[go: up one dir, main page]

JPH0331745A - Atomic absorption spectrophotometer - Google Patents

Atomic absorption spectrophotometer

Info

Publication number
JPH0331745A
JPH0331745A JP16804989A JP16804989A JPH0331745A JP H0331745 A JPH0331745 A JP H0331745A JP 16804989 A JP16804989 A JP 16804989A JP 16804989 A JP16804989 A JP 16804989A JP H0331745 A JPH0331745 A JP H0331745A
Authority
JP
Japan
Prior art keywords
wavelength
pulses
volatile memory
pulse motor
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16804989A
Other languages
Japanese (ja)
Other versions
JP2737263B2 (en
Inventor
Hidehisa Nishigaki
西垣 日出久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1168049A priority Critical patent/JP2737263B2/en
Publication of JPH0331745A publication Critical patent/JPH0331745A/en
Application granted granted Critical
Publication of JP2737263B2 publication Critical patent/JP2737263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten the time for setting a spectroscope at the wavelength specific to a measuring element and to speed up the measurement by building the number of pulses for driving a dispersion element to the wavelength position of the measuring element to be measured by a pulse motor into a non-volatile memory. CONSTITUTION:The bright line spectral contg. the resonance rays from the measuring element are radiated from a light source 1. These spectra are introduced through an atomization section 2 to the spectroscope 3. The selection of the bright line in the spectroscope 3 is executed by rotating the dispersion element 10 by driving of the pulse motor 6 via a reduction gear 11. When the wavelength of a certain measuring element is assumed to be inputted from an operation section 9 to a CPU 7, the CPU 7 determines the number of pulses corresponding to the wavelength thereof from the non-volatile memory built therein and supplies the number of pulses to the pulse motor 6 to drive the dispersion element 10 of the spectroscope 3 so that the wavelength is immediately set at an optimum wavelength position. The number of pulses is promptly determined for the wavelength of the measuring element which is once subjected to peak searching in the past if the determined number of pulses is successively written into the non-volatile memory in such a manner. The wavelength setting is thus executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は0分光器の分散素子をパルスモータで駆動する
方式の原子吸光分光光度計に係り、特に測定元素に特有
の波長に分光器を設定するのに好適な原子吸光分光光度
計に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an atomic absorption spectrophotometer in which the dispersive element of the zero spectrometer is driven by a pulse motor. This invention relates to an atomic absorption spectrophotometer suitable for setting up.

〔従来の技術〕[Conventional technology]

従来の原子吸光分光光度計においては1例えば。 In a conventional atomic absorption spectrophotometer, for example.

o、oosnmきざみで測定元素の設定波長近傍を波長
スキャンして、最終的に最も光強度の強いピーク位置に
分光器の波長を設定している(例えば特開昭59−12
5040号公報参照)。
The wavelength of the spectrometer is scanned in the vicinity of the set wavelength of the element to be measured in steps of o and oosnm, and the wavelength of the spectrometer is finally set at the peak position of the strongest light intensity (for example,
(See Publication No. 5040).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の原子吸光分光光度計にあっては、測定元素を変え
る毎にピークサーチ方式により分光器を測定元素の波長
に設定しているため、毎回波長設定に1〜2分かかり、
その間操作者は持っていなければならないという間頭点
があった。特に1分析を行うのに先立って設定しなけれ
ばならない測定条件の中で、所要時間が一番長いのは波
長設定であり、全条件設定時間の約90%を占めている
ので、迅速に測定を開始するためにはこの波長設定に要
する時間が最大のネックとなっていた。
With conventional atomic absorption spectrophotometers, each time the element to be measured is changed, the spectrometer is set to the wavelength of the element to be measured using a peak search method, so it takes 1 to 2 minutes to set the wavelength each time.
Meanwhile, there was a point that the operator had to have. In particular, among the measurement conditions that must be set prior to performing one analysis, wavelength setting takes the longest time, accounting for approximately 90% of the total condition setting time, so measurements can be carried out quickly. The time required to set this wavelength was the biggest bottleneck in starting the process.

本発明は、測定元素に特有の波長に分光器を設定する時
間を短縮し・迅速に測定を進めることができる原子吸光
分光光度計を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an atomic absorption spectrophotometer that can shorten the time required to set the spectrometer to a wavelength specific to the element to be measured and can quickly proceed with measurements.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために1本発明の原子吸光分光光度
計においては1分光器の分散素子をパルスモータで駆動
する方式を採用し、設定すべき測定元素の波長と当該波
長位置へ分散素子をパルスモータで駆動するためのパル
ス数との関係を保持することができる不揮発性メモリを
内蔵したものである。
In order to achieve the above object, the atomic absorption spectrophotometer of the present invention adopts a method in which the dispersion element of the spectrometer is driven by a pulse motor, and the dispersion element is moved to the wavelength of the measurement element to be set and the corresponding wavelength position. It has a built-in nonvolatile memory that can maintain the relationship with the number of pulses for driving with a pulse motor.

分光器の分散素子をパルスモータで駆動する場合、波長
λとパルス数Pとの関係は P = K1s+n  (K2λ)     −−−・
(])但し+ K1* Kzは装置に依存した定数とな
り、設定したい波長λに対応するパルス数Pを求めるこ
とができる。通常1機械的な加工誤差等を考慮して、波
長設定は求められたパルス数Pの付近を少しづつパルス
を送りながら正確な波長位置を求めるが、−度求まると
、この波長位置は短期的には変わらない。
When the dispersive element of a spectrometer is driven by a pulse motor, the relationship between the wavelength λ and the number of pulses P is P = K1s+n (K2λ) ---・
(]) However, +K1*Kz is a constant depending on the device, and the number of pulses P corresponding to the desired wavelength λ can be determined. Normally, taking into account mechanical processing errors, etc., the wavelength setting is performed by sending pulses little by little near the determined number of pulses P to find the exact wavelength position. There is no change.

原子吸光測定で用いる波長は約70@あるが。There are approximately 70 wavelengths used in atomic absorption measurements.

この約70mの波長に対応するパルス数を不揮発性メモ
リに表の形で保持しておけは、その都度ピークサーチす
る必要がなくなる。不揮発性メモリに保持する表の1σ
(波長に対応するパルス数)は。
If the number of pulses corresponding to this wavelength of about 70 m is stored in a table in a non-volatile memory, there is no need to perform a peak search each time. 1σ of the table held in non-volatile memory
(number of pulses corresponding to wavelength) is.

最初は全てにゼロを入れておく。ある測定元素の波長設
定が要求されると2表の値がゼロの場合だけピークサー
チを行い・水種ったパルス数を表に書き込む。このよう
にして、+1Ii4次不揮発性メモリの表に求まったパ
ルス数を書き込んでいき、過去に一度ピークサーチを行
った測定元素の波長については、即座にパルス数が求ま
り、波長設定を行うことができる。勿論、あらかじめ約
70種の全ての波長についてピークサーチを行っておけ
ば。
At first, put zeros in everything. When a wavelength setting for a certain element to be measured is requested, a peak search is performed only when the value in Table 2 is zero, and the number of pulses found in the water type is written in the table. In this way, the number of pulses determined is written in the table of the +1Ii quaternary non-volatile memory, and for the wavelength of the measured element for which a peak search was performed once in the past, the number of pulses is immediately determined and the wavelength can be set. can. Of course, if you perform a peak search for all 70 wavelengths in advance.

測定時には全波長についてビークサーチを行う必要がな
くなる。また、経年変化により波長ズレが生じた場合に
は、必要に応じて不揮発性メモリの表の値を更新する機
能を付加するとよい。
There is no need to perform a beak search for all wavelengths during measurement. Furthermore, if a wavelength shift occurs due to aging, it is advisable to add a function to update the values in the table in the nonvolatile memory as necessary.

〔作用〕[Effect]

上記のように構成された原子吸光分光光度計で・測定元
素の波長を操作部より入力すると、不揮発性メモリに表
の形で保持しである波長に対応するパルス数を求め1分
光器の分散素子をパルスモータにより駆動して直ちに最
適波長位置に波長設定が行われる。当該測定元素の波長
に対応するパルス数が不揮発性メモリに保持されていな
い場合には1通常の波長設定と同様にピークサーチを行
い。
In the atomic absorption spectrophotometer configured as described above, when the wavelength of the element to be measured is input from the operation unit, the number of pulses corresponding to the wavelength is stored in the non-volatile memory in the form of a table and the dispersion of the spectrometer is calculated. The wavelength is set at the optimum wavelength position immediately after driving the element with a pulse motor. If the number of pulses corresponding to the wavelength of the measurement element is not stored in the non-volatile memory, a peak search is performed in the same way as normal wavelength setting.

正確な波長位ごtを求めて波長設定するが0次回からの
当該が11定元素の波長設定にそなえて、その最適波長
位置に対応するパルス数を不揮発性メモリに保持する。
The wavelength is set by determining the exact wavelength t, and in preparation for the wavelength setting of the 11 constant elements from the 0th time, the number of pulses corresponding to the optimum wavelength position is held in a non-volatile memory.

このようにして、測定元素を変える毎に行う波長設定に
要する時間の短縮を図るっ〔実施例〕 実施例について図面をか照して読切すると、第1図及び
第2図において、光源1からは測定元素の共鳴線を含む
Ql線スベク)/しが放射され、これらが光学系により
原子化部2を通過し1分光P# 3に導入プれる。これ
らの輝線の中には、測定元素による加子吸11! ’i
全く受けない光や吸光の度合が低い光などが含まれてお
り、これらは分光器3により除外され、吸収P8度の最
も高い輝線(波長)のみが選択されて、検出器4で電気
信号に変換される。
In this way, the time required to set the wavelength each time the element to be measured is changed is reduced. Ql rays containing the resonance line of the element to be measured are emitted, and these are passed through the atomization section 2 by the optical system and introduced into the 1-minute beam P#3. Among these emission lines, there are 11! 'i
This includes light that is not received at all or light that has a low degree of absorption, and these are excluded by the spectrometer 3, and only the emission line (wavelength) with the highest absorption P8 is selected and converted into an electrical signal by the detector 4. converted.

分光器3における輝線の選択は9分散素子10をパルス
モータ6の駆動により減速i11を介して回転すること
により行う(第2図参照)。
Selection of bright lines in the spectrometer 3 is carried out by rotating the 9-dispersion element 10 by driving the pulse motor 6 via the deceleration i11 (see FIG. 2).

一方、原子化部2においては、試料中に含まれる測定元
素が熱解離により原子化され、間部を通過する光のうち
、吸収感度の最も高い輝線(波長)を選択的に強く吸収
する。
On the other hand, in the atomization section 2, the measurement element contained in the sample is atomized by thermal dissociation, and among the light passing through the interstitial section, the bright line (wavelength) with the highest absorption sensitivity is selectively and strongly absorbed.

検出at 4で検出した信号は増幅器5で増幅され。The signal detected by the detector at4 is amplified by the amplifier 5.

信号処理部のCPU7で対数変換し、吸光度に比例した
t[あるいは濃度に変換した値を表示部8に表示する。
The CPU 7 of the signal processing section performs logarithmic conversion, and displays t proportional to absorbance or the value converted to concentration on the display section 8.

CPU7には、不揮発性メモリを内蔵している。The CPU 7 has a built-in nonvolatile memory.

この不揮発性メモリは約70種の波長と、パルスモータ
6により当該波長位置に分光器3の分#!I素子10′
fe駆動するためのパルス数との関係を表の形で保持す
ることができる。
This non-volatile memory stores approximately 70 different wavelengths and the pulse motor 6 moves the spectrometer 3 to the corresponding wavelength position. I element 10'
The relationship with the number of pulses for fe driving can be maintained in a table format.

いま、操作部9よりある測定元素の波長が入力されたと
すると、CPU7ではその波長に対応するパルス数が不
揮発性メモリから求められ、当該パルス数がパルスモー
タ6に供給され9分光器3の分散素子10を駆動してそ
の最適波長位置に設定することができる。不揮発性メモ
リにその波長に対応するパルス数が保持されていない場
合には。
Now, if the wavelength of a certain element to be measured is input from the operation unit 9, the CPU 7 calculates the number of pulses corresponding to that wavelength from the non-volatile memory, supplies the number of pulses to the pulse motor 6, and controls the dispersion of the spectrometer 3. Element 10 can be driven to set its optimum wavelength position. If non-volatile memory does not hold the number of pulses corresponding to that wavelength.

前述したC+)式によりパルス数を求め、その求めたパ
ルス数の付近を少しづつパルスを送りながら正確な位@
を求めることになるが、このようにして求めた正確な波
長位置に対応するパルス数は不揮性メモリに保持され1
次回同一の測定元素の波長を設定するときに汀、直ちに
最適波長位置に対応するパルス数が求められ、波長設定
をすることができる。
Determine the number of pulses using the above-mentioned formula (C+), and send pulses little by little around the determined number of pulses to reach the exact location @
The number of pulses corresponding to the exact wavelength position determined in this way is stored in non-volatile memory and
Next time when setting the wavelength of the same element to be measured, the number of pulses corresponding to the optimum wavelength position is immediately determined, and the wavelength can be set.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されているので、測定
元素の波長設定を迅速に行うことができ。
Since the present invention is configured as described above, the wavelength of the measurement element can be quickly set.

分析に先立つ測定条件に要する時間を短縮することがで
きるので、操作者は能率的に分Vrを行うことができる
Since the time required to prepare measurement conditions prior to analysis can be shortened, the operator can efficiently carry out minute Vr.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子吸光分光光度計の概略を示す図、
第2図は同分光器の構成を示す図である。
FIG. 1 is a diagram schematically showing the atomic absorption spectrophotometer of the present invention,
FIG. 2 is a diagram showing the configuration of the spectrometer.

Claims (1)

【特許請求の範囲】[Claims] 分光器の分散素子をパルスモータで駆動する原子吸光分
光光度計において、設定すべき測定元素の波長と当該波
長位置へ前記分散素子を前記パルスモータにより駆動す
るためのパルス数との関係を保持することができる不揮
発性メモリを備えたことを特徴とする原子吸光分光光度
計。
In an atomic absorption spectrophotometer in which a dispersive element of a spectrometer is driven by a pulse motor, a relationship between the wavelength of a measurement element to be set and the number of pulses for driving the dispersive element to the corresponding wavelength position by the pulse motor is maintained. An atomic absorption spectrophotometer characterized in that it is equipped with a non-volatile memory capable of storing data.
JP1168049A 1989-06-29 1989-06-29 Atomic absorption spectrophotometer Expired - Lifetime JP2737263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1168049A JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168049A JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH0331745A true JPH0331745A (en) 1991-02-12
JP2737263B2 JP2737263B2 (en) 1998-04-08

Family

ID=15860883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168049A Expired - Lifetime JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JP2737263B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374488A (en) * 1976-12-15 1978-07-01 Mitsui Shipbuilding Eng Automatic wave length selector
JPS56108923A (en) * 1980-01-31 1981-08-28 Norito Suzuki Sweep control method of luminous analyzing spectroscope using microcomputer
JPS57142524A (en) * 1981-02-27 1982-09-03 Hitachi Ltd Measuring method and device for spectral luminous intensity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374488A (en) * 1976-12-15 1978-07-01 Mitsui Shipbuilding Eng Automatic wave length selector
JPS56108923A (en) * 1980-01-31 1981-08-28 Norito Suzuki Sweep control method of luminous analyzing spectroscope using microcomputer
JPS57142524A (en) * 1981-02-27 1982-09-03 Hitachi Ltd Measuring method and device for spectral luminous intensity

Also Published As

Publication number Publication date
JP2737263B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5828450A (en) Spectral measuring apparatus and automatic analyzer
Holland et al. A unique computer centered instrument for simultaneous absorbance and fluorescence measurements
JPH0259647A (en) Analysis method using an automatic fluorometer
US4946279A (en) Flourescence spectrophotometer for measuring fluorescent light of a plurality of wavelength conditions
JPS6049844B2 (en) spectrophotometer
GB1133203A (en) Improved apparatus for spectral analyses
US4950077A (en) Photoelectric measuring apparatus for use in automatic analyzer
US20050243313A1 (en) Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
US4352561A (en) Calibrating apparatus in a monochromator
EP0296259A1 (en) Spectrometer with combined visible and ultraviolet sample illumination
US4930891A (en) Method and apparatus for scanning wavelength in spectrophotometers
Catterick et al. Sequential multi-element analysis of small fragments of glass by atomic-emission spectrometry using an inductively coupled radiofrequency argon plasma source
JPH0331745A (en) Atomic absorption spectrophotometer
JP2002156282A (en) Spectrophotometer
JP3620258B2 (en) Measuring device with automatic sample exchange function
JP3267162B2 (en) Atomic absorption spectrophotometer
Yates et al. Evaluation of a self-contained linear diode array detector for rapid scanning spectrophotometry
JPS6122253B2 (en)
Haugen et al. On-line computer control of a luminescent spectrometer with off-line computer data processing and display
JPH0961355A (en) Optical axis moving type fluorometer and measuring method
USRE28803E (en) Method and electronic control for the analyzation of serum chemistries
JPS58153129A (en) Spectrophotometer for measuring transmitted spectrum
JPS6127703B2 (en)
JPH02201231A (en) Spectrophotometer
Gibson Rapid reaction methods in biochemistry