JPH0257128B2 - - Google Patents
Info
- Publication number
- JPH0257128B2 JPH0257128B2 JP60043971A JP4397185A JPH0257128B2 JP H0257128 B2 JPH0257128 B2 JP H0257128B2 JP 60043971 A JP60043971 A JP 60043971A JP 4397185 A JP4397185 A JP 4397185A JP H0257128 B2 JPH0257128 B2 JP H0257128B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel
- rolled
- strain rate
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野)
耐リジング性と加工性に優れた薄鋼板の製造に
関してこの明細書で述べる技術内容は、圧延条件
の規制により冷間圧延および再結晶焼純工程を省
略し得る新プロセスについての開発成果を開示す
るところにある。
建材、自動車車体材、缶材ないしは各種表面処
理原板などの用途に使用される板厚がおよそ2mm
以下の加工用薄鋼板には以下のような特性が要求
される。
(1) 機械的特性
良好な曲げ加工性、張り出し加工性および絞
り加工性を得るために、主として高い延性と高
いランクフオード値(r値)が必要である。
(2) 表面特性
これら材料は主として最終製品の最外側に使
用されるため、素材としての形状および表面美
麗さはもちろんのこと、各種表面処理性も重要
である。
これら薄鋼板の一般的な製造手段は、次のとお
りである。
まず鋼素材としては主に低炭素鋼を用い、造塊
一分塊圧延にて板厚200mm程度の鋼片とした後、
加熱炉にて加熱−均熱処理し、ついで粗熱延工程
により板厚約30mmのシートバーとしてから、仕上
温度がAr3変態点以上の範囲における仕上熱延工
程にて所定板厚の熱延鋼帯とし、しかるのちそれ
を酸洗後、冷間圧延により所定板厚(2.0mm以下)
の冷延鋼帯とし、さらに再結晶焼純を施して最終
製品とする。
かかる慣行の最大の欠点は最終製品に至るまで
の工程がきわめて長いことにある。その結果、製
品にするまでに要するエネルギー、要員および時
間が莫大になるだけでなく、これら長い工程中
に、製品の品質とくに表面特性上種々の問題を生
じさせる不利も加わる。例えば冷間圧延工程にお
ける表面欠陥の発生、あるいは再結晶焼純工程に
おける不純物元素の表面濃化および表面酸化に起
因する表面美麗さの劣化、さらには表面処理性の
劣化などが不可避的トラブルである。
ところが加工用薄鋼板の製造法としては、熱間
圧延工程にて最終製品とするものも考えられてい
る。この方法によれば、冷間圧延および再結晶焼
鈍工程が省略でき、そのメリツトは大きい。
しかしながら、熱間圧延のままで得られる薄鋼
板の機械的特性は、冷延−焼鈍工程を経たものに
比べるとはるかに劣る。とくに自動車の車体など
に使用されるプレス加工材には優れた深絞り性が
要求されるのに対し、熱延鋼板のr値は1.0前後
と低く、そのためその加工用途はきわめて限られ
たものになる。これは従来の熱延方法において
は、その仕上温度がAr3変態的以上であるため、
γ→α変態時に集合組織がランダム化するためで
ある。加えて2.0mm以下の板厚の薄鋼板を熱延工
程のみで製造することはきわめて困難である。し
かも寸法精度の問題の他に、薄くなることによる
鋼板温度の低下は、低炭素鋼のAr3変態点以下の
圧延を余儀なくし、材質(延性、絞り性)の著し
い劣化をもたらす。またたとえAr3変態点以下の
圧延によつて材質が確保できたとしても、フエラ
イト域で圧延された鋼板にはリジングが発生しや
すくなるという新たな問題が生じる。
ここにリジングとは製品の加工時に生じる表面
の凹凸の欠陥であつて、加工製品の最外側に使用
されることが主であるこの種の鋼板にとつては致
命的な欠陥である。
リジングは、金属学的には加工−再結晶過程を
経ても容易には分割されない結晶方位群(例えば
{100}方位粒群)が圧延方向に伸ばされたまま残
留することに起因するものであり、一般にフエラ
イト(α)域の比較的高温で加工された状況で生
じやすく、とくにフエライト域での圧下率が高い
場合すなわち薄鋼板の製造のような場合にはその
傾向が強い。
最近では、これら加工用薄鋼板は、加工製品の
複雑化、高級化に伴い厳しい加工を受けることが
多くなつたこともあり、優れた耐リジング性が要
求されるようになつてきた。
ところで近年鉄鋼材料の製造工程は著しく変化
しており、加工用薄鋼板の場合も例外ではない。
すなわち、近年まず連続鋳造プロセスの導入に
よつて分塊圧延工程が省略可能となり、また材質
向上と省エネルギーを目的として鋼片の加熱温度
は従来の1200℃近傍から1100℃近傍もしくはそれ
以下に低下される傾向にある。さらに溶鋼から直
ちに板厚50mm以下の鋼帯を溶製することにより、
熱延の加熱処理と粗圧延工程を省略できるプロセ
スも実用化されつつある。
しかしながらこれらの新製造工程は、いずれも
溶鋼が凝固する際にできる組織(鋳造組織)を破
壊するという点では不利である。とくに凝固時に
形成された{100}<uvw>を主方位とする強い鋳
造集合組織を破壊することはきわめて困難であ
る。
その結果として、最終薄鋼板には、前述したリ
ジングが起こりやすかつたのである。
(従来の技術)
Ar3変態点以下の比較的低温域で所定板厚の薄
鋼板とし、その後は冷間圧延および再結晶焼鈍工
程を施さない加工用薄鋼板の製造方法もいくつか
提示されている。例えば特開昭48−4329号公報に
は、低炭素リムド鋼をAr3変態点以下の温度で90
%の圧延にて4mm板厚の鋼帯とすることによる降
伏点26.1Kg/mm2、引張強さ37.3Kg/mm2、伸び49.7
%、=1.29の特性を有する製造例が示されてい
る。また特開昭52−44718号公報には同じく低炭
素リムド鋼を熱延仕上温度800〜860℃(Ar3変態
点以下)で2.0mm板厚とし、巻取温度600〜730℃
とすることによる、降伏点20Kg/mm2以下の低降伏
点鋼板の製造法が示されている。しかしながら絞
り性の指標であるコニカルカツプ値は得られる製
品で60.60〜62.18mm程度であり、この点従来例の
60.58〜60.61に比べると絞り性は同等かそれ以下
である。さらに特開昭53−22850号公報には同じ
く低炭素リムド鋼を熱延仕上温度710〜750℃で
1.8〜2.3mm板厚とし、巻取温度530〜600℃とする
ことによる低炭素熱延鋼板の製造法が示されい
る。しかしながらこの方法によつて得られる製品
のコニカルカツプ値も上掲の特開昭52−44718号
公報の場合と同様に従来例よりも高く、絞り性は
劣つている。またさらに特開昭54−109022号公報
には、低炭素アルミキルド鋼を熱延仕上温度760
〜820℃で1.6mm板厚とし、巻取温度650〜690℃と
することによる降伏点14.9〜18.8Kg/mm2、引張強
さ27.7〜29.8Kg/mm2、伸び39.0〜44.8%の特性を
有する低強度軟鋼板の製造例が開示されている。
その他特開昭59−226149号公報にはC/0.002、
Si/0.02、Mn0.23、P/0.009、S/0.008、Al/
0.025、N/0.0021、Ti/0.10の低炭素Alキルド
鋼を500〜900℃で潤滑油を施しつつ76%の圧延に
て1.6mm板厚の鋼帯とすることにより、=1.21
の特性を有する薄鋼板の製造例が示されている。
しかしながら上記した公知技術にはいずれも、
前述した耐リジング性を向上させることについて
は何らの考慮も払われていない。
(発明が解決しようとする問題点)
冷間圧延のみならず再結晶焼鈍をも含まない新
プロセスによつて、耐リジング性と加工性に優れ
る薄鋼板の製造方法を与えることが、この発明の
目的である。
(問題点を解決するための手段)
この発明は、低炭素鋼を所定板厚に圧延する工
程において、少なくとも1パスを、
Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上でかつひずみ速度:300(s-1)以
上で仕上げることを特徴とする耐リジング性に優
れる加工用アズロールド薄鋼板の製造方法であ
る。
この発明の基礎となつた研究結果からまず説明
する。
供試材は表1に示す2種類の低炭アルミキルド
鋼の熱延鋼板であり、これらの供試材A、Bを
700℃に加熱、均熱後、1パスで20%、40%およ
び60%の各圧下率でそれぞれ圧延した。
(Industrial Application Field) The technical content described in this specification regarding the production of thin steel sheets with excellent ridging resistance and workability is a new process that can omit cold rolling and recrystallization annealing processes by regulating rolling conditions. The purpose of this is to disclose the development results. Approximately 2mm thick plate used for building materials, automobile body materials, can stock, and various surface-treated original plates.
The following properties are required for the following thin steel sheets for processing. (1) Mechanical properties High ductility and high Rankford value (r value) are mainly required to obtain good bending workability, stretchability and drawing workability. (2) Surface properties Since these materials are mainly used for the outermost part of the final product, not only the shape and surface beauty of the material but also various surface treatments are important. The general manufacturing method for these thin steel sheets is as follows. First, we mainly use low-carbon steel as the steel material, and after making it into a steel billet with a thickness of about 200 mm by ingot rolling,
The steel is heated and soaked in a heating furnace, then subjected to a rough hot rolling process to form a sheet bar with a thickness of approximately 30 mm, and then subjected to a finishing hot rolling process at a finishing temperature in the range of Ar 3 transformation point or higher to produce a hot rolled steel of a predetermined thickness. It is made into a strip, then pickled and cold-rolled to a specified thickness (2.0 mm or less).
The final product is made into a cold-rolled steel strip and further subjected to recrystallization and annealing. The biggest drawback of this practice is the extremely long process required to reach the final product. As a result, not only is the amount of energy, manpower and time required to produce the product, but also the disadvantages that arise during these long steps are various problems in the quality of the product, especially its surface properties. For example, unavoidable problems include the occurrence of surface defects in the cold rolling process, deterioration of surface beauty due to surface concentration and surface oxidation of impurity elements in the recrystallization sintering process, and further deterioration of surface treatment properties. . However, as a method for manufacturing thin steel sheets for processing, it is also considered that the final product is produced through a hot rolling process. According to this method, cold rolling and recrystallization annealing steps can be omitted, which has great merits. However, the mechanical properties of a hot-rolled thin steel sheet are far inferior to those obtained through a cold rolling-annealing process. In particular, press-formed materials used for automobile bodies require excellent deep drawability, but hot-rolled steel sheets have a low r value of around 1.0, so their processing applications are extremely limited. Become. This is because in the conventional hot rolling method, the finishing temperature is higher than Ar 3 transformation.
This is because the texture becomes random during the γ→α transformation. In addition, it is extremely difficult to manufacture thin steel sheets with a thickness of 2.0 mm or less using only a hot rolling process. Moreover, in addition to the problem of dimensional accuracy, the drop in steel sheet temperature due to thinning forces low carbon steel to be rolled below the Ar 3 transformation point, resulting in significant deterioration of material properties (ductility, drawability). Furthermore, even if the quality of the material can be secured by rolling at a temperature below the Ar 3 transformation point, a new problem arises in that ridging is more likely to occur in steel sheets rolled in the ferrite region. Rigging is a defect in surface irregularities that occurs during the processing of a product, and is a fatal defect for this type of steel plate, which is mainly used on the outermost side of processed products. In terms of metallurgy, ridging is caused by crystal orientation groups (e.g. {100} oriented grain groups) that are not easily divided even after the processing-recrystallization process and remain stretched in the rolling direction. , generally tends to occur when processing is performed at a relatively high temperature in the ferrite (α) region, and this tendency is particularly strong when the reduction rate in the ferrite region is high, that is, when manufacturing thin steel sheets. Recently, these thin steel sheets for processing have been increasingly subjected to severe processing as processed products become more complex and sophisticated, and excellent ridging resistance has become required. Incidentally, the manufacturing process of steel materials has changed significantly in recent years, and the case of thin steel sheets for processing is no exception. In other words, in recent years, the introduction of a continuous casting process has made it possible to omit the blooming process, and the heating temperature of steel slabs has been lowered from the conventional 1200°C to around 1100°C or lower in order to improve material quality and save energy. There is a tendency to Furthermore, by immediately producing steel strips with a thickness of 50 mm or less from molten steel,
Processes that can omit the hot rolling heat treatment and rough rolling steps are also being put into practical use. However, all of these new manufacturing processes are disadvantageous in that they destroy the structure (cast structure) formed when molten steel solidifies. In particular, it is extremely difficult to destroy the strong casting texture, which is formed during solidification and has a main orientation of {100}<uvw>. As a result, the final thin steel sheet was susceptible to the aforementioned ridging. (Prior art) Several methods have been proposed for manufacturing thin steel sheets for processing, which are formed into a thin steel sheet of a predetermined thickness in a relatively low temperature range below the Ar 3 transformation point, and then do not undergo cold rolling or recrystallization annealing processes. There is. For example, in Japanese Patent Application Laid-Open No. 48-4329, low carbon rimmed steel is heated to 90°C at a temperature below the Ar3 transformation point.
% rolling to make a 4mm thick steel strip yield point 26.1Kg/mm 2 , tensile strength 37.3Kg/mm 2 , elongation 49.7
A production example with a characteristic of %, = 1.29 is shown. Furthermore, in JP-A-52-44718, low carbon rimmed steel is hot-rolled to a thickness of 2.0 mm at a finishing temperature of 800 to 860°C (below the Ar 3 transformation point), and a coiling temperature of 600 to 730°C.
A method for manufacturing a low yield point steel plate with a yield point of 20 kg/mm 2 or less is shown. However, the conical cup value, which is an index of drawability, is about 60.60 to 62.18 mm in the obtained product, which is different from the conventional example.
Compared to 60.58 to 60.61, the drawability is the same or lower. Furthermore, Japanese Patent Application Laid-open No. 53-22850 also discloses that low carbon rimmed steel is hot-rolled at a finishing temperature of 710 to 750°C.
A method for producing a low carbon hot rolled steel sheet is shown, in which the sheet thickness is 1.8 to 2.3 mm and the coiling temperature is 530 to 600°C. However, the conical cup value of the product obtained by this method is also higher than that of the conventional example, as in the case of the above-mentioned Japanese Patent Laid-Open No. 52-44718, and the drawing property is inferior. Furthermore, Japanese Patent Application Laid-open No. 54-109022 discloses that low carbon aluminum killed steel is hot-rolled at a finishing temperature of 760.
Characteristics of yield point 14.9-18.8Kg/mm 2 , tensile strength 27.7-29.8Kg/mm 2 , and elongation 39.0-44.8% were obtained by making the plate thickness 1.6mm at ~820℃ and coiling temperature 650-690℃. An example of manufacturing a low-strength mild steel plate having the following is disclosed.
In addition, JP-A No. 59-226149 has C/0.002,
Si/0.02, Mn0.23, P/0.009, S/0.008, Al/
= 1.21 by rolling a low carbon Al killed steel of 0.025, N/0.0021, Ti/0.10 at 500 to 900°C with lubricating oil at 76% to a steel strip with a thickness of 1.6 mm.
An example of manufacturing a thin steel sheet having the following characteristics is shown. However, all of the above-mentioned known technologies have
No consideration is given to improving the aforementioned ridging resistance. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing thin steel sheets with excellent ridging resistance and workability by a new process that does not include not only cold rolling but also recrystallization annealing. It is a purpose. (Means for Solving the Problems) In the process of rolling low carbon steel to a predetermined thickness, the present invention performs at least one pass in a temperature range of below the Ar3 transformation point and above 500°C, with a rolling reduction rate of 35°C. % or more and strain rate: 300 (s -1 ) or more. First, the research results that formed the basis of this invention will be explained. The test materials are two types of hot-rolled low carbon aluminum killed steel sheets shown in Table 1, and these test materials A and B are
After heating to 700°C and soaking, rolling was performed in one pass at rolling reductions of 20%, 40%, and 60%.
【表】
このときのひずみ速度(ε〓)と圧延後の鋼板の
r値およびリジング指数との関係を第1図に示
す。
値およびリジング指数はひずみ速度と圧下率
とに強く依存し、圧下率35%以上でかつ300s-1以
上の高いひずみ速度にすることにより、値およ
び耐リジング性は著しく向上した。
なおひずみ速度(ε(ク))の計算は以下の式に従つ
た。
ここでn:圧延ロールの回転数(rpm)
r:圧下率(%)/100
R:圧延ロールの半径(mm)
H0:圧延前の板厚(mm)
発明者らは、この基礎的データに基づき研究を
重ねた結果、以下のように製造条件を規制するこ
とにより耐リジング性と加工性に優れる薄鋼板が
製造できることを確認した。
(1) 鋼組成
高ひずみ速度圧延の効果は本基的には鋼組成
に依存しない。ただし、一定レベル以上の加工
性を確保するためには、侵入型固溶元素である
C、Nはそれぞれ0.10%以下、0.01%以下であ
ることが好ましい。また鋼中OをAlの添加に
より低減することは、材質とくに延性の向上に
有利である。さらにより優れた加工性を得るた
めに、C、Nを安定な炭窒化物として析出固定
可能な特殊元素たとえばTi、Nb、ZrおよびB
等の添加も有効である。
また高強度を得るためにP、SiおよびMn等
を強度に応じて添加することもできる。
(2) 圧延素材の製造法
従来方式、すなわち造塊−分塊圧延もしくは
連続鋳造法により得られた鋼片は当然に適用で
きる。
鋼片の加熱温度は800〜1250℃が適当であり、
省エネルギーの観点から1100℃未満が好適であ
る。連続鋳造から鋼片を再加熱することなく圧
延を開始するいわゆるCC−DR(連続鋳造−直
接圧延)法も勿論適用可能である。
一方溶鋼から直ちに50mm以下の圧延素材を鋳
造する方法(シートバーキヤスター法およびト
リツプキヤスター法)も省エネルギー、省工程
の観点から経済的メリツトが大きいので、圧延
素材の製造法としてはとりわけ有利である。
(3) 圧延工程
この工程が最も重要であり、低炭素鋼を所定
の板厚に圧延するに当り、仕上圧延において、
少なくとも1パスを、Ar3変態点以下、500℃
以上の温度範囲で、圧下率35%以上でかつひず
み速度300s-1以上の条件下に圧延することが必
須である。
仕上圧延温度がAr3変態点を超える高温域で
は、たとえ圧下率35%以上、ひずみ速度300s-1
以上で圧延を施したとしても、加工性、耐リジ
ング性とも劣るものしか得られず、一方500℃
未満では、変形抵抗の著しい増大をもたらし、
冷間圧延法で特有な問題が生じるため、仕上圧
延温度はAr3変態点〜500℃の範囲に限定した。
またひずみ速度については、300s-1に満たな
いと目標とする材質が確保できないので、
300s-1以上とりわけ500〜2500s-1が好適であ
る。
なお従来の1パス当たりの圧延条件は、通
常、圧下率:35%未満、ひずみ速度:300(s-1)
未満であり、少なくともこの発明のように圧下
率:35%以上、ひずみ速度:300(s-1)以上の
両者を満足する条件下で圧延が実施されたため
しはない。
圧延パス数、圧下率の配分は、上記の条件が
満たされれば任意でよい。
圧延機の配列、構造などは本質的な影響力を
持たない。
なお再結晶焼鈍処理については、原則として
不要であるが、材質上の要請から、圧延後のラ
ンアウトテーブル上および巻とり工程で保熱、
均熱処理を施すこと、また必要に応じて圧延後
に多少の加熱処理を施すことを禁ずるものでは
ない。
(4) 酸洗、調質圧延
上述の手順で得られた鋼帯は、従来よりも低
温域での圧延であるため酸化層は薄く、酸洗性
は極めて良好であるので、酸洗せずに使用でき
る用途も広い。また脱スケールは、従来の酸に
よる除去の他に機械的除去も可能である。さら
に形状矯正、表面粗度調整などを目的として、
10%以下の調質圧延を加えることができる。
(5) 表面処理
かくして得られる鋼帯は、亜鉛めつき(合金
系を含む)、錫めつきおよびほうろう性など表
面処理性に優れるので、各種表面処理原板とし
て適用できる。
(作用)
この発明に従い、高圧下率、高ひずみ速度で圧
延を行うことによつて、値および耐リジング性
が格段に向上する理由については、次のとおりと
考えられる。
圧延後の再結晶集合組織の形成は、圧延時に導
入される加工ひずみ量に強く依存することが知ら
れている。すなわち{222}方位粒に蓄積される
加工ひずみ量が多いと、{222}方位を主方位とす
る再結晶集合組織が形成され、その結果値が向
上する。
この点、従来のような圧下率が35%未満、ひず
み速度が300s-1未満(いずれも1パス当たり)の
低圧下率・低ひずみ速度圧延では、加工ひずみは
{200}方位粒に導入され易く、そのため再結晶後
には{200}方位が集積し、その結果低い値し
か得られなかつた。
しかしながらこの発明に従う高圧下率・高ひず
み速度圧延では、{222}方位粒に蓄積される加工
ひずみ量が増大し、その結果{222}方位を主方
位とする再結晶集合組織が形成されるので、値
が格段に向上する。またこのように{222}方位
粒の再結晶が優先的に進行することから、リジン
グ発生の主原因である{200}方位粒の生成は極
めて少なく、従つて耐リジング性も向上する。
(実施例)
表2に示す組成鋼をそれぞれ、表3に示す方法
で板厚20〜40mmのシートバーにした後、6列から
成る圧延機を用いて板厚0.8〜1.2mmの薄鋼板とし
た。このとき最後列のスタンドにおいて高ひずみ
速度圧延を行つた。
かくして得られた薄鋼板につき、酸洗、調質圧
延(圧下率0.5〜1%)後の材料特性を表3に示
す。なお引張特性はJIS5号試験片として求めた。
またリジング性は、圧延方向から切り出したJIS5
号試験片を用い、15%の引張予ひずみを付加した
ものについて、表面の凹凸を目視法にて1(良)
〜5(劣)の評価をした。この評価は、在来の低
炭素冷延鋼板の製造方法によるときリジングが事
実上あらわれなかつたので、評定基準が確立され
ていない。したがつて本発明では従来ステンレス
鋼についての目視法による指数評価基準をそのま
ま準用した。評価1、2は実用上問題のないリジ
ング性を示す。[Table] Figure 1 shows the relationship between the strain rate (ε〓) and the r value and ridding index of the steel plate after rolling. The value and ridging index strongly depend on the strain rate and rolling reduction, and the value and ridging resistance were significantly improved by increasing the rolling reduction to 35% or higher and a high strain rate of 300 s -1 or higher. The strain rate (ε(k)) was calculated according to the following formula. Here, n: Rotation speed of the rolling roll (rpm) r: Reduction rate (%)/100 R: Radius of the rolling roll (mm) H 0 : Thickness of the plate before rolling (mm) The inventors used this basic data. As a result of repeated research based on the following, it was confirmed that thin steel sheets with excellent ridging resistance and workability can be manufactured by regulating the manufacturing conditions as shown below. (1) Steel composition The effects of high strain rate rolling basically do not depend on the steel composition. However, in order to ensure workability above a certain level, it is preferable that the interstitial solid solution elements C and N be 0.10% or less and 0.01% or less, respectively. Further, reducing O in steel by adding Al is advantageous for improving material quality, especially ductility. Furthermore, in order to obtain even better workability, special elements such as Ti, Nb, Zr and B, which can precipitate and fix C and N as stable carbonitrides, are added.
It is also effective to add the following. Further, in order to obtain high strength, P, Si, Mn, etc. can be added depending on the strength. (2) Manufacturing method of rolled material Steel slabs obtained by conventional methods, ie, ingot-blowing rolling or continuous casting methods, can of course be applied. The appropriate heating temperature for the steel billet is 800 to 1250℃.
From the viewpoint of energy saving, the temperature is preferably less than 1100°C. Of course, the so-called CC-DR (continuous casting-direct rolling) method, in which rolling is started without reheating the steel billet after continuous casting, is also applicable. On the other hand, the methods of immediately casting rolled material of 50 mm or less from molten steel (sheet bar caster method and trip caster method) also have great economic merits from the viewpoint of energy saving and process saving, so they are particularly advantageous as methods for manufacturing rolled material. It is. (3) Rolling process This process is the most important, and in finishing rolling, when rolling low carbon steel to a specified thickness,
At least 1 pass below Ar 3 transformation point, 500℃
It is essential to roll in the above temperature range, at a reduction rate of 35% or more, and at a strain rate of 300 s -1 or more. In the high temperature range where the finish rolling temperature exceeds the Ar 3 transformation point, even if the reduction rate is 35% or more and the strain rate is 300s -1
Even if rolling is performed at the above temperature, only poor workability and ridging resistance can be obtained, and on the other hand, rolling at 500℃
less than this results in a significant increase in deformation resistance,
Because the cold rolling method poses unique problems, the finish rolling temperature was limited to the range of Ar 3 transformation point to 500°C. Regarding the strain rate, if the strain rate is less than 300 s -1 , the target material cannot be obtained.
300 s -1 or more, especially 500 to 2500 s -1 is suitable. The conventional rolling conditions per pass are usually a reduction rate of less than 35% and a strain rate of 300 (s -1 ).
There is no evidence that rolling has been carried out under conditions that satisfy both the rolling reduction ratio of 35% or more and the strain rate of 300 (s -1 ) or more as in the present invention. The number of rolling passes and the distribution of the rolling reduction ratio may be arbitrary as long as the above conditions are satisfied. The arrangement and structure of the rolling mill have no essential influence. In principle, recrystallization annealing treatment is not necessary, but due to material requirements, heat retention,
It is not prohibited to perform soaking treatment or, if necessary, to perform some heat treatment after rolling. (4) Pickling and temper rolling The steel strip obtained by the above procedure has a thin oxidation layer because it is rolled at a lower temperature than conventional methods, and has extremely good pickling properties, so it is not pickled. It can also be used for a wide range of purposes. In addition to conventional acid removal, mechanical removal can also be used for descaling. Furthermore, for the purpose of shape correction, surface roughness adjustment, etc.
Temper rolling of 10% or less can be added. (5) Surface treatment The steel strip thus obtained has excellent surface treatment properties such as galvanizing (including alloys), tin plating, and enameling, so it can be used as a base plate for various surface treatments. (Function) The reason why the value and ridging resistance are significantly improved by rolling at a high reduction rate and high strain rate according to the present invention is considered to be as follows. It is known that the formation of recrystallized texture after rolling is strongly dependent on the amount of processing strain introduced during rolling. That is, when the amount of processing strain accumulated in the {222} oriented grains is large, a recrystallized texture with the {222} orientation as the main orientation is formed, and as a result, the value improves. In this regard, in conventional low reduction rate/low strain rate rolling where the reduction rate is less than 35% and the strain rate is less than 300s -1 (both per pass), processing strain is introduced into the {200} oriented grains. Therefore, {200} orientations were accumulated after recrystallization, and as a result, only low values were obtained. However, in the high reduction rate and high strain rate rolling according to the present invention, the amount of processing strain accumulated in the {222} oriented grains increases, and as a result, a recrystallized texture with the {222} orientation as the main orientation is formed. , the value is significantly improved. Furthermore, since the recrystallization of {222} oriented grains proceeds preferentially in this manner, the production of {200} oriented grains, which is the main cause of ridging, is extremely small, and therefore the ridging resistance is also improved. (Example) The composition steels shown in Table 2 were made into sheet bars with a thickness of 20 to 40 mm by the method shown in Table 3, and then made into thin steel plates with a thickness of 0.8 to 1.2 mm using a rolling mill consisting of 6 rows. did. At this time, high strain rate rolling was performed in the last row of stands. Table 3 shows the material properties of the thus obtained thin steel sheet after pickling and temper rolling (reduction ratio of 0.5 to 1%). The tensile properties were determined using a JIS No. 5 test piece.
In addition, the ridging property was determined by JIS5 cut from the rolling direction.
No. 1 test piece was used and 15% tensile prestrain was added, and the surface unevenness was visually inspected to be 1 (good).
Rated ~5 (poor). No evaluation criteria have been established for this evaluation since ridging virtually did not appear when conventional low carbon cold rolled steel sheets were produced using the manufacturing method. Therefore, in the present invention, the index evaluation criteria based on the visual method for conventional stainless steels are applied mutatis mutandis. Ratings 1 and 2 indicate ridging properties that pose no problem in practical use.
【表】【table】
【表】【table】
【表】
注 ☆:比較例、無印:適合例
この発明に従つて製造された鋼板は比較例より
も優れた値と耐リジング性とを示しており、従
来の冷間圧延−再結晶焼鈍工程を経て製造された
ものと何らそん色がない。
(発明の効果)
かくしてこの発明によれば、Ar3変態点〜500
℃の温度範囲における高圧下率、高ひずみ速度圧
延により、従来の冷間圧延のみならず再結晶焼鈍
をも省略したアズロールドのままで、良好な加工
性と共に優れた耐リジング性をもつ薄鋼板を得る
ことができ、しかも圧延素材についてもシートバ
ーキヤスター法、ストリツプキヤスター法などに
適合するなど、加工用薄鋼板の製造工程の大幅な
簡略化が実現できる。[Table] Note: ☆: Comparative example, No mark: Compliant example The steel plate manufactured according to the present invention shows better values and ridging resistance than the comparative example, and is superior to the conventional cold rolling-recrystallization annealing process. There is no resemblance to those manufactured through the process. (Effect of the invention) Thus, according to this invention, Ar 3 transformation point ~ 500
By rolling at a high reduction rate and high strain rate in the temperature range of °C, we are able to produce thin steel sheets that have good workability and excellent ridging resistance, while remaining as-rolled, which omits not only conventional cold rolling but also recrystallization annealing. Furthermore, the rolled material is compatible with the sheet bar caster method, the strip caster method, etc., and the manufacturing process of thin steel sheets for processing can be greatly simplified.
第1図は、値およびリジング指数に及ぼすひ
ずみ速度の影響を、圧下率をパラメータとして示
したグラフである。
FIG. 1 is a graph showing the effect of strain rate on the value and ridging index using the rolling reduction as a parameter.
Claims (1)
て、少なくとも1パスを、 Ar3変態点以下、500℃以上の温度範囲で、圧
下率:35%以上でかつひずみ速度:300(s-1)以
上で圧延することを特徴とする耐リジング性に優
れる加工用アズロールド薄鋼板の製造方法。[Claims] 1. In the process of rolling low carbon steel to a predetermined thickness, at least one pass is performed at a temperature range of below the Ar 3 transformation point and above 500°C, with a reduction rate of 35% or more and a strain rate of: A method for manufacturing an as-rolled thin steel sheet for processing, which is characterized by rolling at 300 (s -1 ) or higher and has excellent ridging resistance.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60043971A JPS61204320A (en) | 1985-03-06 | 1985-03-06 | Production of as-rolled thin steel sheet for working having excellent ridging resistnace |
AT86301470T ATE54950T1 (en) | 1985-03-06 | 1986-02-28 | PROCESS FOR THE MANUFACTURE OF ROLLED FORMABLE THIN STEEL PLATES. |
EP86301470A EP0196788B1 (en) | 1985-03-06 | 1986-02-28 | Method of manufacturing formable as rolled thin steel sheets |
US06/835,052 US4861390A (en) | 1985-03-06 | 1986-02-28 | Method of manufacturing formable as-rolled thin steel sheets |
DE8686301470T DE3672864D1 (en) | 1985-03-06 | 1986-02-28 | METHOD FOR PRODUCING ROLLED DEFORMABLE THICK STEEL SHEETS. |
CA000503250A CA1271396A (en) | 1985-03-06 | 1986-03-04 | Method of manufacturing formable as-rolled thin steel sheets |
AU54387/86A AU566498B2 (en) | 1985-03-06 | 1986-03-04 | Producing thin steel sheet |
CN 86102191 CN1013350B (en) | 1985-03-06 | 1986-03-05 | Method of mfg. formable as-rolled thin steel sheets |
BR8600962A BR8600962A (en) | 1985-03-06 | 1986-03-06 | PROCESS OF MANUFACTURING THIN STEEL SHEETS, CONFORMING AS LAMINATES |
KR1019860001578A KR910000007B1 (en) | 1985-03-06 | 1986-03-06 | Manufacturing method of thin steel sheet for rolling |
ZA861684A ZA861684B (en) | 1985-03-06 | 1986-03-06 | Method of manufacturing formable as-rolled thin steel sheets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60043971A JPS61204320A (en) | 1985-03-06 | 1985-03-06 | Production of as-rolled thin steel sheet for working having excellent ridging resistnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61204320A JPS61204320A (en) | 1986-09-10 |
JPH0257128B2 true JPH0257128B2 (en) | 1990-12-04 |
Family
ID=12678595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60043971A Granted JPS61204320A (en) | 1985-03-06 | 1985-03-06 | Production of as-rolled thin steel sheet for working having excellent ridging resistnace |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS61204320A (en) |
ZA (1) | ZA861684B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61204328A (en) * | 1985-03-06 | 1986-09-10 | Kawasaki Steel Corp | Production of as-rolled thin steel sheet for working having excellent ridging resistance and corrosion resistance |
JPS61204322A (en) * | 1985-03-06 | 1986-09-10 | Kawasaki Steel Corp | Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance |
JPS61204323A (en) * | 1985-03-06 | 1986-09-10 | Kawasaki Steel Corp | Production of as-rolled thin steel sheet for working having small plane anisotropy and excellent ridging resistance |
JPS61261434A (en) * | 1985-05-15 | 1986-11-19 | Kawasaki Steel Corp | Production of as-rolled thin steel sheet for working having excellent ridging resistance and tensile rigidity |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5959827A (en) * | 1982-09-28 | 1984-04-05 | Nippon Steel Corp | Manufacture of hot-rolled steel plate with superior processability |
JPS59107023A (en) * | 1982-12-09 | 1984-06-21 | Nippon Steel Corp | Manufacturing method of ultra-fine grain hot rolled steel sheet |
JPS6043973A (en) * | 1983-08-20 | 1985-03-08 | Matsushita Electric Ind Co Ltd | Automatic focusing device of video camera |
JPS6043976A (en) * | 1983-08-22 | 1985-03-08 | Mitsubishi Rayon Co Ltd | Solid-state camera with signal correction function |
JPS6043972A (en) * | 1983-08-22 | 1985-03-08 | Sony Corp | Black level reproducing circuit of video |
JPS6043979A (en) * | 1983-08-22 | 1985-03-08 | Matsushita Electric Ind Co Ltd | Electrophotography device |
JPS613844A (en) * | 1984-06-18 | 1986-01-09 | Nippon Steel Corp | Method for manufacturing hot rolled steel sheet with excellent formability |
JPS6148531A (en) * | 1984-08-13 | 1986-03-10 | Nippon Steel Corp | Method for producing low carbon thin hot rolled steel sheet with excellent deep drawability |
-
1985
- 1985-03-06 JP JP60043971A patent/JPS61204320A/en active Granted
-
1986
- 1986-03-06 ZA ZA861684A patent/ZA861684B/en unknown
Also Published As
Publication number | Publication date |
---|---|
ZA861684B (en) | 1986-10-29 |
JPS61204320A (en) | 1986-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0158255B2 (en) | ||
JPH0257128B2 (en) | ||
JPH0257131B2 (en) | ||
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
JPH0238648B2 (en) | ||
JPH0257130B2 (en) | ||
JPH033730B2 (en) | ||
JPH0227416B2 (en) | TAIRIJINGUSEITOTAIJIKOSEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH0257129B2 (en) | ||
JPH0227413B2 (en) | TAIRIJINGUSEITOFUKASHIBORISEIKEISEINISUGURERUAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH0227417B2 (en) | ||
JPH034608B2 (en) | ||
JPH062069A (en) | High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability | |
JPH0257132B2 (en) | ||
JPH0227414B2 (en) | TAIRIJINGUSEITOKASEISHORISEINISUGURERUKAKOYOAZUROORUDOSUKOHANNOSEIZOHOHO | |
JPH0259848B2 (en) | ||
JPH0257133B2 (en) | ||
JPH0561341B2 (en) | ||
JPS6213534A (en) | Manufacture of as-rolled steel sheet for working having superior ridging resistance and bulgeability | |
JPH0227415B2 (en) | TAIRIJINGUSEITOMETSUKIMITSUCHAKUSEINISUGURERUKAKOYOYOJUKINZOKUMETSUKIUSUKOHANNOSEIZOHOHO | |
JP2000282151A (en) | Manufacture of steel sheet excellent in surface characteristics and workability | |
JPH0333768B2 (en) | ||
JPH0259845B2 (en) | ||
JPH0432128B2 (en) | ||
JPS6360231A (en) | Production of thin steel sheet for working having excellent ridging resistance and deep drawability |