JPH036214B2 - - Google Patents
Info
- Publication number
- JPH036214B2 JPH036214B2 JP61043858A JP4385886A JPH036214B2 JP H036214 B2 JPH036214 B2 JP H036214B2 JP 61043858 A JP61043858 A JP 61043858A JP 4385886 A JP4385886 A JP 4385886A JP H036214 B2 JPH036214 B2 JP H036214B2
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- strength
- strength copper
- cold working
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Conductive Materials (AREA)
Description
(産業上の利用分野)
本発明は導電ばね材料に好適な強度と導電性と
に優れた高強度銅基合金の製造方法に関するもの
である。
(従来の技術)
強度と導電性とに優れた導電ばね材料として代
表的なものは、JISH3130に合金番号C1720とし
て定められている1.8%Be、0.25%Co、残部Cuの
析出硬化型の合金であるが、高価なBeを多量に
含有するために地合せ価格が極めて高くなるとい
う欠点があつた。一方、Cuをベースとし、B、
Si、P、Ge.Te等の反金属元素と、Be又はSと
を加えた合金を溶融状態から急冷凝固して粒度
0.5〜15μmの急冷凝固組織とすることにより導電
性、強度、硬度等を向上させるという新しい試み
が特公昭60−43895号公報に示されている。とこ
ろがこの合金は多量の半金属元素を含むために導
電性が悪いこと、硬度及び強度が不十分であるこ
と、伸びが小さく脆いため曲げ成形性に劣ること
等の理由から、導電ばね材料としては実用性に乏
しく従来の析出硬化型のCu−Be合金よりも劣る
ものであつた。
(発明が解決しようとする問題点)
本発明はこのような従来の問題点を解決し、
Beの含有率を低くして地合せ価格を安価なもの
とするとともに、急冷凝固法を利用して組織の微
細化を図り、しかも硬度、強度、導電性等の導電
ばね材に要求される特性を十分に満足することが
できる高強度銅基合金及びその製造方法を目的と
して完成されたものである。
(問題点を解決するための手段)
本願第1の発明は、Be0.15〜1.0%(重量%、
以下同じ)、Ni0.5〜6.0%、Si0.2〜0.9%、残部Cu
及び不可避的不純物からなり、Be、Ni、Siの原
子比が1:2.8〜3.2:0.8〜1.2であり、かつその
結晶粒度を0.2〜25μmとした急冷凝固組織中に、
加工による析出サイトを増加させ時効処理後の析
出物を均一微細に分散させてビツカース高度300
以上の高度を持たせたことを特徴とする高強度銅
基合金を要旨とするものである。
また本願第2の発明は、Be0.15〜1.0%、Ni0.5
〜6.0%、Si0.2〜0.9%、残部Cu及び不可避的不純
物からなり、Be、Ni、Siの原子比が1:2.8〜
3.2:0.8〜1.2である合金を溶融状態から500℃/
秒以上の速度で急冷凝固して結晶粒度が0.2〜25μ
mの急冷凝固組織としたのち、95%以下の冷間加
工を行い、更に時効析出処理により金属間化合物
を均一微細に析出させたことを特徴とする高強度
銅基合金の製造方法を要旨とするものである。
本発明は、上記のように時効析出挙動を呈する
Cu−Be−Ni−Si合金を溶融状態から急冷凝固さ
せることにより平衡凝固によつては不可能な過剰
量のBe、Ni、Si等の溶質原子をマトリツクス中
に固溶させた極めて微細な急冷凝固組織を得たう
え、これに冷間加工を加えて加工欠陥を金属組織
中に生成させ、更にこれを時効析出処理して多量
の金属間化合物を均一微細に析出させることによ
り硬度、強度、曲げ成形性を高めることに成功し
たものである。次に本発明の各構成要件について
更に具体的に説明する。
本発明の銅基合金中Beは析出硬化性を生ぜし
めるための基本的な元素であり、0.15%未満では
析出硬化性が不十分で機械的強度の向上が得られ
ず、逆に1.0%を越えると地合せ価格が上昇して
本発明の目的が達成されなくなるとともに、急冷
凝固法によつても全体がマトリツクス中に固溶で
きなくなり、含有量増加に見合つた合金特性向上
効果が得られないので0.15〜1.0%の範囲とする
もので、特に0.4〜0.8%の範囲が最適である。次
にNiもBeと同様に析出硬化性を付与するための
元素であつて、0.5%未満では析出硬化性が不十
分であり、6.0%を越えると急冷凝固時にマトリ
ツクス中に固溶できない部分が生ずるうえ導電率
を悪化させるので0.5〜6.0%とすることが必要
で、特に2.0〜5.0%の範囲が好ましいものであ
る。またSiはNiとともに金属間化合物を析出さ
せて高価なBeを増加させることなく機械的強度
を向上させるめに有効であるのみならず、合金の
鋳造性、スラグ分離性、耐酸化性等を向上させる
ためにも重要な元素であり、少なくとも0.2%以
上が必要とされるが0.9%を越えると導電性及び
圧延加工性を著しく悪化させるため、0.2〜0.9
%、特に好ましくは0.4〜0.8%とされる。これら
のBe、Ni、Siは強化に寄与する金属間化合物の
化学量論的組成に近付けるため、原子比を1:
2.8〜3.2:0.8〜1.2の範囲とする。
このような合金は溶融状態から例えば回転ロー
ラ間に流し込む等の方法によつて500℃/秒を越
す高速度で瞬時に冷却固化される。このような急
冷凝固の結果、結晶粒度が0.2〜25μmの微細な急
冷凝固組織が得られるとともに、前述したとおり
Be、Ni、Si等の元素は平衡冷却によつては到底
固溶できない多くの分量がマトリツクス中に固溶
し、強化に寄与しない粗大析出物をほとんど生じ
ない。本発明においてはこの組織に圧延等により
95%以下の冷間加工を加えて組織内に加工欠陥を
生成させ、更に必要に応じて550〜1000℃の溶体
化処理と80%以下の冷間加工とを加えたのち、
250〜500℃で時効析出処理を行う。これらの処理
によつて急冷凝固組織中には加工による析出サイ
トが増加してBe、Ni、Siの金属間化合物が均一
微細に析出し、後の実施例のデータにも示すとお
り材料の硬度がビツカース硬度で300以上となる
ほか、引張強度、曲げ加工性等が著しく向上す
る。特に本発明においては急冷凝固法により過剰
量のBe、Ni、Si元素をマトリツクス中に固溶さ
せてあるため、時効析出処理により短時間で均一
かつ微細な金属間化合物が一斉に析出することと
なり、硬度、強度、曲げ加工性等を著しく向上さ
せることができる。また本発明においては溶体化
処理を行つた場合にも、急冷凝固法により固溶さ
れたBe、Ni、Siが結晶粒成長を効果的に制御し、
最終組織の粒度は25μmを越えることはない。
なお、冷間加工の程度を95%以下としたのは、
組織中に加工欠陥を十分に生じさせるために必要
なためであり、また結晶粒度を0.2〜2.5μmとし
たのは、0.2μm未満の結晶を生じさせることは困
難であり、逆に25μmを越えると延性や曲げ成形
性が低下するからである。
このように本発明の合金は低ベリリウムである
にもかかわらず硬度、強度に優れ、しかも組織が
緻密であるため延性及び曲げ成形性に優れるう
え、導電性を阻害する元素や粗大析出物をほとん
ど含まないので導電ばね材料として好適な高い導
電性を有するものである。
(実施例)
第1表に示されるNo.1〜No.7の種々の組成の合
金を高速で回転するローラ間に噴き出し、500
℃/秒以上の速度で溶融状態から急冷凝固して厚
さ0.35mmの薄板を作成した。これを第1表中に
a、b、c、d等の記号で示す処理工程により処
理したうえでビツカース硬さ、引張強度、伸び、
導電率を測定し同表に記した。また第2表は合金
組成が本発明の範囲を外れた合金につき、第1表
に示したと同様に処理した場合の測定値を示した
もので、第2表中のNo.11〜No.14は従来技術として
引用した特公昭60−43895号の範囲内のものであ
る。なお、a〜hの記号で示した処理工程の内容
は第3表にまとめて示した。
(Industrial Application Field) The present invention relates to a method for manufacturing a high-strength copper-based alloy having excellent strength and conductivity and suitable for use as a conductive spring material. (Prior art) A typical conductive spring material with excellent strength and conductivity is a precipitation hardening alloy of 1.8% Be, 0.25% Co, and the balance Cu specified as alloy number C1720 in JISH3130. However, since it contains a large amount of expensive Be, it has the disadvantage that the combined price is extremely high. On the other hand, based on Cu, B,
An alloy containing antimetallic elements such as Si, P, Ge.Te, etc. and Be or S is rapidly solidified from a molten state to obtain particle size.
A new attempt to improve conductivity, strength, hardness, etc. by creating a rapidly solidified structure of 0.5 to 15 μm is disclosed in Japanese Patent Publication No. 43895/1983. However, this alloy is not suitable as a conductive spring material because it contains a large amount of semi-metallic elements, resulting in poor conductivity, insufficient hardness and strength, and low elongation and brittleness, resulting in poor bending formability. It lacked practicality and was inferior to conventional precipitation hardening type Cu-Be alloys. (Problems to be solved by the invention) The present invention solves these conventional problems,
In addition to lowering the Be content and lowering the formation price, the rapid solidification method is used to achieve a finer structure, and the properties required for conductive spring materials, such as hardness, strength, and conductivity. This was completed with the aim of creating a high-strength copper-based alloy and its manufacturing method that can fully satisfy the following requirements. (Means for solving the problem) The first invention of the present application has Be0.15 to 1.0% (weight%,
(same below), Ni0.5-6.0%, Si0.2-0.9%, balance Cu
In the rapidly solidified structure, the atomic ratio of Be, Ni, and Si is 1:2.8 to 3.2:0.8 to 1.2, and the crystal grain size is 0.2 to 25 μm.
By increasing the precipitation sites through processing and uniformly and finely dispersing the precipitates after aging treatment, we achieved a Bitkars height of 300.
The purpose of this invention is to provide a high-strength copper-based alloy that is characterized by having the above-mentioned properties. In addition, the second invention of the present application has Be0.15 to 1.0%, Ni0.5
~6.0%, Si0.2~0.9%, remainder Cu and unavoidable impurities, with an atomic ratio of Be, Ni, and Si of 1:2.8~
3.2: 0.8~1.2 alloy from molten state to 500℃/
The crystal grain size is 0.2~25μ by rapid solidification at a speed of more than seconds.
The gist of this article is a method for producing a high-strength copper-based alloy, which is characterized by forming a rapidly solidified structure of m, followed by cold working of 95% or less, and then aging precipitation treatment to uniformly and finely precipitate intermetallic compounds. It is something to do. The present invention exhibits aging precipitation behavior as described above.
By rapidly cooling and solidifying the Cu-Be-Ni-Si alloy from the molten state, extremely fine rapid cooling is achieved by dissolving excessive amounts of solute atoms such as Be, Ni, and Si in the matrix, which is impossible with equilibrium solidification. After obtaining a solidified structure, it is subjected to cold working to generate processing defects in the metal structure, and then subjected to aging precipitation treatment to uniformly and finely precipitate a large amount of intermetallic compounds, thereby improving hardness, strength, This has succeeded in improving bending formability. Next, each component of the present invention will be explained in more detail. Be in the copper-based alloy of the present invention is a basic element for producing precipitation hardenability, and if it is less than 0.15%, the precipitation hardenability is insufficient and no improvement in mechanical strength can be obtained; If it exceeds the amount, the formation price will increase and the purpose of the present invention will not be achieved, and even by the rapid solidification method, the whole will not be able to be dissolved in the matrix, and the effect of improving alloy properties commensurate with the increase in content will not be obtained. Therefore, the content should be in the range of 0.15 to 1.0%, and in particular, the range of 0.4 to 0.8% is optimal. Next, like Be, Ni is also an element that imparts precipitation hardenability, and if it is less than 0.5%, the precipitation hardenability is insufficient, and if it exceeds 6.0%, there will be parts that cannot be dissolved into the matrix during rapid solidification. In addition to this, it also deteriorates the conductivity, so it is necessary to set the content to 0.5 to 6.0%, and a range of 2.0 to 5.0% is particularly preferable. In addition, Si is not only effective in improving mechanical strength without increasing expensive Be by precipitating intermetallic compounds together with Ni, but also improves the castability, slag separation, oxidation resistance, etc. of the alloy. It is also an important element for the purpose of achieving this, and at least 0.2% or more is required, but if it exceeds 0.9%, the conductivity and rolling workability will deteriorate significantly, so 0.2 to 0.9
%, particularly preferably 0.4 to 0.8%. These Be, Ni, and Si have an atomic ratio of 1:1 in order to approximate the stoichiometric composition of the intermetallic compounds that contribute to strengthening.
2.8~3.2: Set in the range of 0.8~1.2. Such an alloy is instantaneously cooled and solidified from a molten state at a high speed exceeding 500° C./second by, for example, being poured between rotating rollers. As a result of such rapid solidification, a fine rapidly solidified structure with a grain size of 0.2 to 25 μm is obtained, and as mentioned above,
A large amount of elements such as Be, Ni, and Si, which cannot be solid-solubilized by equilibrium cooling, is solid-solubilized in the matrix, and hardly any coarse precipitates that do not contribute to strengthening are formed. In the present invention, this structure is formed by rolling etc.
After applying cold working of 95% or less to create processing defects in the structure, and further adding solution treatment at 550 to 1000°C and cold working of 80% or less as necessary,
Aging precipitation treatment is performed at 250-500℃. Through these treatments, the number of precipitation sites due to processing increases in the rapidly solidified structure, and intermetallic compounds of Be, Ni, and Si precipitate uniformly and finely, and the hardness of the material increases as shown in the data of the later examples. In addition to achieving a Bitkers hardness of 300 or more, tensile strength and bending workability are significantly improved. In particular, in the present invention, excessive amounts of Be, Ni, and Si elements are dissolved in the matrix by the rapid solidification method, so that uniform and fine intermetallic compounds are precipitated all at once in a short time by the aging precipitation treatment. , hardness, strength, bending workability, etc. can be significantly improved. In addition, in the present invention, even when solution treatment is performed, Be, Ni, and Si dissolved in solid solution by the rapid solidification method effectively control grain growth.
The grain size of the final structure does not exceed 25 μm. In addition, the degree of cold working was set to 95% or less because
This is because it is necessary to sufficiently generate processing defects in the structure, and the reason why the crystal grain size is set to 0.2 to 2.5 μm is because it is difficult to generate crystals smaller than 0.2 μm, and conversely, it is difficult to generate crystals smaller than 25 μm. This is because ductility and bending formability decrease. As described above, the alloy of the present invention has excellent hardness and strength despite its low beryllium content, and has a dense structure that provides excellent ductility and bending formability. Since it does not contain carbon, it has high conductivity suitable as a conductive spring material. (Example) Alloys of various compositions No. 1 to No. 7 shown in Table 1 were sprayed between rollers rotating at high speed, and
A thin plate with a thickness of 0.35 mm was prepared by rapidly solidifying the material from the molten state at a rate of at least ℃/second. After processing this through the processing steps indicated by symbols a, b, c, d, etc. in Table 1, the Vickers hardness, tensile strength, elongation, etc.
The electrical conductivity was measured and recorded in the same table. In addition, Table 2 shows the measured values for alloys whose alloy compositions are outside the range of the present invention when processed in the same manner as shown in Table 1. is within the scope of Japanese Patent Publication No. 60-43895 cited as the prior art. The contents of the treatment steps indicated by symbols a to h are summarized in Table 3.
【表】【table】
【表】【table】
【表】【table】
【表】
(発明の効果)
本発明は以上の説明からも明らかなように、
Be含有量を低くして地合せ価格を引下げるとと
もに、急冷凝固と冷間加工と時効析出処理の組合
せにより硬度、強度、曲げ成形性等の導電ばね材
料に要求される諸特性をバランス良く向上させる
ことに成功したものであるから、従来のCu−Be
合金及び従来の急冷凝固合金の問題点を一掃した
ものとして、産業の発展に寄与するところは極め
て大きいものである。[Table] (Effects of the invention) As is clear from the above description, the present invention has the following effects:
In addition to lowering the formation price by lowering the Be content, the combination of rapid solidification, cold working, and aging precipitation treatment improves the various properties required for conductive spring materials, such as hardness, strength, and bending formability, in a well-balanced manner. This is because the conventional Cu-Be
As it eliminates the problems of alloys and conventional rapidly solidified alloys, it will greatly contribute to the development of industry.
Claims (1)
〜6.0%、Si0.2〜0.9%、残部Cu及び不可避的不純
物からなり、Be、Ni、Siの原子比が1:2.8〜
3.2:0.8〜1.2であり、かつその結晶粒度を0.2〜
25μmとした急冷凝固組織中に、加工による析出
サイトを増加させ時効処理後の析出物を均一微細
に分散させてビツカース高度300以上の高度を持
たせたことを特徴とする高強度銅基合金。 2 Be、Ni、Siの含有量をBe0.4〜0.8%、Ni2.0
〜5.0%、Si0.4〜0.8%とした特許請求の範囲第1
項記載の高強度銅基合金。 3 引張強度が100Kg/cm2以上、ビツカース硬度
が350以上である特許請求の範囲第1項記載の高
強度銅基合金。 4 Be0.15〜1.0%、Ni0.5〜6.0%、Si0.2〜0.9%、
残部Cu及び不可避的不純物からなり、Be、Ni、
Siの原子比が1:2.8〜3.2:0.8〜1.2である合金を
溶融状態から500℃/秒以上の速度で急冷凝固し
て結晶粒度が0.2〜25μmの急冷凝固組織としたの
ち、95%以下の冷間加工を行い、更に時効析出処
理により金属間化合物を均一微細に析出させたこ
とを特徴とする高強度銅基合金の製造方法。 5 冷間加工ののち、550〜1000℃の焼鈍又は溶
体化処理と80%以下の冷間加工を行つたうえ250
〜550℃で時効析出処理を行う特許請求の範囲第
4項記載の高強度銅基合金の製造方法。[Claims] 1 Be0.15 to 1.0% (weight%, same hereinafter), Ni0.5
~6.0%, Si0.2~0.9%, remainder Cu and unavoidable impurities, with an atomic ratio of Be, Ni, and Si of 1:2.8~
3.2: 0.8~1.2, and the crystal grain size is 0.2~
A high-strength copper-based alloy characterized by increasing the number of precipitation sites through processing and uniformly and finely dispersing the precipitates after aging treatment in a rapidly solidified structure of 25 μm, giving it a Bitkers height of 300 or higher. 2 Be, Ni, Si content: Be0.4~0.8%, Ni2.0
~5.0% and Si0.4~0.8% in claim 1
High-strength copper-based alloy as described in . 3. The high-strength copper-based alloy according to claim 1, which has a tensile strength of 100 Kg/cm 2 or more and a Vickers hardness of 350 or more. 4 Be0.15~1.0%, Ni0.5~6.0%, Si0.2~0.9%,
The remainder consists of Cu and unavoidable impurities, Be, Ni,
An alloy with an Si atomic ratio of 1:2.8 to 3.2:0.8 to 1.2 is rapidly solidified from a molten state at a rate of 500°C/second or more to obtain a rapidly solidified structure with a crystal grain size of 0.2 to 25 μm, and then the crystal grain size is 95% or less. A method for producing a high-strength copper-based alloy, which comprises performing cold working and further precipitating intermetallic compounds uniformly and finely by aging precipitation treatment. 5 After cold working, perform annealing or solution treatment at 550 to 1000℃ and cold working to 80% or less, and then 250
The method for producing a high-strength copper-based alloy according to claim 4, wherein the aging precipitation treatment is performed at ~550°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4385886A JPS62199742A (en) | 1986-02-27 | 1986-02-27 | High strength copper alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4385886A JPS62199742A (en) | 1986-02-27 | 1986-02-27 | High strength copper alloy and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62199742A JPS62199742A (en) | 1987-09-03 |
JPH036214B2 true JPH036214B2 (en) | 1991-01-29 |
Family
ID=12675400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4385886A Granted JPS62199742A (en) | 1986-02-27 | 1986-02-27 | High strength copper alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62199742A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3059484B2 (en) * | 1994-01-06 | 2000-07-04 | 日本碍子株式会社 | Beryllium copper alloy excellent in strength, workability and heat resistance and method for producing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314612A (en) * | 1976-07-28 | 1978-02-09 | Toshiba Corp | Lead wire |
JPS58123862A (en) * | 1982-01-20 | 1983-07-23 | Nippon Mining Co Ltd | Method for manufacturing copper alloy for lead material of semiconductor equipment |
JPS58123846A (en) * | 1982-01-20 | 1983-07-23 | Nippon Mining Co Ltd | Lead material for semiconductor equipment |
JPS59145747A (en) * | 1983-12-13 | 1984-08-21 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor equipment |
JPS59145746A (en) * | 1983-12-13 | 1984-08-21 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor apparatus |
JPS61106738A (en) * | 1984-10-30 | 1986-05-24 | Ngk Insulators Ltd | Conductive spring material |
JPS61119660A (en) * | 1984-11-16 | 1986-06-06 | Nippon Mining Co Ltd | Manufacture of copper alloy having high strength and electric conductivity |
JPS62120451A (en) * | 1985-11-21 | 1987-06-01 | Nippon Mining Co Ltd | Copper alloy for press fit pin |
-
1986
- 1986-02-27 JP JP4385886A patent/JPS62199742A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314612A (en) * | 1976-07-28 | 1978-02-09 | Toshiba Corp | Lead wire |
JPS58123862A (en) * | 1982-01-20 | 1983-07-23 | Nippon Mining Co Ltd | Method for manufacturing copper alloy for lead material of semiconductor equipment |
JPS58123846A (en) * | 1982-01-20 | 1983-07-23 | Nippon Mining Co Ltd | Lead material for semiconductor equipment |
JPS59145747A (en) * | 1983-12-13 | 1984-08-21 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor equipment |
JPS59145746A (en) * | 1983-12-13 | 1984-08-21 | Nippon Mining Co Ltd | Copper alloy for lead material of semiconductor apparatus |
JPS61106738A (en) * | 1984-10-30 | 1986-05-24 | Ngk Insulators Ltd | Conductive spring material |
JPS61119660A (en) * | 1984-11-16 | 1986-06-06 | Nippon Mining Co Ltd | Manufacture of copper alloy having high strength and electric conductivity |
JPS62120451A (en) * | 1985-11-21 | 1987-06-01 | Nippon Mining Co Ltd | Copper alloy for press fit pin |
Also Published As
Publication number | Publication date |
---|---|
JPS62199742A (en) | 1987-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4073667A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition | |
WO2011125554A1 (en) | Cu-ni-si-co copper alloy for electronic material and process for producing same | |
JPH0625388B2 (en) | High strength, high conductivity copper base alloy | |
US6132528A (en) | Iron modified tin brass | |
US4466939A (en) | Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts | |
CN110951990A (en) | Cu-Ni-Co-Fe-Si-Zr-Zn copper alloy material and preparation method thereof | |
WO2012132765A1 (en) | Cu-si-co-base copper alloy for electronic materials and method for producing same | |
EP1009866A1 (en) | Grain refined tin brass | |
JP3205362B2 (en) | High strength, high toughness aluminum-based alloy | |
JPH05171331A (en) | High strength magnesium-base alloy | |
JPH0356295B2 (en) | ||
JP2909089B2 (en) | Maraging steel and manufacturing method thereof | |
JP2534073B2 (en) | Copper alloy for electronic component construction and method for producing the same | |
JPH036214B2 (en) | ||
JP3407054B2 (en) | Copper alloy with excellent heat resistance, strength and conductivity | |
JPH07113143B2 (en) | Method for producing high strength copper alloy | |
US3772095A (en) | Copper base alloys | |
JP5252722B2 (en) | High strength and high conductivity copper alloy and method for producing the same | |
JPS62182238A (en) | Cu alloy for continuous casting molds | |
JP3110116B2 (en) | High strength magnesium based alloy | |
JPH03140444A (en) | Manufacture of beryllium copper alloy member | |
JPH09176808A (en) | Production of precipitation hardening copper alloy | |
US3107998A (en) | Copper-zirconium-arsenic alloys | |
JPS62297433A (en) | Structural al alloy excellent in hardenability | |
JPH0285330A (en) | Copper alloy having good press bendability and its manufacture |