[go: up one dir, main page]

JP2737263B2 - Atomic absorption spectrophotometer - Google Patents

Atomic absorption spectrophotometer

Info

Publication number
JP2737263B2
JP2737263B2 JP1168049A JP16804989A JP2737263B2 JP 2737263 B2 JP2737263 B2 JP 2737263B2 JP 1168049 A JP1168049 A JP 1168049A JP 16804989 A JP16804989 A JP 16804989A JP 2737263 B2 JP2737263 B2 JP 2737263B2
Authority
JP
Japan
Prior art keywords
wavelength
pulses
atomic absorption
absorption spectrophotometer
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1168049A
Other languages
Japanese (ja)
Other versions
JPH0331745A (en
Inventor
日出久 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP1168049A priority Critical patent/JP2737263B2/en
Publication of JPH0331745A publication Critical patent/JPH0331745A/en
Application granted granted Critical
Publication of JP2737263B2 publication Critical patent/JP2737263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,分光器の分散素子をパルスモータで駆動す
る方式の原子吸光分光光度計に係り,特に測定元素に特
有の波長に分光器を設定するのに好適な原子吸光分光光
度計に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to an atomic absorption spectrophotometer in which a dispersion element of a spectroscope is driven by a pulse motor. An atomic absorption spectrophotometer suitable for setting.

〔従来の技術〕[Conventional technology]

従来の原子吸光分光光度計においては,例えば,0.005
nmきざみで測定元素の設定波長近傍を波長スキャンし
て,最終的に最も光強度の強いピーク位置に分光器の波
長を設定している(例えば特開昭59−125040号公報参
照)。
In a conventional atomic absorption spectrophotometer, for example, 0.005
A wavelength is scanned in the vicinity of the set wavelength of the measurement element in increments of nm, and the wavelength of the spectroscope is finally set at the peak position where the light intensity is highest (see, for example, JP-A-59-125040).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の原子吸光分光光度計にあっては,測定元素を変
える毎にピークサーチ方式により分光器を測定元素の波
長に設定しているため,毎回波長設定に1〜2分かか
り,その間操作者は持っていなければならないという問
題点があった。特に,分析の行うのに先立って設定しな
ければならない測定条件の中で,所要時間が一番長いの
は波長設定であり,全条件設定時間の約90%を占めてい
るので,迅速に測定を開始するためにはこの波長設定に
要する時間が最大のネツクとなっていた。
In conventional atomic absorption spectrophotometers, the spectrometer is set to the wavelength of the element to be measured by the peak search method every time the element to be measured is changed. There was a problem of having to have it. In particular, the wavelength setting has the longest time among the measurement conditions that must be set prior to performing the analysis, and occupies about 90% of the time required for setting all conditions. The time required for setting the wavelength was the largest net in order to start the process.

本発明は,測定元素に特有の波長に分光器を設定する
時間を短縮し,迅速に測定を進めることができる原子吸
光分光光度計を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an atomic absorption spectrophotometer capable of shortening the time for setting a spectroscope to a wavelength specific to the element to be measured and allowing the measurement to proceed quickly.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために,本発明の原子吸光分光光
度計においては,分光器の分散素子をパルスモータで駆
動する方式を採用し,設定すべき測定元素の波長と当該
波長位置へ分散素子をパルスモータで駆動するためのパ
ルス数との関係を保持することができる不揮発性メモリ
を内蔵したものである。
In order to achieve the above object, the atomic absorption spectrophotometer of the present invention employs a method in which a dispersion element of a spectrometer is driven by a pulse motor, and the dispersion element is set at the wavelength of the measurement element to be set and the wavelength position. It has a built-in nonvolatile memory capable of maintaining the relationship with the number of pulses for driving by a pulse motor.

分光器の分散素子をパルスモータで駆動する場合,波
長λとパルス数Pとの関係は P=K1sin-1(K2λ) ……(1) 但し,K1,K2は装置に依存した定数 となり,設定したい波長λに対応するパルス数Pを求め
ることができる。通常,機械的た加工誤差等を考慮し
て,波長設定は求められたパルス数Pの付近を少しづつ
パルスを送りながら正確な波長位置を求めるが,一度求
まると,この波長位置は短期的には変わらない。
When the dispersion element of the spectroscope is driven by a pulse motor, the relationship between the wavelength λ and the number of pulses P is P = K 1 sin -1 (K 2 λ) (1) where K 1 and K 2 The number of pulses P corresponding to the wavelength λ to be set can be obtained. Normally, in consideration of mechanical processing errors and the like, the wavelength is set to obtain an accurate wavelength position while sending pulses little by little in the vicinity of the obtained pulse number P. Does not change.

原子吸光測定で用いる波長は約70種あるが,この約70
種の波長に対応するパルス数を不揮発性メモリに表の形
で保持しておけば,その都度ピークサーチが必要がなく
なる。不揮発性メモリに保持する表の値(波長に対応す
るパルス数)は,最初は全てにゼロを入れておく。ある
測定元素の波長設定が要求されると,表の値がゼロの場
合だけピークサーチを行い,求まったパルス数を表に書
き込む。このようにして,順次不揮発性メモリの表に求
まったパルス数を書き込んでいき,過去に一度ピークサ
ーチを行った測定元素の波長については,即座にパルス
数が止まり,波長設定を行うことができる。勿論,あら
かじめ約70種の全ての波長についてピークサーチを行っ
ておけば,測定時には全波長についてピークサーチを行
う必要がなくなる。また,経年変化により波長ズレが生
じた場合には,必要に応じて不揮発性メモリの表の値を
更新する機能を付加するとよい。
There are about 70 wavelengths used in atomic absorption measurement.
If the number of pulses corresponding to various wavelengths is stored in the form of a table in the nonvolatile memory, the peak search is not required each time. Initially, all values in the table (the number of pulses corresponding to the wavelength) held in the nonvolatile memory are set to zero. When a wavelength setting for a certain measurement element is requested, a peak search is performed only when the value in the table is zero, and the obtained pulse number is written in the table. In this way, the number of pulses obtained is sequentially written to the table of the non-volatile memory, and the number of pulses is immediately stopped for the wavelength of the measurement element for which peak search has been performed once in the past, and the wavelength can be set. . Of course, if the peak search is performed in advance for all about 70 types of wavelengths, it is not necessary to perform the peak search for all wavelengths at the time of measurement. If a wavelength shift occurs due to aging, a function of updating a table value in the nonvolatile memory may be added as necessary.

〔作用〕[Action]

上記のように構成された原子吸光分光光度計で,測定
元素の波長を操作部より入力すると、不揮発性メモリに
表の形で保持してある波長に対応するパルス数を求め,
分光器の分散素子をパルスモータにより駆動して直ちに
最適波長位置に波長設定が行われる。当該測定元素の波
長に対応するパルス数が不揮発性メモリに保持されてい
ない場合には,通常の波長設定と同様にピークサーチを
行い,正確な波長位置を求めて波長設定するが,次回か
らの当該測定元素の波長設定にそなえて,その最適波長
位置に対応するパルス数を不揮発性メモリに保持する。
このようにして,測定元素を変える毎に行う波長設定に
要する時間の短縮を図る。
With the atomic absorption spectrophotometer configured as above, when the wavelength of the element to be measured is input from the operation unit, the number of pulses corresponding to the wavelengths stored in the form of a table in the non-volatile memory is obtained.
When the dispersion element of the spectroscope is driven by the pulse motor, the wavelength is immediately set to the optimum wavelength position. If the number of pulses corresponding to the wavelength of the measurement element is not stored in the non-volatile memory, a peak search is performed in the same way as the normal wavelength setting, and an accurate wavelength position is obtained to set the wavelength. In preparation for setting the wavelength of the measurement element, the number of pulses corresponding to the optimum wavelength position is held in the nonvolatile memory.
In this way, the time required for setting the wavelength each time the measurement element is changed is reduced.

〔実施例〕〔Example〕

実施例について図面を参照して説明すると,第1図及
び第2図において,光源1からは測定元素の共鳴線を含
む輝線スペクトルが放射され,これらが光学系により原
子化部2を通過し,分光器3に導入される。これらの輝
線の中には,測定元素による原子吸収を全く受けない光
や吸光の度合が低い光などが含まれており,これらは分
光器3により除外され,吸収感度の最も高い輝線(波
長)のみが選択されて,検出器4で電気信号に変換され
る。
An embodiment will be described with reference to the drawings. In FIGS. 1 and 2, a light source 1 emits a bright line spectrum including a resonance line of a measurement element, which passes through an atomization unit 2 by an optical system. The light is introduced into the spectroscope 3. These emission lines include light that does not undergo any atomic absorption by the element to be measured or light with a low degree of absorption. These are excluded by the spectroscope 3 and are emission lines (wavelengths) having the highest absorption sensitivity. Only the selected one is converted by the detector 4 into an electric signal.

分光器3における輝線の選択は,分散素子10をパルス
モータ6の駆動により減速器11を介して回転することに
より行う(第2図参照)。
The selection of the bright line in the spectroscope 3 is performed by rotating the dispersion element 10 via the speed reducer 11 by driving the pulse motor 6 (see FIG. 2).

一方,原子化部2においては,試料中に含まれる測定
元素が熱解離により原子化され,同部を通過する光のう
ち,吸収感度の最も高い輝線(波長)を選択的に強く吸
収する。
On the other hand, in the atomization section 2, the measurement element contained in the sample is atomized by thermal dissociation, and among the light passing through the section, the bright line (wavelength) having the highest absorption sensitivity is selectively and strongly absorbed.

検出器4で検出した信号は増幅器5で増幅され,信号
処理部のCPU7で対数変換し,吸光度に比例した値あるい
は濃度に変換した値を表示部8に表示する。
The signal detected by the detector 4 is amplified by the amplifier 5, logarithmically converted by the CPU 7 of the signal processing unit, and a value proportional to the absorbance or converted to a concentration is displayed on the display unit 8.

CPU7には,不揮発性メモリを内蔵している。この不揮
発性メモリは約70種の波長と,パルスモータ6により当
該波長位置に分光器3の分散素子10を駆動するためのパ
ルス数との関係を表の形で保持することができる。
The CPU 7 has a built-in nonvolatile memory. This non-volatile memory can hold the relationship between about 70 types of wavelengths and the number of pulses for driving the dispersion element 10 of the spectroscope 3 at the wavelength position by the pulse motor 6 in the form of a table.

いま,操作部9よりある測定元素の波長が入力された
とすると,CPU7ではその波長に対応するパルス数が不揮
発性メモリから求められ,当該パルス数がパルスモータ
6に供給され,分光器3の分散素子10を駆動してその最
適波長位置に設定することができる。不揮発性メモリに
その波長に対応するパルス数が保持されていない場合に
は,前述した(1)式によりパルス数を求め,その求め
たパルス数の付近を少しづつパルスを送りながら正確な
位置を求めることになるが,このようにして求めた正確
な波長位置に対応するパルス数は不揮性メモリに保持さ
れ,次回同一の測定元素の波長を設定するときには,直
ちに最適波長位置に対応するパルス数が求められ,波長
設定をすることができる。
Now, assuming that the wavelength of a certain measurement element is input from the operation unit 9, the CPU 7 obtains the number of pulses corresponding to the wavelength from the non-volatile memory, supplies the number of pulses to the pulse motor 6, The element 10 can be driven and set to its optimum wavelength position. If the number of pulses corresponding to the wavelength is not held in the non-volatile memory, the number of pulses is obtained by the above-described equation (1), and the accurate position is determined by sending the pulses little by little near the obtained number of pulses. The number of pulses corresponding to the accurate wavelength position obtained in this way is stored in the nonvolatile memory, and the next time the wavelength of the same measurement element is set, the pulse number corresponding to the optimum wavelength position is immediately obtained. The number is determined and the wavelength can be set.

〔発明の効果〕〔The invention's effect〕

本発明は以上説明したように構成されているので,測
定元素の波長設定を迅速に行うことができ,分析に先立
つ測定条件に要する時間を短縮することができるので,
操作者は能率的に分析を行うことができる。
Since the present invention is configured as described above, the wavelength of the element to be measured can be set quickly, and the time required for the measurement conditions prior to the analysis can be shortened.
The operator can perform the analysis efficiently.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原子吸光分光光度計の概略を示す図,
第2図は同分光器の構成を示す図である。 図中,1……光源,2……原子化部,3……分光器 4……検出器,6……パルスモータ,7……CPU 8……表示部,9……操作部,10……分散素子
FIG. 1 is a diagram schematically showing an atomic absorption spectrophotometer of the present invention,
FIG. 2 is a diagram showing a configuration of the spectroscope. In the figure, 1 ... light source, 2 ... atomization unit, 3 ... spectroscope 4 ... detector, 6 ... pulse motor, 7 ... CPU 8 ... display unit, 9 ... operation unit, 10 ... ... Dispersion element

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分光器の分散素子をパルスモータで駆動す
る原子吸光分光光度計において、設定すべき複数の測定
元素の波長と当該複数の波長位置へ前記分散素子を前記
パルスモータにより駆動するためのパルス数との関係を
保持することができる不揮発性メモリと、前記設定すべ
き複数の測定元素の波長のうち、前記不揮発性メモリに
測定元素の波長とパルス数との関係が保持されている波
長についてはピークサーチのための波長走査をせずに保
持されたパルス数を用いて波長設定し、前記不揮発性メ
モリに測定元素の波長とパルス数との関係が保持されて
いない波長についてはピークサーチのための波長走査を
行って前記波長とパルス数との関係を求めた上で波長設
定する制御手段を備えたことを特徴とする原子吸光分光
光度計。
In an atomic absorption spectrophotometer for driving a dispersion element of a spectroscope by a pulse motor, the pulse motor drives the dispersion element to the wavelengths of a plurality of measurement elements to be set and the plurality of wavelength positions. A nonvolatile memory capable of holding the relationship with the number of pulses, and of the plurality of wavelengths of the measurement element to be set, the relationship between the wavelength of the measurement element and the number of pulses is held in the nonvolatile memory. For the wavelength, the wavelength is set using the number of pulses held without performing wavelength scanning for peak search, and the peak is set for the wavelength for which the relationship between the wavelength of the measurement element and the number of pulses is not held in the nonvolatile memory. An atomic absorption spectrophotometer comprising control means for performing wavelength scanning for search to determine the relationship between the wavelength and the number of pulses and then setting the wavelength.
JP1168049A 1989-06-29 1989-06-29 Atomic absorption spectrophotometer Expired - Lifetime JP2737263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1168049A JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168049A JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH0331745A JPH0331745A (en) 1991-02-12
JP2737263B2 true JP2737263B2 (en) 1998-04-08

Family

ID=15860883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168049A Expired - Lifetime JP2737263B2 (en) 1989-06-29 1989-06-29 Atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JP2737263B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928247B2 (en) * 1976-12-15 1984-07-11 三井造船株式会社 Automatic wavelength selection device
JPS56108923A (en) * 1980-01-31 1981-08-28 Norito Suzuki Sweep control method of luminous analyzing spectroscope using microcomputer
JPS57142524A (en) * 1981-02-27 1982-09-03 Hitachi Ltd Measuring method and device for spectral luminous intensity

Also Published As

Publication number Publication date
JPH0331745A (en) 1991-02-12

Similar Documents

Publication Publication Date Title
Holland et al. A unique computer centered instrument for simultaneous absorbance and fluorescence measurements
CA2217526C (en) Tunable excitation and/or tunable detection microplate reader
US4877965A (en) Fluorometer
US4397556A (en) Material-testing method and apparatus
US7304741B2 (en) Pesticide detector and method
US4134678A (en) Automatic blood analysis apparatus and method
US5422719A (en) Multi-wave-length spectrofluorometer
CN102818792B (en) Spectrometric measurement device and program
US4946279A (en) Flourescence spectrophotometer for measuring fluorescent light of a plurality of wavelength conditions
JPS6217695B2 (en)
EP0296259A1 (en) Spectrometer with combined visible and ultraviolet sample illumination
US4930891A (en) Method and apparatus for scanning wavelength in spectrophotometers
Wampler et al. Recording polarization of fluorescence spectrometer. Unique application of piezoelectric birefringence modulation
JP2737263B2 (en) Atomic absorption spectrophotometer
JPH0798270A (en) Flow-through-type ultraviolet visible spectrophotometer
JP3267162B2 (en) Atomic absorption spectrophotometer
JPH11190684A (en) Measuring device provided with automatic sample changing function
Destrampe et al. New instrumentation for use in excitation-emission fluorescence-polarization measurements
JP2005164375A (en) Attachment for validation for infrared spectrophotometer and infrared spectrophotometer using the same
JPS6127703B2 (en)
JP2004527767A (en) Optical detection of chemical species in enriched media
JPS6318686B2 (en)
JPH0961355A (en) Optical axis moving type fluorometer and measuring method
JP3624587B2 (en) Fluorescence measuring device
Gibson Rapid reaction methods in biochemistry