JPH034607B2 - - Google Patents
Info
- Publication number
- JPH034607B2 JPH034607B2 JP23012286A JP23012286A JPH034607B2 JP H034607 B2 JPH034607 B2 JP H034607B2 JP 23012286 A JP23012286 A JP 23012286A JP 23012286 A JP23012286 A JP 23012286A JP H034607 B2 JPH034607 B2 JP H034607B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- less
- rolled
- cold
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 33
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- 238000000137 annealing Methods 0.000 claims description 26
- 230000009467 reduction Effects 0.000 claims description 22
- 239000010960 cold rolled steel Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000001953 recrystallisation Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 description 19
- 238000005098 hot rolling Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001327 Rimmed steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004534 enameling Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
(産業上の利用分野)
本発明は、深絞り用冷延鋼板の製造方法に関
し、特に自動車のパネル材として使用される優れ
た深絞り特性を示す冷延鋼板の製造技術について
の提案である。
(従来の技術)
自動車のパネルなどに使用される冷延鋼板とし
ては、優れた深絞り性が要求される。深絞り性向
上のためには、鋼板の機械的特性として高い延性
と高いランクフオード値(γ値)が必要である。
さらに自動車用外板として使用する際には、鋼板
表面性状も重要な因子となつている。
ところで、従来自動車車体の組立に当つて多数
のプレス部品をそれぞれスポツト溶接している
が、最近これらの部品の幾つかを大型化、一体化
することにより部品点数、溶接数を減らしたいと
いう要請が高まつてきた。
たとえば、自動車のオイルパンは、その複雑な
形状のゆえに、溶接を施して完成させているのが
実状であるが、自動車メーカーによる一体成型化
の要求は強い。一方、多様化するニーズに応ずる
ために車のデザインはより複雑化し、そのため従
来の鋼板では成形が困難な部品が増加している。
これらの要求に応ずるためには、従来よりも優れ
た深絞り性を有する冷延鋼板が必要となつてきた
のである。
従来、深絞り性改善のために、各種の方法が提
案されている。ところで、鋼板の深絞り性はその
集合組織と密接な関係があり、{222}方位粒が多
い程、また{200}方位粒が少ない程、高い値
が得られることは既知である。この高値を得る
従来方法として、たとえば、特公昭44−17268号
公報、特公昭44−17269号公報、特公昭44−17270
号公報に開示されているような、低炭素リムド鋼
板において冷間圧延を2回に分けて行う、いわゆ
る2段冷延法が提案されている。
この2段階冷延法によれば、最終製品は{222}
方位粒が多く、{200}方位粒は少ないものとな
る。これは、一次冷延−焼鈍処理により、冷延前
の熱延板に比べて鋼板の{222}方位粒が増加し、
一方{200}方位粒が減少するため、次にまた冷
延−焼鈍を行うと{222}方位粒がさらに増加す
るのに対し、{200}方位粒は一層減少することに
なるからである。そのため、高値を有する鋼板
が製造できるのである。
また、一方、特開昭56−62926号公報では、
C:0.008wt%(以下は単に「%」のみで表示す
る)、Si:0.57%、Mn:0.35%、Al:0.43%およ
びNb:0.061%なる鋼を、通常の熱延−冷延後、
950℃−1hの箱焼鈍を施すことにより、=4.73
の超高値のものを得る技術を提案している。
(発明が解決しようとする問題点)
例示した上記従来技術のうち前者の2段階冷延
法は、深絞り性を改善するという点は実現してい
るものの、従来工程に比べて冷延−焼鈍工程を1
回多く行わなければならず、そのために要するエ
ネルギー、人員、コストが莫大なものとなる問題
点があつた。
また、上記従来技術のうち後者のものは、変態
集合組織の形成機構を利用しているために、結晶
焼鈍温度をA3変態点以上に上げなければならず、
そのためA3変態点未満の再結晶焼鈍に比べて、
エネルギーコストの増大および高温焼鈍による設
備上および技術上の困難さも伴なう。さらに、Si
あるいはAlを多量に添加しなくてはならず、そ
のため鋼板表面性状が悪化するという問題点があ
つた。
そこで、本発明の目的は、2回の冷延を行なう
上記問題点ならびに成分組成のみによる対処によ
るときの上記問題点を主として熱延条件と成分組
成との絡みによる新規な方法の採用により克服す
ると同時に格段に優れた深絞り性を有する冷延鋼
板の有利な製造方法を提案するところにある。
(問題点を解決するための手段)
上述した従来技術が抱えている問題点に対し、
本発明は、C:0.05wt%以下、Si:0.005〜
0.10wt%、Mn:0.01〜0.3wt%、P:0.001〜
0.05wt%、S:0.020wt%以下、Al:0.10wt%以
下およびN:0.005wt%以下含有し、そしてTi:
0.08wt%以下、Nb:0.05wt%以下およびB:
0.003wt%以下のうち1種または2種以上を必要
に応じて含有し、残部実質的にFeからなる鋼を、
少なくとも1パスをAr3変態点〜600℃の温度域
にて、ひずみ速度:500(s-1)以上、圧下率:35
%以上で潤滑熱間圧延を行つて所定の板厚の熱延
板とし、この熱延板を600℃以上で巻き取り、そ
の後酸洗工程を経た後圧下率:50〜95%の冷間圧
延を施し、さらにその後再結晶焼鈍することを特
徴とする深絞り用冷延鋼板の製造方法、
上記課題解決手段とする。
(作用)
以下に、本発明方法に想到する機縁となつた深
絞り性に対する熱間圧延の影響についての研究成
果を説明する。
(Industrial Application Field) The present invention relates to a method for manufacturing a cold-rolled steel sheet for deep drawing, and in particular is a proposal for a technology for manufacturing a cold-rolled steel sheet that exhibits excellent deep-drawing characteristics and is used as an automobile panel material. (Prior Art) Cold-rolled steel sheets used for automobile panels and the like are required to have excellent deep drawability. In order to improve deep drawability, the mechanical properties of the steel sheet need to be high ductility and high Rankford value (γ value).
Furthermore, the surface properties of steel sheets are also an important factor when used as outer panels for automobiles. By the way, in the past, when assembling an automobile body, a large number of press parts were individually spot welded, but recently there has been a demand to reduce the number of parts and welds by making some of these parts larger and integrating them. It's getting higher. For example, due to the complicated shape of automobile oil pans, they are actually completed by welding, but there is a strong demand from automobile manufacturers for integral molding. Meanwhile, car designs are becoming more complex in order to meet diversifying needs, and as a result, an increasing number of parts are difficult to form using conventional steel plates.
In order to meet these demands, cold-rolled steel sheets with better deep drawability than conventional ones have become necessary. Conventionally, various methods have been proposed to improve deep drawability. By the way, it is known that the deep drawability of a steel sheet is closely related to its texture, and the greater the number of {222} oriented grains and the fewer {200} oriented grains, the higher the value obtained. Conventional methods for obtaining this high price include, for example, Japanese Patent Publication No. 17268, No. 17269, Japanese Patent Publication No. 17270,
A so-called two-stage cold rolling method has been proposed in which cold rolling is performed in two steps on a low carbon rimmed steel sheet, as disclosed in Japanese Patent Publication No. According to this two-step cold rolling method, the final product is {222}
There are many oriented grains, and there are few {200} oriented grains. This is because the primary cold rolling and annealing treatment increases the {222} oriented grains in the steel sheet compared to the hot rolled sheet before cold rolling.
On the other hand, since the {200} oriented grains decrease, when cold rolling and annealing are performed next, the {222} oriented grains further increase, whereas the {200} oriented grains further decrease. Therefore, steel sheets with high prices can be manufactured. On the other hand, in Japanese Patent Application Laid-open No. 56-62926,
C: 0.008wt% (hereinafter simply expressed as "%"), Si: 0.57%, Mn: 0.35%, Al: 0.43% and Nb: 0.061%, after normal hot rolling and cold rolling,
By performing box annealing at 950℃ for 1 hour, = 4.73
We are proposing a technology to obtain extremely high prices. (Problems to be Solved by the Invention) Among the above-mentioned conventional techniques, the former two-stage cold rolling method has achieved the improvement of deep drawability, but compared to the conventional process, the cold rolling-annealing process Step 1
There was a problem in that the process had to be performed many times, and the energy, manpower, and cost required for this process were enormous. Furthermore, since the latter of the above conventional techniques utilizes the formation mechanism of a transformation texture, the crystal annealing temperature must be raised to the A3 transformation point or higher.
Therefore, compared to recrystallization annealing below the A3 transformation point,
Increased energy costs and equipment and technical difficulties due to high temperature annealing are also involved. Furthermore, Si
Alternatively, a large amount of Al must be added, which poses a problem in that the surface properties of the steel sheet deteriorate. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to overcome the above-mentioned problems of performing two cold rolling operations and the above-mentioned problems of dealing with only the component composition by adopting a new method mainly based on the interaction between hot-rolling conditions and component composition. At the same time, the present invention proposes an advantageous method for producing cold-rolled steel sheets having exceptionally excellent deep drawability. (Means for solving the problems) Regarding the problems of the above-mentioned conventional technology,
In the present invention, C: 0.05wt% or less, Si: 0.005~
0.10wt%, Mn: 0.01~0.3wt%, P: 0.001~
0.05wt%, S: 0.020wt% or less, Al: 0.10wt% or less, N: 0.005wt% or less, and Ti:
0.08wt% or less, Nb: 0.05wt% or less and B:
Steel containing one or more of 0.003wt% or less as necessary, and the remainder substantially consisting of Fe,
At least one pass in the temperature range of Ar 3 transformation point to 600℃, strain rate: 500 (s -1 ) or more, rolling reduction: 35
Lubricated hot rolling is performed at a temperature of 50% to 95%, followed by hot rolling at a temperature of 600°C or higher, followed by a pickling process, followed by cold rolling at a rolling reduction of 50 to 95%. The present invention provides a method for producing a cold-rolled steel sheet for deep drawing, which is characterized by subjecting the steel sheet to recrystallization annealing and then recrystallization annealing. (Function) Below, the results of research on the influence of hot rolling on deep drawability, which led to the idea of the method of the present invention, will be explained.
【表】
研究に用いた供試材(極低炭素鋼)を表1に示
す。この供試鋼の鋼片を700℃に加熱−均熱後、
1パス40%および30%の圧下率で潤滑および無潤
滑の熱間圧延を行い、650℃−1hの巻取り処理を
施した。その熱延板を75%の圧下率の冷間圧延を
施した後、830℃−40secの連続焼鈍を施した。こ
の時のひずみ速度、圧下率および潤滑の有無と
値の関係を第1図に示す。
この図から判るように、ひずみ速度500(s-1)
以上で値の向上が認められ、また圧下率は30%
よりも40%と大きくなる方が良く、そして無潤滑
よりも潤滑圧延の方が優れている。
そこで、上述のような熱間圧延法についての新
規知見をもとに完成を見た本発明法について、素
材ならびに製造条件が上記解決手段のように限定
される理由につき、以下に順を追つて説明する。
(1) 鋼組成について、
本発明において鋼組成は重要であり、
C:0.05%以下、Si:0.005〜0.10%、
Mn:0.01〜0.3%、P:0.001〜0.05%、
S:0.020%以下、Al:0.10%以下および
N:0.005%以下含有し、
そして必要に応じ、
Ti:0.08%以下、Nb:0.05%以下、
B:0.003%以下
のうち1種または2種以上を含有し、残部は
Feおよび不可避的不純物よりなるものである
ことが必要である。
(a) C≦0.05%
Cは、少ないほど冷延板の深絞り性が向上
するので好ましいが、0.05%超えると深絞り
性に悪影響を及ぼす。
(b) 0.005%≦Si≦0.10%
Siは、鋼板の強度あるいは深絞り性に好ま
しい集合組織形成に有効な元素である。その
含有量は0.005%未満では所望の効果が得ら
れず、一方0.10%を超えて含有させると鋼板
の表面性状が劣化しかつ延性も低下するの
で、0.005%≦Si≦0.10%と定めた。
(c) 0.01%≦Mn≦0.3%
Mnは、鋼板の脆性を改善する作用があ
る。その含有量が0.01%未満では所望の効果
が得られず、一方0.3%を超えると延性が低
下するため、0.01%≦Mn≦0.3%と定めた。
(d) 0.001%≦P≦0.05%
Pは、鋼を強化する作用がある。その含有
量が0.001%未満では所望の効果が得られず、
一方0.05%を超えて含有させると延性が劣化
するため、0.001%≦P≦0.05%と定めた。
(e) S≦0.020%
Sは、少なければ少ないほど深絞り性には
有利である。その含有量が0.020%未満なら
深絞り性に悪影響を与えないので、S≦
0.020%と定めた。
(f) Al≦0.10%
Alは、脱酸を行うために添加されるが、
0.10%を超えて含有させると粗大粒組織を呈
し、プレス加工時に肌荒れを生じ、さらに表
面性状も劣化する。
(g) N≦0.005%
Nは、少ないほど深絞り性が向上する。
0.005%以下なら深絞り性に悪影響をおよぼ
さないので、N≦0.005%と定めた。
(h) Ti、NbおよびB
Ti、NbおよびBは、何れも炭窒化物形成
元素であり、鋼中の固溶C、Nを減少させて
深絞り性に有利な集合組織形成に効果があ
る。しかしながら、その含有量が各々0.08
%、0.05%、0.003%を超ると延性が劣化す
るため、Ti≦0.08%、Nb≦0.05%、B≦
0.003%と定めた。
(2) 圧延素材について
圧延素材としては造塊−分塊圧延法又は連続
鋳造法の如き一般的な方法により得られる鋼片
が適用できる。この場合鋼片の加熱温度は800
〜1250℃が適当であり、とくに950〜1150℃の
範囲が好適である。連続鋳造から鋼片を再加熱
することなく圧延を開始する連続鋳造−直接圧
延法(いわゆるCC−DR法)で得たものも適用
可能である。
一方、溶鋼から直接50mm以下の圧延素材を鋳
造する方法(シートバーキヤスター法、ストリ
ツプキヤスター法)も省エネルギー、省工程の
観点から経済的メリツトが大きく、この発明の
圧延素材の製造手段としてとくに有利である。
(3) 熱間圧延について
この発明においてもつとも重要な工程であ
り、仕上圧延の際、少なくとも1パスをAr3変
態点〜600℃の温度域にて、ひずみ速度:500
(s-1)以上で圧下率:35(%)以上の潤滑圧延
を行つた後、600℃以上で巻取るという処理が
必要である。
圧延温度がAr3変態点以上の高温域では、た
とえ高ひずみ速度大圧下圧延を行つても、γ→
α変態のため結晶方位がランダム化し、絞り性
に有利な{222}方位を形成することとは不可
能である。一方、600℃以下の圧延では、600℃
以上で巻き取ることは不可能であるため、鋼板
は加工組織を呈し、巻取り時における自己焼鈍
を起させることができない。
圧延パス数、圧下率の配分は、少なくとも1
パスで潤滑下に仕上げる条件を満す限り任意で
よく、もちろん圧延機の配列構造、ロール径、
張力なども特に限定されない。
潤滑油の種類および散布方法についてもこの
発明においては限定されない。たとえば、鉱油
をベースとする懸濁油などを通常の方法にて適
用することができる。
巻取温度は、600℃以上にすることが必須で
ある。600℃未満の巻取温度であると、巻取り
時の自己焼鈍では再結晶は進行せず、そのため
に深絞り性に不利な{200}方位粒が残存する
ためである。
(4) 冷間圧延について
この工程は、高いγ値を得ることおよび面内
異方性を小さくするために、この発明において
重要であり、冷間圧下率は50〜95%とすること
が不可欠である。
かかる冷延圧下率が50%未満または95%以上
であると、優れた深絞り性を得ることができな
い。
(5) 焼鈍について
冷間圧延工程を経た冷延鋼帯は、再結晶焼鈍
が必要である。焼鈍方法は箱型焼鈍法、連続焼
鈍法のいずれでもよいが、均質性、生産性の観
点から後者が有利である。
加熱温度は再結晶温度(約600℃)から950℃
の範囲とする。なお、連続焼鈍の場合熱サイク
ルすなわち均熱後の冷却速度、および過時効処
理の有無などの条件に特に限定はないが、10
℃/see以下の除冷もしくは350℃近傍の過時効
処理を施すことは材質とくに延性の向上に有効
である。
焼鈍後の鋼帯には形状矯正、表面粗度等の調
整のために10%以下の調質圧延を加えてもよ
い。
なお、この発明で得られる冷延鋼板は、加工
用表面処理鋼板の原板にも適用できる。表面処
理としては、亜鉛めつき(合金系含む)、錫め
つき、そしてほうろうなどがある。
なお、本発明における高ひずみ速度大圧下圧延
の効果については以下のように考えられる。ま
ず、高ひずみ速度大圧下圧延は、実質的には圧延
温度を下げる効果を有する。すなわち、Ar3変態
点〜600℃という高目の温度域においても、高ひ
ずみ速度大圧下圧延を行うと冷間圧延を施したも
のと同等の変形集合組織が形成される。この鋼板
を600℃以上で巻き取ると、自己焼鈍により再結
晶が完了する。したがつて高ひずみ速度大圧下圧
延−巻き取り自己焼鈍だけで、あたかも一次冷延
−焼鈍を施したものと同等の効果を有することに
なる。そのために冷延−焼鈍後の深絞り性が従来
の熱延を施したものに比べて格段に優れたものと
なるものである。
(実施例)
表2に示す成分組成の鋼片を表3に示す方法に
より製造した。これを連続的に7スタンドからな
る仕上げ圧延機を用いて、3.2mm板厚の熱延板と
した。この時、全スタンドの圧延機を用いて潤滑
圧延を行い、また最終スタンドの圧延機を用いて
高ひずみ速度大圧下圧延を行つた後種々の温度で
巻き取つた。
引続き酸洗をした後0.8mm板厚(冷延圧下率:
75%)または1.7mm板厚(冷延圧下率:47%→比
較例)の冷延板とし、次に再結晶焼鈍(焼鈍温
度:760〜830℃)を施した。
本発明実施例および比較例の熱延条件および連
続焼鈍後の材料特性を、表3にまとめて示す。引
張特性はJIS5号試験片により求め、L(圧延方
向)、C(圧延方向に90゜)、D(圧延方向に45゜)3
方向の平均値として求めた。また値は15%引張
予歪を与えた後、3点法により測定し、L、C、
D3方向の平均値として求めた。
表3に示すところから明らかなように、本発明
法に従つて得られた鋼板は、比較例に比べて高い
γ値と延性を示していることが判る。[Table] Table 1 shows the test materials (ultra-low carbon steel) used in the research. After heating the specimen steel piece to 700℃ and soaking it,
Lubricated and non-lubricated hot rolling was performed at rolling reductions of 40% and 30% in one pass, and winding treatment was performed at 650°C for 1 hour. The hot-rolled sheet was cold-rolled at a rolling reduction of 75%, and then continuously annealed at 830°C for 40 seconds. Figure 1 shows the relationship between the strain rate, rolling reduction rate, presence or absence of lubrication, and values at this time. As you can see from this figure, the strain rate is 500 (s -1 )
An improvement in the value was observed above, and the reduction rate was 30%.
40% is better, and lubricated rolling is better than non-lubricated rolling. Therefore, regarding the method of the present invention, which was completed based on the above-mentioned new knowledge about the hot rolling method, the reasons why the materials and manufacturing conditions are limited as in the above-mentioned solution are explained in order below. explain. (1) Regarding the steel composition, the steel composition is important in the present invention: C: 0.05% or less, Si: 0.005 to 0.10%, Mn: 0.01 to 0.3%, P: 0.001 to 0.05%, S: 0.020% or less, Contains Al: 0.10% or less and N: 0.005% or less, and if necessary, contains one or more of Ti: 0.08% or less, Nb: 0.05% or less, B: 0.003% or less, and the remainder is
It must consist of Fe and unavoidable impurities. (a) C≦0.05% C is preferable because the less it is, the better the deep drawability of the cold-rolled sheet is, but if it exceeds 0.05%, it will have a negative effect on the deep drawability. (b) 0.005%≦Si≦0.10% Si is an effective element for forming a texture that is favorable for the strength or deep drawability of steel sheets. If the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.10%, the surface properties of the steel sheet will deteriorate and the ductility will also decrease, so it was set as 0.005%≦Si≦0.10%. (c) 0.01%≦Mn≦0.3% Mn has the effect of improving the brittleness of the steel sheet. If the content is less than 0.01%, the desired effect cannot be obtained, while if it exceeds 0.3%, ductility decreases, so it was set as 0.01%≦Mn≦0.3%. (d) 0.001%≦P≦0.05% P has the effect of strengthening steel. If the content is less than 0.001%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 0.05%, ductility deteriorates, so it was set as 0.001%≦P≦0.05%. (e) S≦0.020% The smaller the S content, the more advantageous it is to deep drawability. If its content is less than 0.020%, it will not adversely affect deep drawability, so S≦
It was set at 0.020%. (f) Al≦0.10% Al is added to perform deoxidation, but
If it is contained in an amount exceeding 0.10%, a coarse grain structure will be exhibited, causing roughness during press working and further deteriorating the surface quality. (g) N≦0.005% The smaller the amount of N, the better the deep drawability.
If it is 0.005% or less, it will not adversely affect deep drawability, so it was set as N≦0.005%. (h) Ti, Nb, and B Ti, Nb, and B are all carbonitride-forming elements, and are effective in reducing solid solution C and N in steel and forming a texture that is advantageous for deep drawability. . However, the content is 0.08 each
%, 0.05%, 0.003%, the ductility deteriorates, so Ti≦0.08%, Nb≦0.05%, B≦
It was set at 0.003%. (2) Regarding the rolled material As the rolled material, a steel billet obtained by a general method such as an ingot-blowing method or a continuous casting method can be used. In this case, the heating temperature of the steel billet is 800
-1250°C is suitable, and a range of 950-1150°C is particularly suitable. It is also applicable to those obtained by the continuous casting-direct rolling method (so-called CC-DR method) in which rolling is started without reheating the steel billet from continuous casting. On the other hand, the method of directly casting rolled material of 50 mm or less from molten steel (sheet bar caster method, strip caster method) also has great economic merits from the viewpoint of energy saving and process saving, and the manufacturing method of the rolled material of this invention This is particularly advantageous. (3) About hot rolling This is the most important process in this invention, and during finish rolling, at least one pass is performed in the temperature range of Ar 3 transformation point to 600°C at a strain rate of 500°C.
It is necessary to carry out lubricated rolling at a rolling reduction rate of 35 (%) or more at a temperature of (s -1 ) or more, and then wind it at a temperature of 600°C or more. In the high temperature range where the rolling temperature is higher than the Ar 3 transformation point, even if high strain rate and large reduction rolling is performed, γ→
Due to the α transformation, the crystal orientation becomes random, and it is impossible to form the {222} orientation, which is advantageous for drawability. On the other hand, when rolling at 600℃ or less, 600℃
Since it is impossible to wind up the steel sheet at a temperature higher than that, the steel sheet exhibits a processed structure, and self-annealing cannot occur during winding. The number of rolling passes and the distribution of rolling reduction ratio are at least 1
As long as it satisfies the conditions for finishing with lubrication in each pass, it can be arbitrarily selected, and of course, the arrangement structure of the rolling mill, roll diameter, etc.
Tension and the like are not particularly limited either. The type of lubricating oil and the method of dispersing it are also not limited in this invention. For example, suspension oils based on mineral oils and the like can be applied in the usual manner. It is essential that the winding temperature be 600°C or higher. This is because if the winding temperature is less than 600°C, recrystallization will not proceed during self-annealing during winding, and therefore {200} oriented grains, which are disadvantageous for deep drawability, will remain. (4) About cold rolling This process is important in this invention in order to obtain a high γ value and to reduce in-plane anisotropy, and it is essential that the cold rolling reduction rate be 50 to 95%. It is. If the cold rolling reduction is less than 50% or more than 95%, excellent deep drawability cannot be obtained. (5) Regarding annealing Cold rolled steel strips that have gone through the cold rolling process require recrystallization annealing. The annealing method may be either a box annealing method or a continuous annealing method, but the latter is advantageous from the viewpoint of homogeneity and productivity. Heating temperature ranges from recrystallization temperature (approximately 600℃) to 950℃
The range shall be . In the case of continuous annealing, there are no particular limitations on the thermal cycle, that is, the cooling rate after soaking, and the presence or absence of overaging treatment, but
Slow cooling below ℃/see or overaging treatment at around 350℃ is effective for improving material quality, especially ductility. The steel strip after annealing may be subjected to temper rolling of 10% or less in order to correct the shape and adjust the surface roughness. In addition, the cold-rolled steel sheet obtained by this invention can also be applied to the original plate of a surface-treated steel sheet for processing. Surface treatments include galvanizing (including alloys), tin plating, and enameling. The effects of high strain rate, large reduction rolling in the present invention are considered as follows. First, high strain rate, large reduction rolling has the effect of substantially lowering the rolling temperature. That is, even in a high temperature range from the Ar 3 transformation point to 600°C, when high strain rate large reduction rolling is performed, a deformed texture equivalent to that obtained by cold rolling is formed. When this steel plate is rolled up at 600°C or higher, recrystallization is completed by self-annealing. Therefore, high strain rate, large reduction rolling and self-annealing alone have the same effect as primary cold rolling and annealing. Therefore, the deep drawability after cold rolling and annealing is much better than that of conventional hot rolling. (Example) Steel slabs having the composition shown in Table 2 were manufactured by the method shown in Table 3. This was continuously processed into a hot-rolled plate with a thickness of 3.2 mm using a finishing rolling mill consisting of 7 stands. At this time, lubricated rolling was performed using the rolling mills of all stands, and high strain rate, large reduction rolling was performed using the rolling mill of the last stand, followed by winding at various temperatures. After subsequent pickling, the plate thickness is 0.8mm (cold rolling reduction:
75%) or 1.7 mm thick (cold rolling reduction ratio: 47% → comparative example), and then recrystallization annealing (annealing temperature: 760 to 830°C) was performed. Table 3 summarizes the hot rolling conditions and material properties after continuous annealing of the inventive examples and comparative examples. The tensile properties were determined using JIS No. 5 test pieces, L (rolling direction), C (90° in the rolling direction), D (45° in the rolling direction) 3
It was calculated as the average value in the direction. In addition, the values were measured by a three-point method after applying 15% tensile prestrain, and L, C,
It was calculated as the average value in the D3 direction. As is clear from Table 3, the steel plate obtained according to the method of the present invention has a higher γ value and ductility than the comparative example.
【表】【table】
【表】【table】
【表】
(発明の効果)
以上説明したように本発明によれば、鋼成分と
熱延条件とりわけ、高ひずみ速度大圧下圧延を行
うという条件の採用により、従来よりも格段に優
れた深絞り性を示すと共に他の機械的な性質にも
優れてた冷延鋼板を安価に製造できる。[Table] (Effects of the invention) As explained above, according to the present invention, by adopting the steel composition and hot rolling conditions, especially the conditions of high strain rate and large reduction rolling, deep drawing is much superior to that of the conventional method. It is possible to produce cold-rolled steel sheets at low cost that exhibit excellent mechanical properties as well as mechanical properties.
第1図は、値に及ぼす“ひずみ速度”、“圧下
率”、“潤滑”の影響を示すグラフである。
FIG. 1 is a graph showing the influence of "strain rate", "reduction ratio", and "lubrication" on the values.
Claims (1)
Mn:0.01〜0.3wt%、P:0.001〜0.05wt%、S:
0.020wt%以下、Al:0.10wt%以下およびN:
0.005wt%以下含有し、そしてTi:0.08wt%以
下、Nb:0.05wt%以下およびB:0.003wt%以下
のうちの1種または2種以上を必要に応じて含有
し、残部実質的にFeからなる鋼を、少なくとも
1パスをAr3変態点〜600℃の温度域にて、ひず
み速度:500(s-1)以上、圧下率:35%以上で潤
滑熱間圧延を行つて所定の板厚の熱延板とし、こ
の熱延板を600℃以上で巻き取り、その後酸洗工
程を経た後圧下率:50〜95%の冷間圧延を施し、
さらにその後再結晶焼鈍することを特徴とする、
深絞り用冷延鋼板の製造方法。1 C: 0.05wt% or less, Si: 0.005-0.10wt%,
Mn: 0.01-0.3wt%, P: 0.001-0.05wt%, S:
0.020wt% or less, Al: 0.10wt% or less and N:
0.005wt% or less, and contains one or more of Ti: 0.08wt% or less, Nb: 0.05wt% or less, and B: 0.003wt% or less, as necessary, and the remainder is substantially Fe. At least one pass of the steel is lubricated and hot rolled in the temperature range from the Ar 3 transformation point to 600°C at a strain rate of 500 (s -1 ) or more and a rolling reduction of 35% or more to form a specified plate. A thick hot-rolled plate is formed, this hot-rolled plate is rolled up at a temperature of 600℃ or higher, and then subjected to a pickling process and then cold-rolled at a reduction rate of 50 to 95%.
Furthermore, it is characterized by subsequent recrystallization annealing,
A method for producing cold-rolled steel sheets for deep drawing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23012286A JPS6386819A (en) | 1986-09-30 | 1986-09-30 | Production of cold rolled steel sheet for deep drawing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23012286A JPS6386819A (en) | 1986-09-30 | 1986-09-30 | Production of cold rolled steel sheet for deep drawing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6386819A JPS6386819A (en) | 1988-04-18 |
JPH034607B2 true JPH034607B2 (en) | 1991-01-23 |
Family
ID=16902910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23012286A Granted JPS6386819A (en) | 1986-09-30 | 1986-09-30 | Production of cold rolled steel sheet for deep drawing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6386819A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07107179B2 (en) * | 1988-08-05 | 1995-11-15 | 川崎製鉄株式会社 | Manufacturing method of cold rolled steel sheet for ultra deep drawing |
JPH0784620B2 (en) * | 1989-11-02 | 1995-09-13 | 株式会社神戸製鋼所 | Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance |
JPH07116521B2 (en) * | 1989-08-09 | 1995-12-13 | 株式会社神戸製鋼所 | Thin steel sheet manufacturing method |
JPH0784618B2 (en) * | 1989-09-05 | 1995-09-13 | 株式会社神戸製鋼所 | Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance |
JPH0784621B2 (en) * | 1989-11-03 | 1995-09-13 | 株式会社神戸製鋼所 | Method for manufacturing cold-rolled steel sheet for deep drawing with excellent bake hardenability |
JPH0756051B2 (en) * | 1990-06-20 | 1995-06-14 | 川崎製鉄株式会社 | Manufacturing method of high strength cold rolled steel sheet for processing |
EP0903419A4 (en) * | 1996-12-24 | 2000-03-22 | Kawasaki Steel Co | Thin steel plate of high rectangular tube drawability and method of manufacturing the same |
JP3460525B2 (en) * | 1996-12-24 | 2003-10-27 | Jfeスチール株式会社 | Thin steel sheet excellent in drawability of rectangular cylinder, method for producing the same and method of using the same |
JPH1150211A (en) * | 1997-08-05 | 1999-02-23 | Kawasaki Steel Corp | Thick cold rolled steel plate excellent in deep drawing workability and its production |
JP4962527B2 (en) * | 2009-04-28 | 2012-06-27 | Jfeスチール株式会社 | Cold-rolled steel sheet excellent in formability, shape freezing property, surface appearance, and method for producing the same |
TWI457448B (en) * | 2011-04-13 | 2014-10-21 | Nippon Steel & Sumitomo Metal Corp | High strength cold rolled steel sheet with excellent natural |
-
1986
- 1986-09-30 JP JP23012286A patent/JPS6386819A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6386819A (en) | 1988-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970000406B1 (en) | High strength cold-rolled steel sheet excelling in deep drawability and method of producing the same | |
EP0120976B1 (en) | Process for manufacturing cold-rolled steel for deep drawing | |
JPH034607B2 (en) | ||
JPH108142A (en) | Manufacture of steel sheet for can manufacture, excellent in workability and free from surface roughing | |
JPH08176735A (en) | Steel sheet for can and production thereof | |
JP3336079B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and chemical conversion property and method for producing the same | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability | |
JP2948416B2 (en) | High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability | |
JPH0238648B2 (en) | ||
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
JPH03150316A (en) | Production of cold rolled steel sheet for deep drawing | |
JP3806983B2 (en) | Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing | |
JPH0257128B2 (en) | ||
JPH0257131B2 (en) | ||
JP2980488B2 (en) | Method for producing steel sheet for low earring container | |
JP3150188B2 (en) | Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability | |
JP3793254B2 (en) | Method for producing cold-rolled steel sheet with excellent formability | |
JPH0227416B2 (en) | TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH0598354A (en) | Production of hot-dip galvanized steel sheet for deep drawing | |
JPH0860242A (en) | Method for producing steel plate for DI can excellent in can forming property and pressure resistance | |
JPH0561341B2 (en) | ||
JPH05230541A (en) | Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet | |
JPS6213534A (en) | Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability | |
JPH0711333A (en) | Manufacturing method of steel plate for non-aging low earring container | |
JPH03122217A (en) | Production of extra thin cold rolled steel sheet from thin cast slab |