JPH037152B2 - - Google Patents
Info
- Publication number
- JPH037152B2 JPH037152B2 JP57089625A JP8962582A JPH037152B2 JP H037152 B2 JPH037152 B2 JP H037152B2 JP 57089625 A JP57089625 A JP 57089625A JP 8962582 A JP8962582 A JP 8962582A JP H037152 B2 JPH037152 B2 JP H037152B2
- Authority
- JP
- Japan
- Prior art keywords
- submount
- semiconductor laser
- laser element
- center
- area near
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910000679 solder Inorganic materials 0.000 claims description 4
- 238000005219 brazing Methods 0.000 abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 7
- 239000010949 copper Substances 0.000 abstract description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 3
- 239000011733 molybdenum Substances 0.000 abstract description 3
- 230000001788 irregular Effects 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- OFLYIWITHZJFLS-UHFFFAOYSA-N [Si].[Au] Chemical compound [Si].[Au] OFLYIWITHZJFLS-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83191—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02355—Fixing laser chips on mounts
- H01S5/0237—Fixing laser chips on mounts by soldering
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
- Die Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体レーザ装置に関し、特に半導体
レーザ素子の接合構造に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device, and particularly to a bonding structure of a semiconductor laser element.
半導体レーザを室温で連続発振させて動作寿命
を向上させるためには、半導体レーザ素子で発生
した熱をすみやかに外部放散すること、半導体レ
ーザ素子に対して盃を発生させないサブマウント
を使用するなどの必要がある。 In order to continuously oscillate a semiconductor laser at room temperature and improve its operating life, it is necessary to promptly dissipate the heat generated by the semiconductor laser element to the outside, and to use a submount that does not generate a cup for the semiconductor laser element. There is a need.
このため従来の半導体レーザ装置の接合構造は
第1図に示す如くステム1にあらかじめサブマウ
ント2をろう材3を介して接合し、さらにこのサ
ブマウント2上に半導体レーザ素子4をろう材3
を介して接合する構造が一般的であつた。上記の
接合構造において、ステム1には銅あるいは鉄材
をサブマウント2には銅、銀、モリブデンあるい
はシリコンを、ロウ材にはインジウム、錫、金一
シリコンあるいは半田などの半導体材料が使用さ
れている。 For this reason, the conventional bonding structure of a semiconductor laser device is as shown in FIG.
The most common structure was to connect the parts through a . In the above joint structure, the stem 1 is made of copper or iron, the submount 2 is made of copper, silver, molybdenum, or silicon, and the brazing material is made of a semiconductor material such as indium, tin, gold-silicon, or solder. .
サブマウント2は熱放散性の点から熱伝導性の
高い銅あるいは銀などを使用する必要があるが、
これら材料は半導体レーザ素子との線膨張係数差
が大きいためろう材3を介してサブマウント2に
接合し高温から常温へ冷却を行なうと半導体レー
ザ素子4にひずみが発生し動作寿命を著しく低下
させる欠点がある。また、サブマウント2にモリ
ブデンあるいはシリコンを使用した場合には上記
銅あるいは銀などと比較すると、熱伝導性は減少
する半導体レーザ素子4との線膨張係数差が小さ
いためひずみ発生は少ない。たとえば、サブマウ
ント2にシリコンを使用した場合、半導体レーザ
素子中央部に発生するひずみ値は銅を使つた場合
の約40%となるが、寿命向上に対しては十分低い
ひずみ値であるとは言えない。 Submount 2 needs to be made of highly thermally conductive material such as copper or silver from the viewpoint of heat dissipation.
These materials have a large difference in coefficient of linear expansion with the semiconductor laser element, so when they are bonded to the submount 2 via the brazing material 3 and cooled from high temperature to room temperature, the semiconductor laser element 4 is strained, significantly shortening its operating life. There are drawbacks. Further, when molybdenum or silicon is used for the submount 2, compared to the above-mentioned copper or silver, the difference in linear expansion coefficient between the material and the semiconductor laser element 4, which reduces thermal conductivity, is small, so less strain occurs. For example, when silicon is used for the submount 2, the strain generated in the center of the semiconductor laser element is approximately 40% of that when copper is used, but this is not a sufficiently low strain value to improve the lifespan. I can not say.
また、半導体レーザ素子4の放射パターンは第
2図に示すように、反射面4aでスポツトに発振
され、光進行方向に沿つて円錐状に拡大して行く
特徴を持つているため、光の乱反射を防ぎ、安定
した光を得るには、光進行方向にサブマウントが
位置しないようにする即ち半導体レーザ素子の端
面をサブマウントの端面に合わせて搭載せざるを
得ない。 Furthermore, as shown in FIG. 2, the radiation pattern of the semiconductor laser element 4 has the characteristic that it is oscillated in a spot on the reflecting surface 4a and expands in a conical shape along the direction of light propagation, resulting in diffuse reflection of light. In order to prevent this and obtain stable light, it is necessary to prevent the submount from being located in the direction in which the light travels, that is, to mount the semiconductor laser element such that the end face of the semiconductor laser element is aligned with the end face of the submount.
本発明は上記の点に鑑み半導体レーザ素子に加
わるひずみを極力少なくし、動作寿命を向上させ
る接合構造を具える半導体レーザ装置を提供する
ことを目的としたものである。 In view of the above points, it is an object of the present invention to provide a semiconductor laser device having a bonding structure that minimizes strain applied to a semiconductor laser element and improves its operating life.
本発明の特徴とするところは、ステム上にマウ
ントしたサブマウントと、このサブマウント上に
マウントした半導体レーザ素子とから成る半導体
レーザ装置において、ステムは鉄材、サブマウン
トはシリコンで形成し、前記半導体レーザ素子を
サブマウントの中央部付近に半田材でマウント
し、この半導体レーザ素子からレーザ光を出力し
たとき、前記サブマウント端面にレーザ光が照射
しない程度に、サブマウントの一側端面を底面に
対して少なくとも30°の角度をつけた傾斜面とし
たものである。 The present invention is characterized in that in a semiconductor laser device comprising a submount mounted on a stem and a semiconductor laser element mounted on the submount, the stem is made of iron, the submount is made of silicon, and the semiconductor A laser element is mounted near the center of the submount with solder material, and one end face of the submount is attached to the bottom face to the extent that when laser light is output from this semiconductor laser element, the laser light does not irradiate the end face of the submount. The surface is inclined at an angle of at least 30° to the surface.
以下、本発明の半導体レーザ装置の一実施例を
説明するが、その前に原理について説明する。 An embodiment of the semiconductor laser device of the present invention will be described below, but before that, the principle will be explained.
銅からなるステムに例えばシリコンからなるサ
ブマウントを半田ろう材を介して接合した時、高
温から常温への冷却においてステムとサブマウン
トとの線膨張係数差によりサブマウント上には第
3図に示すようなひずみが発生する。第3図にお
いて、横軸にはサブマウント中央部から端部への
距離がとつてあり、縦軸にはひずみ量がとつてあ
る。このひずみ値はサブマウントの中央部に行く
ほど大きなものとなり、みかけ上のサブマウント
の線膨張係数を大きくする効果がある。この結
果、サブマウント上にこれより大きい線膨張係数
を有する半導体レーザ素子を接合する場合、従来
の接合位置である端部より中央部に位置すること
により半導体レーザ素子との線膨張係数差が小さ
くなり半導体レーザ素子に発生するひずみは減少
する。 When a submount made of silicon, for example, is bonded to a stem made of copper via a solder filler metal, the difference in linear expansion coefficient between the stem and the submount when cooled from high temperature to room temperature causes the difference in the coefficient of linear expansion between the stem and the submount, as shown in Figure 3. Such distortion occurs. In FIG. 3, the horizontal axis represents the distance from the center of the submount to the end, and the vertical axis represents the amount of strain. This strain value becomes larger toward the center of the submount, and has the effect of increasing the apparent coefficient of linear expansion of the submount. As a result, when a semiconductor laser element with a larger linear expansion coefficient is bonded to the submount, the difference in linear expansion coefficient between the semiconductor laser element and the semiconductor laser element is reduced by locating it in the center rather than at the edges, which is the conventional bonding position. Therefore, the strain generated in the semiconductor laser device is reduced.
第4図は本発明の一実施例を示すもので、図に
おいて、6は鉄より成るステム、7はシリコンよ
り成るサブマウントで、ステム6上にろう材8を
介して接合されている。 FIG. 4 shows an embodiment of the present invention. In the figure, 6 is a stem made of iron, and 7 is a submount made of silicon, which are joined onto the stem 6 via a brazing material 8.
9はサブマウント7上に中央部付近にろう材1
0介して接合される半導体レーザ素子で、前記サ
ブマウント7の一側端面は底面に対して少なくと
も30°の角度を付けた角度A°で切断された傾斜面
7aとなつており、半導体レーザ素子9のレーザ
出力部を含む端面即ち反射面9aと接する位置で
接合されている。さらに、このサブマウント7の
傾斜面7aの下端とステム6の端部とが合わせて
接合されている。このため、半導体レーザ素子9
がサブマウント7中央部付近に接合されていても
半導体レーザ素子9がレーザ光を出力したとき、
光進行方向に沿つてサブマウントが切断されてい
るため、光の乱反射を起すことなく、安定した光
を得ることができる。 9 is the brazing material 1 near the center on the submount 7.
One end face of the submount 7 is an inclined surface 7a cut at an angle A° of at least 30° with respect to the bottom surface, and the semiconductor laser element It is joined at a position where it touches the end face including the laser output section of No. 9, that is, the reflective surface 9a. Furthermore, the lower end of the inclined surface 7a of this submount 7 and the end of the stem 6 are joined together. Therefore, the semiconductor laser element 9
When the semiconductor laser element 9 outputs laser light even if it is bonded near the center of the submount 7,
Since the submount is cut along the light traveling direction, stable light can be obtained without causing diffuse reflection of light.
また、サブマウント7の中央部付近に半導体レ
ーザ素子9を接合することにより、サブマウント
7のみかけ上の線膨張係数を大きくすることがで
きるため、半導体レーザ素子9との線膨張係数差
を少なくすることができ、サブマウント7との接
合によるひずみ発生を少なくすることができる。 Furthermore, by bonding the semiconductor laser element 9 near the center of the submount 7, the apparent coefficient of linear expansion of the submount 7 can be increased, thereby reducing the difference in the coefficient of linear expansion with the semiconductor laser element 9. This makes it possible to reduce strain caused by bonding with the submount 7.
さらにサブマウントの端面に角度を付えること
により半導体レーザ素子9とサブマウント7をろ
う材で接合する時反射面9aをろう材8で汚染す
ることからも防止する効果がある。 Furthermore, by giving an angle to the end face of the submount, there is an effect of preventing contamination of the reflective surface 9a with the brazing material 8 when the semiconductor laser element 9 and the submount 7 are bonded with the brazing material.
本発明によれば、半導体レーザ素子に加わる歪
を極力少なくすることができ、動作寿命の長い半
導体レーザ装置を提供することができる。 According to the present invention, strain applied to a semiconductor laser element can be minimized, and a semiconductor laser device with a long operating life can be provided.
第1図は従来の半導体レーザ装置の斜視図、第
2図は半導体レーザ素子の光放出パターンを示す
図、第3図はサブマウント上に発生するひずみ量
変化を示した図、第4図は本発明の半導体レーザ
装置の一実施例の斜視図である。
6……ステム、7……サブマウント、9……半
導体レーザ素子。
Figure 1 is a perspective view of a conventional semiconductor laser device, Figure 2 is a diagram showing the light emission pattern of the semiconductor laser element, Figure 3 is a diagram showing changes in the amount of strain generated on the submount, and Figure 4 is 1 is a perspective view of an embodiment of a semiconductor laser device of the present invention. 6...Stem, 7...Submount, 9...Semiconductor laser element.
Claims (1)
のサブマウント上にマウントした半導体レーザ素
子とからなる半導体レーザ装置において、ステム
は鉄材、サブマウントはシリコンで形成し、前記
半導体レーザ素子をサブマウントの中央部付近に
半田材でマウントし、この半導体レーザ素子から
レーザ光を出力したとき、前記サブマウント端面
にレーザ光が照射しないようにサブマウントの一
端面を底面に対して少なくとも30°の角度をつけ
た傾斜面としたことを特徴とする半導体レーザ装
置。1. In a semiconductor laser device consisting of a submount mounted on a stem and a semiconductor laser element mounted on the submount, the stem is made of iron, the submount is made of silicon, and the semiconductor laser element is mounted in the center of the submount. One end face of the submount is angled at least 30° with respect to the bottom face so that the end face of the submount is not irradiated with laser light when the semiconductor laser element is mounted nearby with solder material and outputs laser light from this semiconductor laser element. A semiconductor laser device characterized by having an inclined surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57089625A JPS58207689A (en) | 1982-05-28 | 1982-05-28 | Semiconductor laser apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57089625A JPS58207689A (en) | 1982-05-28 | 1982-05-28 | Semiconductor laser apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58207689A JPS58207689A (en) | 1983-12-03 |
JPH037152B2 true JPH037152B2 (en) | 1991-01-31 |
Family
ID=13975927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57089625A Granted JPS58207689A (en) | 1982-05-28 | 1982-05-28 | Semiconductor laser apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58207689A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3677658D1 (en) * | 1985-07-29 | 1991-04-04 | Mitsubishi Electric Corp | OPTICAL HEAD DEVICE. |
JP2600646B2 (en) * | 1985-07-29 | 1997-04-16 | 三菱電機株式会社 | Optical head device |
JPS63229890A (en) * | 1987-03-19 | 1988-09-26 | Sharp Corp | External cavity type semiconductor laser device |
US5576752A (en) * | 1993-11-22 | 1996-11-19 | Xerox Corporation | Offset mounting of nonmonolithic multiwavelength lasers |
DE19536463C2 (en) * | 1995-09-29 | 2002-02-07 | Infineon Technologies Ag | Method of manufacturing a plurality of laser diode devices |
JP7091640B2 (en) * | 2017-12-06 | 2022-06-28 | セイコーエプソン株式会社 | Light emitting device and manufacturing method of light emitting device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161690A (en) * | 1980-05-16 | 1981-12-12 | Fujitsu Ltd | Manufacture of semiconductor laser device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474070U (en) * | 1977-11-02 | 1979-05-26 |
-
1982
- 1982-05-28 JP JP57089625A patent/JPS58207689A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161690A (en) * | 1980-05-16 | 1981-12-12 | Fujitsu Ltd | Manufacture of semiconductor laser device |
Also Published As
Publication number | Publication date |
---|---|
JPS58207689A (en) | 1983-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220052506A1 (en) | Light emitting device | |
JP3781970B2 (en) | Laser diode packaging | |
JPH06314857A (en) | Semiconductor light emitter | |
JP6705462B2 (en) | Light emitting device | |
US6106161A (en) | Optical sub-assembly package mount | |
JPS6063981A (en) | Semiconductor light emitting device | |
JPH037152B2 (en) | ||
US6186674B1 (en) | Optical sub-assembly package mount | |
JP2001244548A (en) | Semiconductor laser device | |
JP7050045B2 (en) | Package, light emitting device, and laser device | |
US6341139B1 (en) | Semiconductor-laser-pumped solid state laser | |
JP7506341B2 (en) | Light-emitting device | |
JPH04278593A (en) | Photoelectric device and manufacture thereof | |
JPH04352377A (en) | Submount for semiconductor laser element | |
US20240250498A1 (en) | Light-emitting device | |
JPH0499082A (en) | Stem for semiconductor laser | |
JPH0538927U (en) | Light emitting device | |
JPH0438941Y2 (en) | ||
JPH01253983A (en) | Semiconductor laser device | |
JPH03217067A (en) | Semiconductor laser device | |
JP3970293B2 (en) | Semiconductor laser device | |
JP2006186166A (en) | Semiconductor laser element, and optical disk system using same | |
JPS59200481A (en) | electronic equipment | |
JP2022045238A (en) | Optical semiconductor device | |
JP2024105171A (en) | Light-emitting device |