvent after polymerization / re-formation / washing with pure water / drying was carried out 50 times, and further final polymerization (polymerization / re-forming / washing with pure water). -This is an example in the case of performing the steps up to drying 10 times).
【0042】このコンデンサ素子の一部で重量を測定
し、導電性高分子層の形成前の重量差から導電性高分子
の重量を求め、200℃から300℃の温度のオーブン
で10分加熱し、ポリマーの重量減少率を測定したとこ
ろ、3.7%から4.8%であった。The weight of a part of this capacitor element was measured, the weight of the conductive polymer was determined from the weight difference before the formation of the conductive polymer layer, and the weight was heated in an oven at a temperature of 200 ° C. to 300 ° C. for 10 minutes. The polymer weight loss rate was measured to be 3.7% to 4.8%.
【0043】次に、この導電性高分子層の上に、カーボ
ン層、このカーボン層の上に陰極となる銀塗料層を形成
し、この銀塗料層の上に陰極引出端子を、前記陽極体か
ら引出した陽極線に陽極引出端子をそれぞれ取付け、ト
ランスファーモールドにより樹脂外装を行い、前記陰極
引出端子及び陽極引出端子を所定の位置に折曲げてチッ
プ状の固体電解コンデンサを完成した。当該コンデンサ
は、最終製品検査で0%のショート、3.8%のLC不
良の発生をみたが、この不良を除いて初期特性を測定後
はんだリフロー試験で評価された。この結果を表1に示
す。Next, a carbon layer is formed on the conductive polymer layer, a silver paint layer serving as a cathode is formed on the carbon layer, and a cathode lead terminal is formed on the silver paint layer. Anode lead terminals were attached to the anode wires drawn from, respectively, and resin coating was performed by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor. The final product inspection of the capacitor showed 0% short circuit and 3.8% LC defect, but the initial characteristics were measured and solder reflow test was performed after the initial characteristic was excluded. The results are shown in Table 1.
【0044】(実施例2)参考例1と同様な手段で、コ
ンデンサ素子を構成する陽極酸化皮膜上に導電性高分子
層を形成し、次いで、前記コンデンサ素子をクロロホル
ム中で30分洗浄した。その後再化成、洗浄、乾燥を行
い、高分子層が所望の厚さになるまで、モノマー溶液へ
の浸漬−乾燥までの重合回数を50回繰り返した。Example 2 A conductive polymer layer was formed on the anodic oxide film constituting the capacitor element by the same means as in Reference Example 1, and then the capacitor element was washed in chloroform for 30 minutes. After that, re-formation, washing and drying were performed, and the number of polymerizations from dipping in the monomer solution to drying was repeated 50 times until the polymer layer had a desired thickness.
【0045】次に、このようにして導電性高分子層を形
成したコンデンサ素子を、再び前記モノマー溶液に7分
間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合
を行い、ブタノールによる洗浄を5分間行った後、10
5℃で5分間乾燥し、次いで参考例1と同様な手段で再
化成、洗浄、乾燥を行う工程を10回繰り返し、コンデ
ンサ素子表面に所望の厚さの導電性高分子層を形成し
た。Next, the capacitor element having the conductive polymer layer thus formed is again immersed in the monomer solution for 7 minutes and in the oxidant solution for 15 minutes to carry out chemical oxidative polymerization and washed with butanol. After 5 minutes, 10
The steps of drying at 5 ° C. for 5 minutes and then re-forming, washing and drying by the same means as in Reference Example 1 were repeated 10 times to form a conductive polymer layer having a desired thickness on the surface of the capacitor element.
【0046】すなわち、この実施例2は、重合した後、
有機溶媒によりコンデンサ素子を洗浄し、再化成、純水
洗浄、乾燥する工程を50回繰り返し、さらに最終重合
(重合回数10回)した場合の実施例である。That is, in Example 2, after polymerization,
This is an example in which the steps of washing the capacitor element with an organic solvent, re-forming, washing with pure water, and drying are repeated 50 times, and further the final polymerization (the number of times of polymerization is 10 times).
【0047】このコンデンサ素子の一部で重量を測定
し、導電性高分子層の形成前の重量差から導電性高分子
の重量を求め、200℃から300℃の温度のオーブン
で10分加熱し、ポリマーの重量減少率を測定したとこ
ろ、3.6%から4.6%であった。The weight of a part of this capacitor element was measured, the weight of the conductive polymer was obtained from the weight difference before the formation of the conductive polymer layer, and the weight was heated in an oven at a temperature of 200 ° C. to 300 ° C. for 10 minutes. The polymer weight loss rate was measured to be 3.6% to 4.6%.
【0048】次に、この導電性高分子層の上に、カーボ
ン層、このカーボン層の上に陰極となる銀塗料層を形成
し、この銀塗料層の上に陰極引出端子を、前記陽極体か
ら引出した陽極線に陽極引出端子をそれぞれ取付け、ト
ランスファーモールドにより樹脂外装を行い、前記陰極
引出端子及び陽極引出端子を所定の位置に折曲げてチッ
プ状の固体電解コンデンサを完成した。当該コンデンサ
は、最終製品検査で0.6%のショート、15.6%の
LC不良が発生した。この不良を除いて初期特性を測定
後はんだリフロー試験で評価された。この結果を表1に
示す。Next, a carbon layer is formed on the conductive polymer layer, a silver paint layer serving as a cathode is formed on the carbon layer, and a cathode lead terminal is formed on the silver paint layer and the anode body is formed. Anode lead terminals were attached to the anode wires drawn from, respectively, and resin coating was performed by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor. The final product inspection of the capacitor caused a short circuit of 0.6% and an LC defect of 15.6%. Except for this defect, initial characteristics were measured and evaluated by a solder reflow test. The results are shown in Table 1.
【0049】(実施例3)先の実施の形態と同様な手段
で、コンデンサ素子を構成する陽極酸化皮膜上に導電性
高分子層を形成し、次いで、前記コンデンサ素子を同様
な手段で再化成、水洗、乾燥を行った。このような導電
性高分子層の形成を10回繰り返し、その後前記コンデ
ンサ素子をクロロホルムで30分間洗浄するという工程
を、高分子層が所望の厚さになるまで繰り返した。重合
回数としては、モノマー溶液への浸漬−乾燥までの重合
回数を10回、クロロホルムによる洗浄を重合10回に
1回の割合で入れ、これを計5回繰り返した。Example 3 A conductive polymer layer was formed on the anodic oxide film constituting the capacitor element by the same means as in the previous embodiment, and then the capacitor element was reformed by the same means. It was washed with water and dried. The formation of such a conductive polymer layer was repeated 10 times, and then the step of washing the capacitor element with chloroform for 30 minutes was repeated until the polymer layer had a desired thickness. As the number of times of polymerization, the number of times of polymerization from dipping in a monomer solution to drying was 10 times, and washing with chloroform was added once every 10 times of polymerization, and this was repeated 5 times in total.
【0050】次に、このようにして導電性高分子層を形
成したコンデンサ素子を、再び前記モノマー溶液に7分
間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合
を行い、ブタノールによる洗浄を5分間行った後、10
5℃で5分間乾燥し、次いで参考例1と同様な手段で再
化成、水洗、乾燥を行う工程を10回繰り返し、コンデ
ンサ素子表面に所望の厚さの導電性高分子層を形成し
た。Next, the capacitor element having the conductive polymer layer thus formed is again immersed in the monomer solution for 7 minutes and in the oxidant solution for 15 minutes for chemical oxidative polymerization, and washed with butanol. After 5 minutes, 10
The steps of drying at 5 ° C. for 5 minutes, and then re-forming, washing with water and drying by the same means as in Reference Example 1 were repeated 10 times to form a conductive polymer layer having a desired thickness on the surface of the capacitor element.
【0051】すなわち、この実施例3は、重合を10回
行った後に有機溶媒によりコンデンサ素子を洗浄すると
いう工程を5回繰り返し、さらに再化成と最終重合(重
合・再化成・純水洗浄・乾燥までの工程を10回)した
場合の実施例である。That is, in Example 3, the step of washing the capacitor element with an organic solvent after repeating the polymerization 10 times was repeated 5 times, and further re-forming and final polymerization (polymerization / re-forming / washing with pure water / drying). This is an example in the case of performing the steps up to 10 times).
【0052】このコンデンサ素子の一部で重量を測定
し、導電性高分子層の形成前の重量差から導電性高分子
の重量を求め、200℃から300℃の温度のオーブン
で10分加熱し、ポリマーの重量減少率を測定したとこ
ろ、3.9%から4.9%であった。The weight of a part of this capacitor element was measured, the weight of the conductive polymer was obtained from the weight difference before the formation of the conductive polymer layer, and the weight was heated in an oven at a temperature of 200 ° C. to 300 ° C. for 10 minutes. The weight loss rate of the polymer was measured and found to be 3.9% to 4.9%.
【0053】次に、この導電性高分子層の上に、カーボ
ン層、このカーボン層の上に陰極となる銀塗料層を形成
し、この銀塗料層の上に陰極引出端子を、前記陽極体か
ら引出した陽極線に陽極引出端子をそれぞれ取付け、ト
ランスファーモールドにより樹脂外装を行い、前記陰極
引出端子及び陽極引出端子を所定の位置に折曲げてチッ
プ状の固体電解コンデンサを完成した。当該コンデンサ
は、最終製品検査で0%のショート、4.2%のLC不
良の発生であり、有機溶媒洗浄を重合毎に行う実施例1
に比べても遜色ないものであった。この不良を除いて初
期特性を測定後はんだリフロー試験で評価された。この
結果を表1に示す。Next, a carbon layer is formed on the conductive polymer layer, a silver coating layer serving as a cathode is formed on the carbon layer, and a cathode lead terminal is formed on the silver coating layer. Anode lead terminals were attached to the anode wires drawn from, respectively, and resin coating was performed by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor. The capacitor had a short circuit of 0% in the final product inspection and an LC defect of 4.2%, and thus Example 1 in which organic solvent washing is performed for each polymerization
It was as good as that of. Except for this defect, initial characteristics were measured and evaluated by a solder reflow test. The results are shown in Table 1.
【0054】(実施例4)先の実施の形態と同様な手段
で、コンデンサ素子を構成する陽極酸化皮膜上に導電性
高分子層を形成し、次いで、前記コンデンサ素子を同様
な手段で再化成、水洗、乾燥を行った。このような導電
性高分子層の形成を10回繰り返し、その後前記コンデ
ンサ素子をクロロホルムで30分洗浄するという工程
を、高分子層が所望の厚さになるまで繰り返した。重合
回数としては、モノマー溶液への浸漬−乾燥までの重合
回数を10回、クロロホルムでの洗浄を重合10回に1
回の割合で入れ、これを計5回繰り返した。Example 4 A conductive polymer layer was formed on the anodized film forming the capacitor element by the same means as in the previous embodiment, and then the capacitor element was reformed by the same means. It was washed with water and dried. The formation of such a conductive polymer layer was repeated 10 times, and then the step of washing the capacitor element with chloroform for 30 minutes was repeated until the polymer layer had a desired thickness. As for the number of polymerizations, the number of polymerizations from dipping in a monomer solution to drying is 10 times, and washing with chloroform is 1 in 10 polymerizations.
This was repeated 5 times in total.
【0055】次に、このようにして導電性高分子層を形
成したコンデンサ素子を、再び前記モノマー溶液に7分
間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合
を行い、ブタノールによる洗浄を5分間行った後、10
5℃で5分間乾燥し、次いで実施例2と同様な手段で再
化成、水洗、乾燥、そしてクロロホルムによる有機溶媒
洗浄を行う工程を9回繰り返し、最後をモノマー溶液へ
の浸漬−乾燥までの重合そして再化成−乾燥で終了し、
コンデンサ素子表面に所望の厚さの導電性高分子層を形
成した。Next, the capacitor element having the conductive polymer layer thus formed is again immersed in the monomer solution for 7 minutes and in the oxidant solution for 15 minutes for chemical oxidative polymerization, and washed with butanol. After 5 minutes, 10
The steps of drying at 5 ° C. for 5 minutes, followed by re-formation, washing with water, drying, and washing with an organic solvent with chloroform were repeated 9 times in the same manner as in Example 2, and the final step was dipping in a monomer solution and polymerization until drying. And re-forming-drying ends,
A conductive polymer layer having a desired thickness was formed on the surface of the capacitor element.
【0056】すなわち、この実施例3は、重合を10回
行った後に有機溶媒によりコンデンサ素子を洗浄すると
いう工程を5回繰り返し、さらに再化成と重合、有機溶
媒洗浄という工程を9回繰り返し、最後に重合(最終重
合)、乾燥した場合の実施例である。That is, in Example 3, the step of washing the capacitor element with an organic solvent after repeating the polymerization 10 times was repeated 5 times, and the steps of re-formation, polymerization and washing with an organic solvent were repeated 9 times, and finally, It is an example in the case where it is polymerized (final polymerization) and dried.
【0057】このコンデンサ素子の一部で重量を測定
し、導電性高分子層の形成前の重量差から導電性高分子
の重量を求め、200℃から300℃の温度のオーブン
で10分加熱し、ポリマーの重量減少率を測定した所
3.3%から4.7%であった。The weight of a part of this capacitor element was measured, the weight of the conductive polymer was determined from the weight difference before the formation of the conductive polymer layer, and the weight was heated in an oven at a temperature of 200 ° C. to 300 ° C. for 10 minutes. The polymer weight loss was measured to be 3.3% to 4.7%.
【0058】次に、この導電性高分子層の上に、カーボ
ン層、このカーボン層の上に陰極となる銀塗料層を形成
し、この銀塗料層の上に陰極引出端子を、前記陽極体か
ら引出した陽極線に陽極引出端子をそれぞれ取付け、ト
ランスファーモールドにより樹脂外装を行い、前記陰極
引出端子及び陽極引出端子を所定の位置に折曲げてチッ
プ状の固体電解コンデンサを完成した。当該コンデンサ
は、最終製品検査で0%のショート、4.7%のLC不
良の発生をみたが、洗浄を重合毎行う実施例2に比べて
遜色ないものであった。この不良を除いて初期特性を測
定後はんだリフロー試験で評価された。Next, a carbon layer is formed on the conductive polymer layer, and a silver paint layer serving as a cathode is formed on the carbon layer. A cathode lead terminal is formed on the silver paint layer, and the anode body is formed. Anode lead terminals were attached to the anode wires drawn from, respectively, and resin coating was performed by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor. In the final product inspection, the capacitor was found to have a short circuit of 0% and an LC defect of 4.7%, which was comparable to Example 2 in which cleaning was performed for each polymerization. Except for this defect, initial characteristics were measured and evaluated by a solder reflow test.
【0059】(実施例5)実施例5と同様な手段で、コ
ンデンサ素子を構成する陽極酸化皮膜上に導電性高分子
層を形成し、次いで、前記コンデンサ素子を同様な手段
で再化成、洗浄、乾燥を行った。このような導電性高分
子層の形成を10回繰り返し、その後前記コンデンサ素
子をクロロホルムで30分洗浄するという工程を、高分
子層が所望の厚さになるまで繰り返した。重合回数とし
ては、モノマー溶液への浸漬−乾燥までの重合回数を1
0回、クロロホルム洗浄を重合10回に1回の割合で入
れ、これを計5回繰り返した。(Embodiment 5) A conductive polymer layer is formed on the anodic oxide film constituting the capacitor element by the same means as in Embodiment 5, and then the capacitor element is reformed and washed by the same means. , Dried. The formation of such a conductive polymer layer was repeated 10 times, and then the step of washing the capacitor element with chloroform for 30 minutes was repeated until the polymer layer had a desired thickness. As the number of polymerizations, the number of polymerizations from dipping in a monomer solution to drying is 1
The washing was repeated 0 times, once every 10 times of polymerization, and this was repeated 5 times in total.
【0060】次に、このようにして導電性高分子層を形
成したコンデンサ素子を、再び前記モノマー溶液に7分
間浸漬して酸化剤溶液に15分間浸漬して化学酸化重合
を行い、ブタノールによる洗浄を5分間行った後、10
5℃で5分間乾燥し、次いで実施例2と同様な手段で再
化成、水洗、乾燥、そしてクロロホルムによる有機溶媒
洗浄を行う工程を10回繰り返し、コンデンサ素子表面
に所望の厚さの導電性高分子層を形成した。Next, the capacitor element having the conductive polymer layer thus formed is again immersed in the monomer solution for 7 minutes and in the oxidant solution for 15 minutes for chemical oxidative polymerization, and washed with butanol. After 5 minutes, 10
The steps of drying at 5 ° C. for 5 minutes, followed by re-formation, washing with water, drying, and washing with an organic solvent with chloroform were repeated 10 times in the same manner as in Example 2, and the surface of the capacitor element was made to have a desired high conductivity. A molecular layer was formed.
【0061】すなわち、この実施例5は、重合を10回
行った後に有機溶媒によりコンデンサ素子を洗浄すると
いう工程を5回繰り返し、さらに再化成と重合、有機溶
媒洗浄という工程を10回繰り返した場合の実施例であ
る。That is, in this Example 5, the step of washing the capacitor element with an organic solvent after repeating the polymerization 10 times was repeated 5 times, and the steps of re-forming, polymerization and washing with an organic solvent were repeated 10 times. It is an example of.
【0062】このコンデンサ素子の一部で重量を測定
し、導電性高分子層の形成前の重量差から導電性高分子
の重量を求め、200℃から300℃の温度のオーブン
で10分加熱し、ポリマーの重量減少率を測定したとこ
ろ3.3から4.5%であった。The weight of a part of this capacitor element was measured, the weight of the conductive polymer was determined from the weight difference before the formation of the conductive polymer layer, and the weight was heated in an oven at a temperature of 200 ° C. to 300 ° C. for 10 minutes. The polymer weight loss rate was 3.3 to 4.5%.
【0063】次に、この導電性高分子層の上に、カーボ
ン層、このカーボン層の上に陰極となる銀塗料層を形成
し、この銀塗料層の上に陰極引出端子を、前記陽極体か
ら引出した陽極線に陽極引出端子をそれぞれ取付け、ト
ランスファーモールドにより樹脂外装を行い、前記陰極
引出端子及び陽極引出端子を所定の位置に折曲げてチッ
プ状の固体電解コンデンサを完成した。当該コンデンサ
は、最終製品検査で2.7%のショート、11.9%の
LC不良が発生し、最後の重合後に洗浄しない実施例3
に比べて劣るものであった。この不良を除いて初期特性
を測定後はんだリフロー試験で評価された。この結果を
表1に示す。Next, a carbon layer is formed on the conductive polymer layer, a silver coating layer serving as a cathode is formed on the carbon layer, and a cathode lead terminal is formed on the silver coating layer and the anode body is formed. Anode lead terminals were attached to the anode wires drawn from, respectively, and resin coating was performed by transfer molding, and the cathode lead terminal and the anode lead terminal were bent at predetermined positions to complete a chip-shaped solid electrolytic capacitor. The capacitor had a short circuit of 2.7% in the final product inspection, an LC defect of 11.9%, and was not washed after the final polymerization.
It was inferior to. Except for this defect, initial characteristics were measured and evaluated by a solder reflow test. The results are shown in Table 1.
【0064】[0064]
【表1】 [Table 1]
【0065】表1から明らかなように、実施例1、3、
4のものは、いずれもショート、漏れ電流及びESR特
性に優れ信頼性の高い固体電解コンデンサを得ることが
できるのに対し、実施例2、5のものはESR特性は問
題ないものの、ショートが多く、漏れ電流特性も実施例
1、3、4に比べ劣るものとなっている。この差は再化
成後の有機溶媒洗浄の有無により生じたものと考えら
れ、再化成後に有機溶媒洗浄を行うことにより、最終製
品検査でのショート率、LC不良率の発生頻度を低減で
きることが確認できた。As is clear from Table 1, Examples 1, 3 and
Nos. 4 and 5 can obtain a highly reliable solid electrolytic capacitor having excellent short circuit, leakage current and ESR characteristics, while those of Examples 2 and 5 have many ESR characteristics but no short circuit. The leakage current characteristics are also inferior to those of the first, third and fourth embodiments. It is considered that this difference was caused by the presence or absence of organic solvent cleaning after reforming, and it was confirmed that by performing organic solvent cleaning after reforming, it is possible to reduce the frequency of occurrence of short-circuit rate and LC defect rate in final product inspection. did it.
【0066】また、実施例1、3、4同士を比較する
と、それぞれの特性に大きな差異はない。この結果より
有機溶媒によるコンデンサ素子の洗浄は、必ずしも重合
毎に行う必要はなく、重合を複数回繰り返した後に、有
機溶媒による洗浄を行っても良いことが判る。Further, comparing Examples 1, 3, and 4, there is no great difference in their characteristics. From this result, it is understood that the cleaning of the capacitor element with the organic solvent does not necessarily have to be performed for each polymerization, and the cleaning with the organic solvent may be performed after repeating the polymerization a plurality of times.
【0067】[0067]
【発明の効果】以上述べたように本発明によれば、弁作
用金属からなるコンデンサ素子を構成する酸化皮膜の表
面に導電性高分子層を形成してなる固体電解コンデンサ
において、前記導電性高分子層が形成されたコンデンサ
素子を、有機溶媒で洗浄し、低沸点の低分子物質を溶解
・除去させ、当該物質の含有量を抑え、前記導電性高分
子層内に200℃から300℃で蒸発する物質を5%以
下にすることによって、モールド成形時の温度又ははん
だ付け時の温度による該物質の蒸発量を抑えることがで
きる。このため、低分子量の物質の蒸発・飛散による高
分子層の構造変化あるいは特性劣化を防ぎ、緻密な導電
性高分子層が形成でき、機械的強度が向上し、樹脂外装
時あるいははんだ付け時の応力、温度にも耐え、ショー
ト、漏れ電流増大やESR増加のない良好な固体電解コ
ンデンサを得ることができる。As described above, according to the present invention, in the solid electrolytic capacitor having the conductive polymer layer formed on the surface of the oxide film forming the capacitor element made of the valve metal, The capacitor element on which the molecular layer is formed is washed with an organic solvent to dissolve and remove the low-boiling low-molecular substance to suppress the content of the substance, and to reduce the content of the conductive polymer layer at 200 ° C to 300 ° C. By setting the amount of the substance to be evaporated to 5% or less, the amount of evaporation of the substance due to the temperature during molding or the temperature during soldering can be suppressed. For this reason, it is possible to prevent structural change or characteristic deterioration of the polymer layer due to evaporation / scattering of low molecular weight substances, to form a dense conductive polymer layer, improve mechanical strength, It is possible to obtain a good solid electrolytic capacitor which can withstand stress and temperature and is free from short circuit, increase in leakage current and increase in ESR.
【図1】本発明の固体電解コンデンサの基本構造を示す
断面図である。FIG. 1 is a sectional view showing a basic structure of a solid electrolytic capacitor of the present invention.
【図2】有機溶媒洗浄の洗浄時間による導電性高分子層
の重量減少率を表すグラフである。FIG. 2 is a graph showing a weight reduction rate of a conductive polymer layer according to a cleaning time of organic solvent cleaning.
【図3】有機洗浄したコンデンサ素子を加熱した際の導
電性高分子層の重量減少率を表すグラフである。FIG. 3 is a graph showing the weight reduction rate of the conductive polymer layer when the organic cleaned capacitor element is heated.
【図4】有機溶媒洗浄の洗浄時間による固体電解コンデ
ンサの特性の変化を表すグラフである。FIG. 4 is a graph showing changes in the characteristics of a solid electrolytic capacitor depending on the cleaning time of organic solvent cleaning.
1 コンデンサ素子 2 導電性高分子層 3 カーボン層 4 銀ペースト層 5 陽極リード線 6 陰極リード線 7 外装樹脂 1 Capacitor element 2 Conductive polymer layer 3 carbon layer 4 Silver paste layer 5 Anode lead wire 6 Cathode lead wire 7 Exterior resin
Claims (6)
体酸化皮膜を形成したコンデンサ素子に重合性モノマー
と酸化剤を含浸し、前記誘電体酸化皮膜の表面に導電性
高分子層を形成してなる固体電解コンデンサの製造方法
において、 前記コンデンサ素子内に導電性高分子層を形成した後、
前記コンデンサ素子を有機溶媒で洗浄を行い、前記導電
性高分子層内の300℃以下で蒸発する物質を5%以下
に減少させたことを特徴とする固体電解コンデンサの製
造方法。1. A capacitor element in which a dielectric oxide film is formed on the surface of a valve action metal substrate serving as an anode is impregnated with a polymerizable monomer and an oxidizing agent, and a conductive polymer layer is formed on the surface of the dielectric oxide film. In the method for producing a solid electrolytic capacitor comprising, after forming a conductive polymer layer in the capacitor element,
A method for producing a solid electrolytic capacitor, characterized in that the capacitor element is washed with an organic solvent to reduce the amount of substances that evaporate at 300 ° C. or less in the conductive polymer layer to 5% or less.
し、さらに再化成を行った後に行うことを特徴とする請
求項1に記載の固体電解コンデンサの製造方法。2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the cleaning step is performed after forming a conductive polymer layer and further performing re-chemical conversion.
最終重合を行うことを特徴とする請求項1又は2の何れ
かに記載の固体電解コンデンサの製造方法。3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive polymer layer is subjected to final polymerization after the washing step.
の誘導体からなるモノマーであることを特徴とする請求
項1または3の何れかに記載の固体電解コンデンサの製
造方法。4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a monomer composed of thiophene or a derivative thereof.
レンジオキシチオフェンであることを特徴とする請求項
4に記載の固体電解コンデンサの製造方法。5. The method for producing a solid electrolytic capacitor according to claim 4, wherein the derivative of thiophene is 3,4-ethylenedioxythiophene.
0分以上行うことを特徴とする請求項1ないし5記載の
固体電解コンデンサの製造方法。6. Washing the capacitor element in an organic solvent
The method for producing a solid electrolytic capacitor according to claim 1, wherein the method is performed for 0 minutes or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001285407A JP2003092232A (en) | 2001-09-19 | 2001-09-19 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001285407A JP2003092232A (en) | 2001-09-19 | 2001-09-19 | Method for manufacturing solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003092232A true JP2003092232A (en) | 2003-03-28 |
Family
ID=19108558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001285407A Pending JP2003092232A (en) | 2001-09-19 | 2001-09-19 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003092232A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109247A (en) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
JP2009278122A (en) * | 2009-07-14 | 2009-11-26 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
WO2012112676A3 (en) * | 2011-02-15 | 2012-11-15 | Kemet Electronics Corporation | Materials and methods for improving corner and edge coverage of solid electrolytic capacitors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373509A (en) * | 1989-08-15 | 1991-03-28 | Marcon Electron Co Ltd | Manufacturing method of solid electrolytic capacitor |
JPH09293639A (en) * | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2000106329A (en) * | 1998-09-29 | 2000-04-11 | Matsushita Electric Ind Co Ltd | Manufacturing method of capacitor |
JP2001085276A (en) * | 1999-07-12 | 2001-03-30 | Matsushita Electric Ind Co Ltd | Method for manufacturing solid electrolytic capacitor |
JP2001217159A (en) * | 2000-02-02 | 2001-08-10 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitor and method of manufacturing the same |
-
2001
- 2001-09-19 JP JP2001285407A patent/JP2003092232A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373509A (en) * | 1989-08-15 | 1991-03-28 | Marcon Electron Co Ltd | Manufacturing method of solid electrolytic capacitor |
JPH09293639A (en) * | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2000106329A (en) * | 1998-09-29 | 2000-04-11 | Matsushita Electric Ind Co Ltd | Manufacturing method of capacitor |
JP2001085276A (en) * | 1999-07-12 | 2001-03-30 | Matsushita Electric Ind Co Ltd | Method for manufacturing solid electrolytic capacitor |
JP2001217159A (en) * | 2000-02-02 | 2001-08-10 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitor and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109247A (en) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
JP2009278122A (en) * | 2009-07-14 | 2009-11-26 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
WO2012112676A3 (en) * | 2011-02-15 | 2012-11-15 | Kemet Electronics Corporation | Materials and methods for improving corner and edge coverage of solid electrolytic capacitors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102074370B (en) | Method of manufacturing solid electrolytic capacitor | |
JP5461110B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
KR100279098B1 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5543001B2 (en) | Electrolytic capacitor manufacturing method | |
JP4944359B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH10321471A (en) | Solid electrolytic capacitor and its manufacture | |
JP2003092232A (en) | Method for manufacturing solid electrolytic capacitor | |
JP4926131B2 (en) | Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor | |
JP3485848B2 (en) | Solid electrolytic capacitors | |
JP2004128033A (en) | Method of manufacturing solid state electrolytic capacitor | |
JP3974706B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH0645200A (en) | Solid-state electrolytic capacitor | |
JP4115359B2 (en) | Electrolytic capacitor and manufacturing method thereof | |
JP2005109247A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2003109850A (en) | Method for manufacturing solid electrolytic capacitor | |
JP4084862B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP5116130B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003297672A (en) | Method of manufacturing solid electrolytic capacitor | |
JP4701680B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003068572A (en) | Method for manufacturing solid electrolytic capacitor | |
JP4637700B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003297687A (en) | Method for producing solid electrolytic capacitor | |
JP2004128035A (en) | Method of manufacturing solid-state electrolytic capacitor | |
CN115240985A (en) | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor | |
JP2004128032A (en) | Method of manufacturing solid-state electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110112 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110705 |