[go: up one dir, main page]

JPH0370180A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPH0370180A
JPH0370180A JP1205983A JP20598389A JPH0370180A JP H0370180 A JPH0370180 A JP H0370180A JP 1205983 A JP1205983 A JP 1205983A JP 20598389 A JP20598389 A JP 20598389A JP H0370180 A JPH0370180 A JP H0370180A
Authority
JP
Japan
Prior art keywords
film
etching
gate
region
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1205983A
Other languages
Japanese (ja)
Inventor
Shinji Sugaya
慎二 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1205983A priority Critical patent/JPH0370180A/en
Publication of JPH0370180A publication Critical patent/JPH0370180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/43Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor
    • H10B41/48Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor with a tunnel dielectric layer also being used as part of the peripheral transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable an FET in LDD structure to be formed with improved reproducibility without reducing power supply voltage by stopping etching exposing an etching end point detection film on a memory cell region when etching an upper side gate film. CONSTITUTION:An isolation oxide film 12 is formed around an element formation region on an Si substrate 11 and then a gate oxide film 13 is formed by thermal oxidation. Then, a lower-side poly Si film 14 as a lower-side gate film for forming gate and an oxide film 15 as an etching end detection film are grown in sequence on it by vapor growth. Then, the oxide film 15 at the FET formation region is eliminated by etching. A resist pattern 19 is formed at a region corresponding to the channel region on an oxide film 18 and the oxide film 18, a WSi film 17, and a poly Si film 16 are etched with it as a mask. At this time, detection of end point of etching can be made by the presence of the oxide film 15 remaining at an isolation region and an EPROM formation region. An oxide film is allowed to grow on the entire surface of the substrate and etchback is made to form a side wall 21. At this time, the oxide film 15 other than the gate and the lower part of side wall of the EPROM region is also eliminated by etching.

Description

【発明の詳細な説明】 〔概要〕 LDD (Lightly Doped Drain)
構造のMOS FETとフローティングゲート型不揮発
性メモリ(EPROM。
[Detailed Description of the Invention] [Summary] LDD (Lightly Doped Drain)
Structure of MOS FET and floating gate non-volatile memory (EPROM).

EEPROM)の−括製造方法に関し。Regarding the manufacturing method of EEPROM).

第2図(3)、 (4)は斜めイオン注入を用いる方法
である。
FIGS. 2(3) and 2(4) are methods using oblique ion implantation.

第2図(3)において、 St基板1上にゲート酸化膜
4を形成し、その上にゲート(ポリSi膜5.)を形成
し、斜めイオン注入を行って低濃度S/D領域2を形成
する。
In FIG. 2(3), a gate oxide film 4 is formed on the St substrate 1, a gate (poly-Si film 5) is formed on it, and a low concentration S/D region 2 is formed by oblique ion implantation. Form.

第2図(4)において、基板上に酸化膜を戒長しエッチ
バックして側壁8を形成し、ゲート5及び側壁8を注入
マスクにしてイオン注入を行って高濃度5lDN域3を
形成する。
In FIG. 2 (4), the oxide film is lengthened and etched back on the substrate to form sidewalls 8, and ions are implanted using the gate 5 and sidewalls 8 as implantation masks to form high concentration 51DN region 3. .

また、 EPROM、 EEPROMを作成するために
は第3図のように基板内に制御ゲートを設け、酸化膜を
挟んで浮遊ゲートを設けた単層構造のものや、第4図の
ように、基板上に酸化膜を介して浮遊ゲート、酸化膜、
制御ゲートからなる2層ゲートを形成し、 S/D j
J[域形成も複雑な工程を要した。
In addition, in order to create EPROMs and EEPROMs, a control gate is provided in the substrate as shown in Figure 3, and a floating gate is provided with an oxide film sandwiched in a single layer structure, or a single layer structure as shown in Figure 4, in which a control gate is provided in the substrate. Floating gate through oxide film on top, oxide film,
A two-layer gate consisting of a control gate is formed, and S/D j
Formation of the J [area also required a complicated process.

第3図(1)、 (2)は1層ゲートEPROMの一例
を示す構造図である。
FIGS. 3(1) and 3(2) are structural diagrams showing an example of a single-layer gate EPROM.

図において、31は基板、32は不揮発性記憶部で浮遊
ゲート(FG)、 33は制御ゲー)(CG)、 34
はソース、35はドレイン、36は被覆絶縁膜、37は
配線であり、又、ソース、ドレイン間がチャネル領域と
なる。
In the figure, 31 is a substrate, 32 is a non-volatile memory section, floating gate (FG), 33 is a control gate (CG), 34
35 is a source, 35 is a drain, 36 is a covering insulating film, 37 is a wiring, and the space between the source and drain is a channel region.

第4図(1)〜(3)はゲートと低濃度slo 9M域
のオーバラップ量の少ない従来のLDD構造のPETと
2Nゲー) EPROMを有するデバイスの製造工程の
従来例を説明する断面図である。
Figures 4 (1) to (3) are cross-sectional views illustrating a conventional example of the manufacturing process of a device having a conventional LDD structure of PET with a small amount of overlap between the gate and the low-concentration slo 9M region and a 2N-EPROM device. be.

第4図(1)において、基板41に分離絶縁膜42を形
成し、左側のFET形成領域にゲート酸化膜43を介し
て第1層目のゲート44を、右側のEPROM形成領域
にゲート酸化膜43を介して第1層目のゲート(FG)
44.酸化H45,第2層目のゲート(CG)46を形
成する。
In FIG. 4(1), an isolation insulating film 42 is formed on a substrate 41, a first layer gate 44 is formed in the FET formation region on the left via a gate oxide film 43, and a gate oxide film is formed in the EPROM formation region on the right. 1st layer gate (FG) through 43
44. Oxidation H45 is used to form a second layer gate (CG) 46.

つぎに、 EPROM形成領域をレジストパターン47
で覆い、これを注入マスクとしてFET形成領域にイオ
ン注入してFETの低濃度S/D H域48を形成する
Next, the EPROM formation area is covered with a resist pattern 47.
Using this as an implantation mask, ions are implanted into the FET formation region to form a low concentration S/DH region 48 of the FET.

第4図(2)において、レジストパターン47を除去し
、 FET形成領域をレジストパターン49で覆い。
In FIG. 4(2), the resist pattern 47 is removed and the FET formation area is covered with a resist pattern 49.

これを注入マスクとしてEPROM形成領域にイオン注
入してEFROMの低濃度S/D領域50を形成する。
Using this as an implantation mask, ions are implanted into the EPROM formation region to form the low concentration S/D region 50 of the EFROM.

第4図(2)において、レジストパターン49を除去し
、各ゲートに側壁51を形成し、基板上全面にイオン注
入してFETの高濃度S/D領域52と、 EPROM
の高濃度S/D領域53を形成する。
In FIG. 4(2), the resist pattern 49 is removed, sidewalls 51 are formed on each gate, and ions are implanted over the entire surface of the substrate to form the high concentration S/D region 52 of the FET and the EPROM.
A high concentration S/D region 53 is formed.

以上のように従来例ではS/D 6i域形戒をFHT 
As mentioned above, in the conventional example, S/D 6i area form precepts are converted into FHT
.

EPROMでそれぞれ別々に行っており、工程が複雑で
あった。
Each step was performed separately using an EPROM, and the process was complicated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図(1)のように、自然酸化膜をエツチングストッ
パとして用いた場合2等方性エツチングや特殊なガス(
例えば、 CF4. Brz)を用いなくてはならず、
ゲート電極の低抵抗化のためにポリSi膜の上に高融点
金属のシリサイド膜を形成した所謂ポリサイド構造のゲ
ートにはCCl4等を使用するが。
As shown in Figure 2 (1), when a natural oxide film is used as an etching stopper, biisotropic etching or special gas (
For example, CF4. Brz) must be used,
CCl4 or the like is used for a gate having a so-called polycide structure in which a silicide film of a refractory metal is formed on a poly-Si film to reduce the resistance of the gate electrode.

異方性エツチングやウリサイド等のエツチングは必然的
に自然酸化膜との選択比がとれないという理由によりこ
の方法は適用できないという問題があった。又自然酸化
膜自体は再現性がよくないため、エツチングの制御性は
よくなかった。
There is a problem in that this method cannot be applied to anisotropic etching or etching using uricide because the selectivity with respect to the natural oxide film cannot be obtained. Furthermore, since the natural oxide film itself does not have good reproducibility, the controllability of etching is not good.

第2図(2)のコントロールエツチングは難しく。Control etching in Figure 2 (2) is difficult.

製造バラツキが大きくなってしまう。Manufacturing variations will increase.

第2図(3)、 (4)の斜めイオン注入法では、ゲー
トと低濃度S/DON域のオーバラップ量を十分にとる
ことは困難であるという問題を生ずる。
The oblique ion implantation method shown in FIGS. 2(3) and 2(4) poses a problem in that it is difficult to obtain a sufficient amount of overlap between the gate and the low concentration S/DON region.

本発明は従来例の前2者のようにゲートと低濃度5lD
N域のオーバラップ量を十分にとることができるように
し、電源電圧をを低下させないで短チャネルLDD構造
のFETを再現性よく形成し、さらにこの工程と整合性
のよい不揮発性メモリセル形成を目的とする。
The present invention uses a gate and a low concentration 5lD like the first two conventional examples.
It is possible to obtain a sufficient amount of overlap in the N region, to form FETs with a short channel LDD structure with good reproducibility without reducing the power supply voltage, and to form nonvolatile memory cells with good compatibility with this process. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、半導体基板(11)上のFET形成
領域及びフローティングゲート型不揮発性メモリセル形
成領域の回りに分離絶縁膜(12)を形成し。
To solve the above problem, an isolation insulating film (12) is formed around the FET formation region and the floating gate type nonvolatile memory cell formation region on the semiconductor substrate (11).

該基板上に順次ゲート酸化膜(13)、下側ゲート膜(
14)、エツチング終点検出膜(15)を順次成長する
工程と、 FET形成領域の少なくともゲート9TJ域
の該エツチング終点検出膜をエツチング除去する工程と
、該基板上全面に上側ゲート膜(16)とエツチング保
護膜(18)を成長する工程と、該エツチング保護膜及
び該上側ゲート膜をパターニングして。
A gate oxide film (13) and a lower gate film (13) are sequentially formed on the substrate.
14) A step of sequentially growing an etching end point detection film (15), a step of etching away the etching end point detection film at least in the gate 9TJ region of the FET formation region, and a step of growing an upper gate film (16) over the entire surface of the substrate. A step of growing an etching protection film (18) and patterning the etching protection film and the upper gate film.

FET形成領域及びメモリセル形成領域のチャネル領域
上にそれぞれ該エツチング保護膜及び該上側ゲート膜か
らなるパターンを形成する工程と、メモリセル形成領域
を注入マスクで覆い該基板に該下側ゲート膜を通して該
基板とは反対導電型のイオンを注入してFETの低濃度
ソース/ドレイン領域を形成する工程(20)と、該注
入マスクを除去し。
forming a pattern consisting of the etching protection film and the upper gate film on the channel regions of the FET formation region and the memory cell formation region, respectively; covering the memory cell formation region with an implantation mask and passing the lower gate film through the substrate; Step (20) of implanting ions of a conductivity type opposite to that of the substrate to form lightly doped source/drain regions of the FET, and removing the implantation mask.

該パターンの側面に側壁(21)を形成し、該パターン
及び該側壁をマスクにして該エツチング終点検出膜をエ
ツチングする工程と、該側壁及び該エツチング保護膜を
マスクにして下側ゲート膜をエツチング除去し、該基板
に該基板とは反対導電型のイオンを注入してFETの高
濃度ソース/ドレイン領域(22)及びメモリセルのソ
ース/ドレイン領域(23)を形成する工程とを有する
半導体装置の製造方法により達成される。
A step of forming a side wall (21) on the side surface of the pattern, etching the etching end point detection film using the pattern and the side wall as a mask, and etching the lower gate film using the side wall and the etching protection film as a mask. removing the substrate and implanting ions of a conductivity type opposite to that of the substrate into the substrate to form a high concentration source/drain region (22) of an FET and a source/drain region (23) of a memory cell. This is achieved by the manufacturing method.

〔作用〕[Effect]

本発明は上側ゲート膜のエツチングの際に、メモリセル
領域上のエツチング終点検出膜が露出することによりエ
ツチングを止めるようにしくこのため開口されたFET
 9M域の下側ゲート膜は殆どエツチングされない)、
又エツチング終点検出膜は側壁形成時のエツチングで除
去されるため、側壁及びエツチング保護膜をマスクにし
たゲート形成時のエツチングの際に、下側ゲート膜をエ
ツチングすることができるようにしたものである。
In the present invention, when etching the upper gate film, the etching end point detection film on the memory cell area is exposed to stop the etching.
The lower gate film in the 9M region is hardly etched),
In addition, since the etching end point detection film is removed during etching when forming sidewalls, the lower gate film can be etched during etching during gate formation using the sidewalls and etching protection film as a mask. be.

さらに、メモリセル領域のエツチング終点検出膜を残し
たことにより、上下ゲート層間にこの膜が介在すること
になり、必然的に2層ゲート構造が得られることを利用
したものである。
Furthermore, by leaving the etching end point detection film in the memory cell area, this film is interposed between the upper and lower gate layers, and a two-layer gate structure is inevitably obtained.

〔実施例〕〔Example〕

第1図(1)〜(7)は本発明の一実施例による。ゲー
ト電極と低濃度S/D領域をオーバラップさせたLDD
構造の形成を説明する断面図である。
Figures 1 (1) to (7) are according to one embodiment of the present invention. LDD with overlapping gate electrode and low concentration S/D region
FIG. 3 is a cross-sectional view illustrating the formation of a structure.

図の素子形成領域は、左側がFET形成領域、右側がE
FROM形成領域である。
The element formation area in the figure is the FET formation area on the left side and the E element formation area on the right side.
This is a FROM formation area.

第1図(1)において、 Si基板11にLOCOS法
を用いて素子形TIi、領域の回りに分M酸化(SiO
□)膜12を形成し1次いで熱酸化によりゲート酸化膜
I3を形成し、その上に気相成長(CVD)法によりゲ
ート形成用の下側ゲート膜として厚さ約1000人の下
側ポリSi膜14. エツチング終点検出膜として厚さ
約500大の酸化膜15を順次成長する。
In FIG. 1 (1), an element type TIi is formed on a Si substrate 11 using the LOCOS method, and a portion of M oxidation (SiO
□) Form the film 12, then form a gate oxide film I3 by thermal oxidation, and then deposit a lower poly-Si film with a thickness of approximately 1000 nm as a lower gate film for gate formation by vapor phase epitaxy (CVD). Membrane 14. An oxide film 15 having a thickness of about 500 mm is sequentially grown as an etching end point detection film.

第1図(2)において、 PET形I′I2領域の酸化
膜15をエツチング除去する。
In FIG. 1(2), the oxide film 15 in the PET type I'I2 region is removed by etching.

第1図(3)において、 CVD法により、基板上全面
にゲート形成用の上側ゲート膜として厚さ約500人の
上側ポリS i M2S及び厚さ約1200λのWSi
膜17を成長する。
In FIG. 1(3), an upper polySiM2S film with a thickness of about 500 λ and a WSi film with a thickness of about 1200 λ are deposited on the entire surface of the substrate as an upper gate film for gate formation by CVD.
A film 17 is grown.

さらにその上に、後記第1図(6)において側壁21を
形成するする際のエツチング保護膜として厚さ約100
0λの酸化膜18を成長する。
Further, on top of that, an etching protective film with a thickness of about 100 mm is applied when forming the side wall 21 in FIG. 1 (6) described later.
An oxide film 18 of 0λ is grown.

第1図(4)において、酸化膜18上のチャネル領域に
対応する領域にレジストパターン19を形成し2これを
マスクにして酸化膜18. WSi膜17.ポリSi膜
I6をエツチングする。
In FIG. 1(4), a resist pattern 19 is formed in a region corresponding to the channel region on the oxide film 18, and using this as a mask, the oxide film 18. WSi film 17. The poly-Si film I6 is etched.

このときのエツチングは、酸化膜はCHFz、 WSi
はCCl4.ポリStはCCI、を用いた反応性イオン
エツチング(Rr E)法による。
In this etching, the oxide film is CHFz, WSi
is CCl4. PolySt was formed by reactive ion etching (RrE) using CCI.

このときの、エツチングの終点検出は分離領域やEPl
?0?l形成頭域に残形成−域酸化膜15の存在により
可能である。
At this time, the end point of etching is detected in the separation area or EPl.
? 0? This is possible due to the presence of the oxide film 15 remaining in the formation region.

第1図(5)において、 BPROM形成頭域をレジス
トパターンで覆い、これを注入マスクとして、基板に下
側ポリSi膜14を通してりんイオン(P゛)を注入し
てPETの低濃度S/0領域20を形成する。
In FIG. 1 (5), the BPROM formation head area is covered with a resist pattern, and using this as an implantation mask, phosphorus ions (P) are implanted into the substrate through the lower poly-Si film 14 to form a low concentration S/0 of PET. A region 20 is formed.

P+の注入条件は、エネルギー100 KeV、  ド
ーズ景lXl0”cm−”である。
The P+ implantation conditions are an energy of 100 KeV and a dose profile of lXl0"cm-".

第1図(6)において、レジストパターンを除去し。In FIG. 1(6), the resist pattern is removed.

厚さ約200OAの酸化膜を基板全面に戒長し、エッチ
バックして側壁21を形成する。
An oxide film with a thickness of approximately 200 OA is formed over the entire surface of the substrate and is etched back to form side walls 21.

このとき、 EFROM 領域のゲート及び側壁の下以
外の酸化膜15もエツチング除去される。
At this time, the oxide film 15 other than under the gate and sidewalls of the EFROM region is also etched away.

第1図(7)において、側壁21及び酸化膜18をマス
クにして下側ポリSi膜14をエツチングする。
In FIG. 1(7), the lower poly-Si film 14 is etched using the sidewall 21 and oxide film 18 as a mask.

次に、基板に砒素イオン(As’)を注入してFETの
高濃度S/D領域22とEPROMのS/D領域23を
形成する。
Next, arsenic ions (As') are implanted into the substrate to form the high concentration S/D region 22 of the FET and the S/D region 23 of the EPROM.

As”の注入条件は、エネルギー50 KeV、ドーズ
:!l 5XlOIScm−”である。
The implantation conditions for As'' are: energy 50 KeV, dose: !l 5XlOIScm-''.

この後、注入イオンの活性化アニールを行い。After this, activation annealing of the implanted ions is performed.

通常の工程を経てFETを完成する。The FET is completed through normal processes.

この方法によると、エツチング終点が検出できることに
より、異方性の強いエツチング装置やガスを使用できる
ためゲート材料にポリサイドが使え、ゲート配線抵抗を
下げることができる。
According to this method, since the end point of etching can be detected, it is possible to use an etching device and gas with strong anisotropy, so polycide can be used as the gate material, and gate wiring resistance can be lowered.

実施例によると、ゲートと低濃度S106N域のオーバ
ラップ量を約0.2μmと大きくとれ、これにより実効
ゲート長が 0.5μm級のFETを5ν電源で動作さ
せることができるようになった。
According to the embodiment, the amount of overlap between the gate and the low concentration S106N region can be as large as about 0.2 μm, and as a result, an FET with an effective gate length of 0.5 μm can be operated with a 5ν power supply.

さらに、殆ど工程の追加なしに2層ゲートの不揮発性メ
モリセルを形成することができる。
Furthermore, a double-layer gate nonvolatile memory cell can be formed with almost no additional steps.

〔発明の効果] 以上説明したように本発明によれば、ゲートと低濃度S
/D領域のオ・−バラツブ量を十分にとることができる
ようになり、電源電圧をを低下させないでLDD構造の
FETを再現性よく形成でき、これと整合性よ<21ゲ
ートの不揮発性メモリセルを形成することが可能となっ
た。
[Effects of the Invention] As explained above, according to the present invention, the gate and the low concentration S
It is now possible to obtain a sufficient amount of over-variation in the /D region, and it is possible to form FETs with an LDD structure with good reproducibility without lowering the power supply voltage. It became possible to form cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(7)は本発明の一実施例による。ゲー
ト電極と低濃度SiD 領域をオーバラップさせたLD
D構造の形成を説明する断面図。 第2図(1)〜(4)は従来例による。ゲート電極と低
濃度S/D領域をオーバラップさせたLDD構造の形成
を説明する断面図。 第3図(1)、 (2)は1層ゲートEPROMの一例
を示す構造図。 第4図(1)〜(3)は従来のゲートと低濃度S/D領
域のオーバラップ量の少ない従来のLDD構造のFET
と2層ゲー) EFROMを有するデバイスの製造工程
の従来例を説明する断面図である。 図において。 11は半導体基板でSi基板。 12は分離酸化膜。 13はゲート酸化膜。 14は下側ゲート膜で下側ポリSt膜。 15はエツチング終点検出膜で酸化膜。 16は上側ゲート膜で上側ポリSi膜。 17は旧i膜。 18は側壁形成時のエツチング保護膜で酸化膜。 19はレジストパターン。 20はFETの低濃度S/0頭域。 21は酸化膜からなる側壁。 22はFET (7)高濃度SiDa域。 23はメモリセルのS/D領域 実椎例の町節旧 第1回(!の1) 実拒例のr!fr白日 第10(イの2) (1)平面違 (’2)A−A#面 1層ヶ′ニドEFROMの命1 箸 図 aSSりのIfrE ei] 冨2起 イオン5主λ(II) 各足釆争1の#面厨(FE丁+EP尺O閂)第 4 口
Figures 1 (1) to (7) are according to one embodiment of the present invention. LD with overlapping gate electrode and low concentration SiD region
FIG. 3 is a cross-sectional view illustrating the formation of a D structure. FIGS. 2(1) to 2(4) are based on the conventional example. FIG. 3 is a cross-sectional view illustrating the formation of an LDD structure in which a gate electrode and a low concentration S/D region overlap. FIGS. 3(1) and 3(2) are structural diagrams showing an example of a single-layer gate EPROM. Figures 4 (1) to (3) show conventional LDD structure FETs with a small amount of overlap between the conventional gate and low concentration S/D region.
FIG. 3 is a cross-sectional view illustrating a conventional example of a manufacturing process of a device having an EFROM (and a two-layer gate EFROM). In fig. 11 is a semiconductor substrate, which is a Si substrate. 12 is an isolation oxide film. 13 is a gate oxide film. 14 is a lower gate film, which is a lower polySt film. 15 is an oxide film which is an etching end point detection film. 16 is an upper gate film, which is an upper poly-Si film. 17 is the old i membrane. 18 is an oxide film which is an etching protection film when forming side walls. 19 is a resist pattern. 20 is the low concentration S/0 head area of FET. 21 is a side wall made of an oxide film. 22 is FET (7) High concentration SiDa area. 23 is the first town section of the actual example of S/D area of the memory cell (! no 1) r of the actual rejection example! fr Day 10 (2) (1) Different planes ('2) A-A# plane 1 layer EFROM life 1 Chopstick diagram ) Number 4 of each leg match 1 (FE cho + EP shaku O bar)

Claims (1)

【特許請求の範囲】 半導体基板(11)上のFET形成領域及びフローティ
ングゲート型不揮発性メモリセル形成領域の回りに分離
絶縁膜(12)を形成し、該基板上に順次ゲート酸化膜
(13)、下側ゲート膜(14)、エッチング終点検出
膜(15)を順次成長する工程と、FET形成領域の少
なくともゲート領域の該エッチング終点検出膜を除去す
る工程と、 該基板上全面に上側ゲート膜(16)とエッチング保護
膜(18)を成長する工程と、 該エッチング保護膜及び該上側ゲート膜をパターニング
して、FET形成領域及びメモリセル形成領域のチャネ
ル領域上にそれぞれ該エッチング保護膜及び該上側ゲー
ト膜からなるパターンを形成する工程と、 メモリセル形成領域を注入マスクで覆い該基板に該下側
ゲート膜を通して該基板とは反対導電型のイオンを注入
してFETの低濃度ソース/ドレイン領域を形成する工
程(20)と、 該注入マスクを除去し、該パターンの側面に側壁(21
)を形成し、該パターン及び該側壁をマスクにして該エ
ッチング終点検出膜をエッチングする工程と、 該側壁及び該エッチング保護膜をマスクにして下側ゲー
ト膜をエッチング除去し、該基板に該基板とは反対導電
型のイオンを注入してFETの高濃度ソース/ドレイン
領域(22)及びメモリセルのソース/ドレイン領域(
23)を形成する工程とを有することを特徴とする半導
体装置の製造方法。
[Claims] An isolation insulating film (12) is formed around the FET formation region and the floating gate type nonvolatile memory cell formation region on the semiconductor substrate (11), and a gate oxide film (13) is sequentially formed on the substrate. , a step of sequentially growing a lower gate film (14) and an etching end point detection film (15), a step of removing the etching end point detection film at least in the gate region of the FET formation region, and a step of growing an upper gate film (14) over the entire surface of the substrate. (16) and an etching protective film (18), and patterning the etching protective film and the upper gate film to form the etching protective film and the upper gate film on the channel regions of the FET formation region and the memory cell formation region, respectively. forming a pattern consisting of an upper gate film; and covering the memory cell formation region with an implantation mask and implanting ions of a conductivity type opposite to that of the substrate through the lower gate film to form a low concentration source/drain of the FET. forming a region (20), removing the implantation mask and forming sidewalls (21) on the sides of the pattern;
) and etching the etching end point detection film using the pattern and the sidewall as a mask; etching away the lower gate film using the sidewall and the etching protection film as a mask; Ions of the opposite conductivity type are implanted to form the highly doped source/drain region (22) of the FET and the source/drain region (22) of the memory cell.
23) A method for manufacturing a semiconductor device, comprising the step of forming.
JP1205983A 1989-08-09 1989-08-09 Manufacturing method of semiconductor device Pending JPH0370180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205983A JPH0370180A (en) 1989-08-09 1989-08-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205983A JPH0370180A (en) 1989-08-09 1989-08-09 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0370180A true JPH0370180A (en) 1991-03-26

Family

ID=16515956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205983A Pending JPH0370180A (en) 1989-08-09 1989-08-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0370180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199196A (en) * 2000-01-21 2001-07-24 Akihiro Tomota Birthday souvenir
KR100390917B1 (en) * 2001-06-29 2003-07-12 주식회사 하이닉스반도체 Method for fabricating flash memory device
EP1353369A3 (en) * 2002-03-29 2004-05-06 Sharp Kabushiki Kaisha Method for producing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199196A (en) * 2000-01-21 2001-07-24 Akihiro Tomota Birthday souvenir
KR100390917B1 (en) * 2001-06-29 2003-07-12 주식회사 하이닉스반도체 Method for fabricating flash memory device
EP1353369A3 (en) * 2002-03-29 2004-05-06 Sharp Kabushiki Kaisha Method for producing semiconductor device

Similar Documents

Publication Publication Date Title
US5614746A (en) Structure and process of manufacture of split gate flash memory cell
US5470773A (en) Method protecting a stacked gate edge in a semiconductor device from self aligned source (SAS) etch
US8106442B2 (en) NROM fabrication method
EP1005081A2 (en) Semiconductor nonvolatile memory and manufacturing method thereof
JPH1056161A (en) Nonvolatile memory device and method of manufacturing the same
CA2484739A1 (en) Ultra small thin windows in floating gate transistors defined by lost nitride spacers
JPH0370180A (en) Manufacturing method of semiconductor device
KR20050070759A (en) Non-volatile memory device and method for fabricating the same
JP3916419B2 (en) Manufacturing method of semiconductor memory device
KR100351051B1 (en) Method for fabricating non-volatile memory cell having bilayered structured floating gate
JPH03270174A (en) Manufacture of nonvolatile semiconductor memory device
JP2987860B2 (en) Manufacturing method of semiconductor nonvolatile memory
JP2582931B2 (en) Method for manufacturing semiconductor device
JP2809919B2 (en) MOS transistor and method of manufacturing the same
JP3399229B2 (en) Method for manufacturing read-only semiconductor memory device
JPH03233974A (en) Method for manufacturing non-volatile semiconductor memory device
JPH01289171A (en) Manufacture of non-volatile semiconductor storage device
KR100262002B1 (en) Method of fabricating a flash memory
KR100358141B1 (en) Method for manufacturing eeprom
JPS6373566A (en) Manufacture of nonvolatile semiconductor storage device
JPH0897303A (en) Manufacture of semiconductor memory
JPH05283425A (en) Manufacture of mis type semiconductor device
JPH03205870A (en) Semiconductor device
KR970013338A (en) Nonvolatile Memory Device and Manufacturing Method Thereof
JPH0964213A (en) Manufacturing method for nonvolatile semiconductor memory device