[go: up one dir, main page]

JPH0322703A - Saw resonator - Google Patents

Saw resonator

Info

Publication number
JPH0322703A
JPH0322703A JP15713389A JP15713389A JPH0322703A JP H0322703 A JPH0322703 A JP H0322703A JP 15713389 A JP15713389 A JP 15713389A JP 15713389 A JP15713389 A JP 15713389A JP H0322703 A JPH0322703 A JP H0322703A
Authority
JP
Japan
Prior art keywords
reflector
idt
saw resonator
resonance
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15713389A
Other languages
Japanese (ja)
Inventor
Michiaki Takagi
高木 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15713389A priority Critical patent/JPH0322703A/en
Publication of JPH0322703A publication Critical patent/JPH0322703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To obtain a single spectrum by setting only one state as the reflection state of two elastic surface waves that a reflector has and unifying only main resonance as the resonance state. CONSTITUTION:An electrode pattern consists of a piezoelectric material flat plate 100, an inter-digital electrode(IDT) 101, the reflector 102, the positive and negative electrodes 103 and 104 of the IDT 101, conductor strips 105 and 106 which perform the reflecting operation of the reflector 102, and a connecting conductor 107 for connecting the conductor strips 105 and 106. Here, the IDT 101 consists of the inter-digital electrode which has a period lambda/4, where lambda is the wavelength of the elastic surface wave and the reflector 102 consists of the conductor strip groups 105 and 106 having a period lambda/2. The reflecting structure having the period lambda/2 is used, so only a stress wave of main resonance is reflected. Consequently, the single-spectrum resonator is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、弾性表面波を応用してなるSAW共振子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a SAW resonator using surface acoustic waves.

[従来の技Wl] 従来のSAW共振子の電極構造の一冥施例を第4図に示
す。図中の各部位の名称は、40oが圧電体平板、40
1はIDT,402は反射器,405と404は各々I
DTの正負の交芝指電極,405と406等は反射器の
反射の動作をする導体ストリップ,407は前記導体ス
トリップの接続導体である。第4図は従来のSAW共振
子に於で、弾性表面波の励振と受信を行うIDT、(イ
ンターデジタルトランスジェーサの略)と1対の反射器
の片側の電極パターン1部を拡大して図示したものであ
る。水晶及びLiTa03 ,LiNbO,等の圧電材
を平板としてその表面を鏡面研摩した上にAt,Au等
の導体金属膜を蒸着した後、フォトエッチング技術によ
りパターン形成して作られたのがIDT(101)と反
射器(102)である。IDTは導体幅がλ/4の交差
指電極を周期λ/4のピッチで配置してできる。但しλ
はSAW共振子が動作時に於て振動変位を生成する弾性
表面波の波長λである。λはIDT電極の幅の4倍とほ
ぼ等しい。第4図408にλ丁を示した。又点PとS間
の長さLgはIDTと反射器[発明−が解決しようとす
る課題] しかし前述の従来技術によるSAW共振子に於では、主
共振の他にもう一つ望まれない副共振が発生して、SA
W共振子を用いて、発振器及びフィルタを構成する際に
異常発振とか、フィルタの帯域外の動作減衰量が得られ
ないという問題点を有する。
[Conventional Technique Wl] FIG. 4 shows an example of the electrode structure of a conventional SAW resonator. The names of the parts in the diagram are: 40o is a piezoelectric flat plate;
1 is an IDT, 402 is a reflector, 405 and 404 are each an IDT.
The positive and negative electrodes of the DT, 405 and 406, etc. are conductor strips that act as a reflector, and 407 is a connecting conductor of the conductor strips. Figure 4 is an enlarged view of a part of the electrode pattern on one side of a conventional SAW resonator, an IDT (abbreviation for interdigital transducer) that excites and receives surface acoustic waves, and a pair of reflectors. This is what is illustrated. IDT (101 ) and a reflector (102). The IDT is made by arranging interdigital electrodes each having a conductor width of λ/4 at a pitch of λ/4. However, λ
is the wavelength λ of the surface acoustic wave that generates vibrational displacement when the SAW resonator is in operation. λ is approximately equal to four times the width of the IDT electrode. FIG. 4 408 shows λ-th. Furthermore, the length Lg between points P and S is determined by the IDT and the reflector. Resonance occurs and SA
When constructing an oscillator and a filter using a W resonator, there are problems such as abnormal oscillation and the inability to obtain an amount of operational attenuation outside the band of the filter.

第10図には前記SAW共振子の共振特性を横軸に周波
数、縦軸に共振子の通過電流工を用いて図示した。図中
に於で、周波@f1に於る大きな共振が主共振(100
0)であり、周波数f2の小さな共振(1 001 ’
Iが副共振であって副共振は不用なものである。SAW
共振子の設計条件によっては、主共振と副共振は同等の
大きさとなる場合もある。これら2つの共振状態の発生
の原因を第8図と第9図を用いて説明する。第8図はS
AW共振子の前記IDTと反射器間の距GM I’ g
”λ/4の場合であり、第9図はLg=λ/2の場合で
ある。いずれの図も、主共振と副共振状態での直列共振
周テ数f>−ftに於るSAW共振子の振動変位状態を
弾性表面波がもつ応力波Fの状態で表わした。まず第8
図中、800は圧電体平板、801と802は幅がほぼ
λ/4であるIDTの交差指電極、さらに803,80
4,805は反射器の導体幅がほぼλ/4の導体ストリ
ップである。実線806は主共振の応力波状態、破線8
07は副共振の応力波状態である。次に第9図中、90
0は圧電体平板、901と902は第8図と同様のID
Tの交差指電極、さらに903,904,905は同様
に反射器の導体ス} IJップである。実線906が主
共振に対応する応力波の状態であり破線907が副共振
に対応する応力波の状態である。第8図及び第9図のい
ずれの場合にあっても副共振.は無視できない大きさで
発生する。そこで本発明はこのような問題点を解決する
もので、その目的とするところは、副共振がないが無視
できる程に小さいSAW共振子を製作し、単一スペクト
ルで安定なSAW発振器及び無スプリアスで通過帯域外
の動作減衰量の大きくとれるSAWフィルタを市場に提
供することにある。
In FIG. 10, the resonance characteristics of the SAW resonator are illustrated using the frequency on the horizontal axis and the current passing through the resonator on the vertical axis. In the figure, the large resonance at frequency @f1 is the main resonance (100
0), and a small resonance of frequency f2 (1 001'
I is a sub-resonance, and the sub-resonance is unnecessary. SAW
Depending on the design conditions of the resonator, the main resonance and the sub-resonance may have the same magnitude. The causes of these two resonance states will be explained with reference to FIGS. 8 and 9. Figure 8 is S
Distance between the IDT of the AW resonator and the reflector GM I' g
Figure 9 shows the case of Lg=λ/2.Both figures show the SAW resonance in the series resonance frequency f>-ft in the main resonance and sub-resonance states. The vibrational displacement state of the child is expressed as the stress wave F of the surface acoustic wave.First, the 8th
In the figure, 800 is a piezoelectric flat plate, 801 and 802 are IDT interdigital electrodes with a width of approximately λ/4, and 803 and 80
4,805 is a conductor strip having a conductor width of approximately λ/4 of the reflector. Solid line 806 is the stress wave state of the main resonance, broken line 8
07 is a stress wave state of sub-resonance. Next, in Figure 9, 90
0 is a piezoelectric flat plate, 901 and 902 are IDs similar to those in Fig. 8.
Similarly, interdigital electrodes 903, 904, and 905 are conductor strips of the reflector. A solid line 906 indicates a state of stress waves corresponding to main resonance, and a broken line 907 indicates a state of stress waves corresponding to sub-resonance. Subresonance occurs in both cases of Fig. 8 and Fig. 9. occurs at a size that cannot be ignored. Therefore, the present invention is intended to solve these problems, and the purpose is to manufacture a SAW resonator that has no sub-resonance but is negligibly small, and to create a stable SAW oscillator with a single spectrum and no spurious. The purpose of the present invention is to provide the market with a SAW filter that can have a large amount of operational attenuation outside the passband.

[課題を解決するための手段] 本発明のSAW共振子は次の各項を特徴とする。[Means to solve the problem] The SAW resonator of the present invention is characterized by the following items.

(11  圧電体平板の表面上に、弾性表面波を送受す
るIDTと、該IDTの両測に前記弾性表面波を反射す
る1対の反射器を形成してなるキャピティ型SAW共振
子に於で、前記IDTは、弾性表面波の波長なλとして
周期λ/4の交差指電極からなりさらに前記反射器が周
期λ/2か又はλ/2とλ/4の反射構造体よりなるこ
と、 (2)  また反射器の周期λ/2の反射構造体が、ほ
ぼλ/2幅の導体ストリップ群からなること、(3) 
 また反射器の周期λ/2の反射構造体が、ほぼλ/2
幅の圧電体表面上に形成された溝群の配列からなること
、 (4)  またIDTと反射器間の距離Lgが弾性表面
波の波長をλとしてほぼLg=λ/4であること、 (5)  またIDTと反射器間の距離Lgが弾性表面
波の波長をλとしてほぼLg=λ/2であること。
(11) In a cavity type SAW resonator formed on the surface of a piezoelectric flat plate, an IDT that transmits and receives surface acoustic waves, and a pair of reflectors that reflect the surface acoustic waves on both sides of the IDT. , the IDT is comprised of interdigital electrodes with a period of λ/4, where λ is the wavelength of surface acoustic waves, and the reflector is comprised of a reflective structure with a period of λ/2 or between λ/2 and λ/4; 2) Also, the reflecting structure of the reflector with a period of λ/2 is composed of a group of conductor strips with a width of approximately λ/2; (3)
In addition, the reflection structure of the reflector with a period of λ/2 is approximately λ/2
(4) The distance Lg between the IDT and the reflector is approximately Lg = λ/4, where λ is the wavelength of the surface acoustic wave; 5) Also, the distance Lg between the IDT and the reflector is approximately Lg=λ/2, where λ is the wavelength of the surface acoustic wave.

[作用] 本発明の上記構成によれば、従来、反射器がもつ2つの
弾性表面波の反射状態を一つの状態のみとすることがで
き、結果としてSAW#:.振子の共振状態を主共振の
みに単一化することができる。
[Function] According to the above configuration of the present invention, the reflection state of the two surface acoustic waves of the conventional reflector can be reduced to only one state, and as a result, SAW#:. The resonance state of the pendulum can be unified to only the main resonance.

従来のSAT共振子が2つの共振状態をもつメカニズム
については第8図と第9図により説明できる。反射器に
於て弾性表面波の反射状態は、各反射動作を行う導体ス
} IJップの端部が応力波の節となる様に反射される
ことである。従って、導体ストリップの2つの端部に対
応して2つの共振状態が発生する。本発明に於ては、反
射器の導体ストリップの幅を弾性表面波の波長λの17
2とすることにより弾性表面波の応力波の節が反射動作
を行う導体ストリップの端部にくる状態を唯一に限定す
ることができる。その結果単一の共振状態のみを実現す
ることができる。
The mechanism by which a conventional SAT resonator has two resonance states can be explained with reference to FIGS. 8 and 9. The state of reflection of the surface acoustic wave in the reflector is such that the end of the conductor strip (IJ) that performs each reflection operation becomes a node of the stress wave. Therefore, two resonant conditions occur corresponding to the two ends of the conductor strip. In the present invention, the width of the conductor strip of the reflector is set to 17 times the wavelength λ of the surface acoustic wave.
2, it is possible to limit the state in which the node of the stress wave of the surface acoustic wave comes to the end of the conductor strip that performs the reflection operation to be unique. As a result, only a single resonant state can be achieved.

[実施例] 第1図は本発明のSAW共振子に於る電極パターンの詳
細図である。図中各部位の名称は、100が圧電体平板
、10101点鎖線内はIDT,10201点鎖線内は
反射器、105と104は各々IDTの交差指電極の正
負電極、105と106等は反射器の反射動作をする導
体ストリップであり107は105と106等を接続す
るための接続導体である。前記IDT101の交差指電
極の電極幅Wtは、IDTに於て励振される弾性表面波
の波長λのほぼ1/4に設定し、さらに電極指間のピッ
チもほぼλ/4とする。この場合のIDTの交差指電極
の周期は図中の108のλ丁となる。通例、λTは前記
λに極めて近い値に設定する。次に、前記工INTに於
て励振されて交差指電極に直交して左右に伝播する弾性
表面波を、反射して共振子とするための構造体が反射器
であるが、本発明に於ては、反射動作をする導体ストI
Jップの電極幅WRを従来のλ/4に対してλ/2とし
て構成する。又導体ストリップ間のピクチもほぼλ/2
とする。さらに前記IDTと反射器間の距dLgをλ丁
の174としている。 (第1図点PとS間の長さ)。
[Example] FIG. 1 is a detailed diagram of an electrode pattern in a SAW resonator of the present invention. The names of each part in the figure are: 100 is a piezoelectric flat plate, 10101 is an IDT within a dotted line, 10201 is a reflector within a dotted line, 105 and 104 are the positive and negative electrodes of the interdigital electrodes of the IDT, and 105 and 106 are reflectors. 107 is a connecting conductor for connecting 105, 106, etc. The electrode width Wt of the interdigital electrodes of the IDT 101 is set to approximately 1/4 of the wavelength λ of the surface acoustic wave excited in the IDT, and the pitch between the electrode fingers is also approximately λ/4. In this case, the period of the interdigital electrodes of the IDT is 108 λ in the figure. Usually, λT is set to a value very close to the above-mentioned λ. Next, a reflector is a structure for reflecting the surface acoustic waves excited in the INT and propagating from side to side perpendicular to the interdigital electrodes to form a resonator. The conductor strip I that has a reflective action
The electrode width WR of Jp is configured to be λ/2 compared to the conventional λ/4. Also, the picture between conductor strips is approximately λ/2.
shall be. Further, the distance dLg between the IDT and the reflector is set to 174 of λ. (Length between points P and S in Figure 1).

次に前述のIDT及び反射器の形成方法につき述べてお
く。まず、100の圧電体平板は、水晶及びLiTaO
,,LimbO,等の圧電材料を平板にスライスした後
その表面を鏡面研摩して仕上げる。次に前記圧電体平板
の表面上に、At,Au ,Ou等の導体金属を蒸着又
はスパッタ等により薄膜形成した後フォトエッチング技
術により電極パターンを形成する。通例反射器の有する
導体ストリップの本数はioo〜1000本の多数の配
列となる。反射器に於る弾性表面波の反射原理は、弾性
表面波の伝播路上に周期的に配置された反射構造体(た
とえば導体ストリップ等)により圧電体表面と異なる反
射構造体の端部に於て音響インピーダンスに不整合が生
じて、わずかな波の反射が発生し、それらが多数集まる
ことによって、弾性表面波の全反射が生ずることになる
。弾性表面波は波の性質上、その波のエネルギーが表面
から1波長程度に局在するため、前述の音響インピーダ
ンスの不整合は圧電体平板の表面をわずかエッチング加
工して細長い溝をはって配列することによっても構成で
きる。
Next, a method for forming the above-mentioned IDT and reflector will be described. First, 100 piezoelectric flat plates are made of quartz and LiTaO.
, , LimbO, etc. are sliced into flat plates and their surfaces are mirror-polished to finish. Next, a thin film of a conductive metal such as At, Au, or O is formed by vapor deposition or sputtering on the surface of the piezoelectric flat plate, and then an electrode pattern is formed by photo-etching. Typically, the number of conductor strips that a reflector has is in a large array of ioo to 1000 conductor strips. The principle of reflection of surface acoustic waves in a reflector is that a reflection structure (such as a conductor strip) is placed periodically on the propagation path of the surface acoustic wave, and the reflection occurs at the end of the reflection structure different from the piezoelectric surface. A mismatch in acoustic impedance causes small wave reflections, and when a large number of them gather together, total reflection of the surface acoustic wave occurs. Due to the nature of surface acoustic waves, the wave energy is localized within about one wavelength from the surface, so the acoustic impedance mismatch mentioned above can be solved by slightly etching the surface of the piezoelectric flat plate to create long and narrow grooves. It can also be configured by arranging them.

第11図はこの方法を本発明の例につき実施した反射器
の断面図である。図中、1100は圧電体平板、110
1と1102等はIDTの交差指電極、1103と11
04等は反射器として構成した輻λ/2の溝の配列であ
る。又長さLgはIDTと反射器間の距離であってほぼ
λT/4  又はλt / 2 の値をとっている。
FIG. 11 is a cross-sectional view of a reflector in which this method is implemented in accordance with an example of the present invention. In the figure, 1100 is a piezoelectric flat plate, 110
1 and 1102 are IDT interdigital electrodes, 1103 and 11
04 etc. is an array of grooves with a radiation of λ/2 configured as a reflector. Further, the length Lg is the distance between the IDT and the reflector and takes a value of approximately λT/4 or λt/2.

次に第2図に本発明の他の実施例を示す。第2図は本発
明の第1図とIDT(201)と反射器(202)間の
距離LgがLレ=λT/2 と異なる他は同じであるた
め説明は省略する。
Next, FIG. 2 shows another embodiment of the present invention. Since FIG. 2 is the same as FIG. 1 of the present invention except that the distance Lg between the IDT (201) and the reflector (202) is L=λT/2, the explanation will be omitted.

次に第3図には本発明のSAW共振子に用いた反射器の
他の実施例を示した。図中、3oOは圧電体平板、50
1と302は両方とも反射器であるが、301は電極幅
と電極間ピッチがλ/2の反射器、一方502は電極幅
と電極間ピッチがλ/4の反射器である。又304と3
05及び507と308等は反射動作する導体ストリッ
プであり、305と306等は導体ストリップを接続す
るための接続導体である。前記両反射器間の距離L日は
両反射器間にまたがって存在する振動変位の位相整合を
とるためにLs=λ/2 としてある。第3図の様にピ
ッチλ/2とλ/4を並用する理由は、ビッチλ/2の
反射器3010反射動作は波長λに対して2次モードの
反射となり若干反射性能が低下するため、ピクチλ/4
の反射器によりこの欠点を補う目的がある。このように
すれば、SAW共振子の主共振のQ値を大きく維持した
上に、副共振の大きさを小さく抑制することができる。
Next, FIG. 3 shows another embodiment of the reflector used in the SAW resonator of the present invention. In the figure, 3oO is a piezoelectric flat plate, 50
1 and 302 are both reflectors, but 301 is a reflector with an electrode width and an inter-electrode pitch of λ/2, while 502 is a reflector with an electrode width and an inter-electrode pitch of λ/4. Also 304 and 3
05, 507, 308, etc. are conductor strips that perform a reflective operation, and 305, 306, etc. are connection conductors for connecting the conductor strips. The distance L between both reflectors is set to Ls=λ/2 in order to achieve phase matching of the vibrational displacement that exists between both reflectors. The reason why pitches λ/2 and λ/4 are used together as shown in FIG. 3 is that the reflection operation of the reflector 3010 with pitch λ/2 becomes a second-order mode reflection for the wavelength λ, which slightly degrades the reflection performance. Picture λ/4
The purpose of this reflector is to compensate for this drawback. In this way, the Q value of the main resonance of the SAW resonator can be maintained large, and the magnitude of the sub-resonance can be suppressed to a small value.

前述の第10図の破線で示す副共振1002はこうして
改善された共振特性を示した。
The sub-resonance 1002 indicated by the broken line in FIG. 10 described above showed improved resonance characteristics.

最後に本発明の実施例第1図,第2図及び第3図SAW
共振子が共振状態にある際の振動変位の状態を弾性表面
波の応力波rの状態で示す。第5図,第6図,第7図は
それぞれ第1図,第2図,第3図に対応した振動変位に
供5応力波の状態である。図中、500,600及び7
00等は圧電体平板、501 ,502,601 ,6
02はIDTの交差指電極、503,504,605,
604及び701〜704等は反射器の導体ストリップ
である。主共振の振動に対応する応力波が実線の505
,605,705であり、副共振の振動に対応する応力
波を破線の506,606 ,707で示した。いずれ
の図に於てもピッチλ/2の反射器に於て、副共振の応
力波は反射のための導体ストリップの中央で節となる変
位状態を示し、反射器の反射位相条件を満足しないため
波の反射は生じない。従って波は透過して共振現象を呈
しない。第7図にあっては、副共振の応力波は705と
704等のλ/4の反射器部のみで反射される。
Finally, the embodiments of the present invention are shown in FIGS. 1, 2, and 3.
The state of vibrational displacement when the resonator is in a resonant state is shown as a stress wave r of a surface acoustic wave. FIGS. 5, 6, and 7 show states of stress waves subjected to vibrational displacement corresponding to FIGS. 1, 2, and 3, respectively. In the figure, 500, 600 and 7
00 etc. are piezoelectric flat plates, 501, 502, 601, 6
02 is the interdigital electrode of IDT, 503, 504, 605,
604, 701 to 704, etc. are conductor strips of the reflector. The stress wave corresponding to the vibration of the main resonance is indicated by the solid line 505
, 605, 705, and the stress waves corresponding to the vibrations of the sub-resonance are indicated by broken lines 506, 606, 707. In both figures, in the reflector with a pitch of λ/2, the subresonant stress wave exhibits a displacement state that becomes a node at the center of the conductor strip for reflection, and does not satisfy the reflection phase condition of the reflector. Therefore, no wave reflection occurs. Therefore, waves are transmitted and no resonance phenomenon occurs. In FIG. 7, the sub-resonant stress waves are reflected only by λ/4 reflector sections such as 705 and 704.

[発明の効果] 以上述べたように本発明によれば、周期λ/2の反射構
造体を用いたことにより、SAW共振子の主共振の応力
波のみ反射して単一スペクトルの共振子が実現できる。
[Effects of the Invention] As described above, according to the present invention, by using a reflection structure with a period of λ/2, only the stress wave of the main resonance of the SAW resonator is reflected, and a resonator with a single spectrum is generated. realizable.

さらに、周期λ/2とλ/4の反射構造体を並用すれば
、主共振のQ値を高く維持して副共振の大きさを小さく
抑圧できることより、SAW発振器に於て副共振での発
振を防ぐ他、SAW共振子を多数接続してなるSAWフ
ィルタの設計の自由度を増し、通過特性の改善が可能と
なり今後多くの利点がある。
Furthermore, if reflection structures with periods λ/2 and λ/4 are used together, the Q value of the main resonance can be maintained high and the size of the sub-resonance can be suppressed to a small level, so oscillation at the sub-resonance in the SAW oscillator can be suppressed. In addition to preventing this, the degree of freedom in designing a SAW filter formed by connecting a large number of SAW resonators is increased, and the pass characteristics can be improved, which will bring many benefits in the future.

103,104・・・・・・交差指電極105,106
・・・・・・導体ストリップ
103, 104... Interdigital electrodes 105, 106
・・・・・・Conductor strip

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のSAW共振子の一実施例に於る電極パ
ターンの詳細図、第2図は本発明の他の実施例に於る第
1図と同様な図、第3図は本発明のSAW共振子が有す
る反射器の電極ノくターンの詳細図、第4図は従来のS
AW共振子の電極ノくターンの詳細図、第5図と第6図
及び第7図は本発明の第1図と第2図及び第3図が示す
共振時の応力波が示す変位状態図、第8図と第9図は従
来のSAW共振子が示す共振時の応力波が示す変位状態
図、第10図はSAT共振子が示す共振特性図、第11
図は本発明のSAW共振子が有する反射器構造体の断面
図である。 1ロ0・・・・・・・・・・・・・・・圧電体平板1 
0 1 ・・・・・・・・・・・・・・・ 工 DT以
FIG. 1 is a detailed view of the electrode pattern in one embodiment of the SAW resonator of the present invention, FIG. 2 is a diagram similar to FIG. 1 in another embodiment of the present invention, and FIG. 3 is a diagram of the present invention. A detailed view of the electrode nozzle of the reflector included in the SAW resonator of the invention, FIG.
Detailed diagrams of electrode nozzles of the AW resonator, and FIGS. 5, 6, and 7 are displacement state diagrams shown by stress waves during resonance shown in FIGS. 1, 2, and 3 of the present invention. , Fig. 8 and Fig. 9 are displacement state diagrams shown by stress waves during resonance of a conventional SAW resonator, Fig. 10 is a resonance characteristic diagram shown by a SAT resonator, and Fig. 11
The figure is a sectional view of a reflector structure included in the SAW resonator of the present invention. 1ro0・・・・・・・・・・・・Piezoelectric flat plate 1
0 1 ・・・・・・・・・・・・・・・ Engineering DT or higher

Claims (5)

【特許請求の範囲】[Claims] (1)圧電体平板の表面上に、弾性表面波を送受するI
DTと、該IDTの両側に前記弾性表面波を反射する1
対の反射器を形成してなるキャビティ型SAW共振子に
於て、前記IDTは、弾性表面波の波長をλとして周期
λ/4の交差指電極からなり、さらに前記反射器が周期
λ/2か又はλ/2とλ/4の反射構造体よりなること
を特徴とするSAW共振子。
(1) I that transmits and receives surface acoustic waves on the surface of a piezoelectric flat plate
DT, and 1 that reflects the surface acoustic wave on both sides of the IDT.
In a cavity type SAW resonator formed of a pair of reflectors, the IDT is composed of interdigital electrodes with a period of λ/4, where the wavelength of the surface acoustic wave is λ, and the reflector has a period of λ/2. Alternatively, a SAW resonator comprising reflective structures of λ/2 and λ/4.
(2)反射器の周期λ/2の反射構造体が、ほぼλ/2
幅の導体ストリップ群からなることを特徴とする請求項
1記載のSAW共振子。
(2) The reflection structure of the reflector with a period of λ/2 is approximately λ/2
2. The SAW resonator according to claim 1, wherein the SAW resonator comprises a group of conductor strips having a width.
(3)反射器の周期λ/2の反射構造体が、ほぼλ/2
幅の圧電体表面上に形成された溝群の配列からなること
を特徴とする請求項1記載のSAW共振子。
(3) The reflective structure of the reflector with a period of λ/2 is approximately λ/2
2. The SAW resonator according to claim 1, wherein the SAW resonator comprises an array of grooves formed on a surface of a piezoelectric material having a width.
(4)IDTと反射器間の距離Lgが弾性表面波の波長
をλとしてほぼLg=λ/4であることを特徴とする請
求項1記載のSAW共振子。
(4) The SAW resonator according to claim 1, wherein the distance Lg between the IDT and the reflector is approximately Lg=λ/4, where λ is the wavelength of the surface acoustic wave.
(5)前記IDTと反射器間の距離Lgが弾性表面波の
波長をλとしてほぼLg=λ/2であることを特徴とす
る請求項1記載のSAW共振子。
(5) The SAW resonator according to claim 1, wherein the distance Lg between the IDT and the reflector is approximately Lg=λ/2, where λ is the wavelength of the surface acoustic wave.
JP15713389A 1989-06-20 1989-06-20 Saw resonator Pending JPH0322703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15713389A JPH0322703A (en) 1989-06-20 1989-06-20 Saw resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15713389A JPH0322703A (en) 1989-06-20 1989-06-20 Saw resonator

Publications (1)

Publication Number Publication Date
JPH0322703A true JPH0322703A (en) 1991-01-31

Family

ID=15642926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15713389A Pending JPH0322703A (en) 1989-06-20 1989-06-20 Saw resonator

Country Status (1)

Country Link
JP (1) JPH0322703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255916B1 (en) 1993-05-27 2001-07-03 Fujitsu Limited Resonator-type surface-acoustic-wave filter for reducing the signal strength of a spurious peak

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255916B1 (en) 1993-05-27 2001-07-03 Fujitsu Limited Resonator-type surface-acoustic-wave filter for reducing the signal strength of a spurious peak

Similar Documents

Publication Publication Date Title
US7135805B2 (en) Surface acoustic wave transducer
JPH10261938A (en) Surface acoustic wave filter
CN101865884B (en) Single-mode protruding double-end resonant surface acoustic wave detector
JPS5925525B2 (en) surface acoustic wave resonator
US5793147A (en) Surface wave resonator having single component including a plurality of resonant units
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JP2000183681A (en) Surface acoustic wave device
JP2620085B2 (en) 2-port SAW resonator
JP3001349B2 (en) Surface acoustic wave filter
JP3196499B2 (en) Surface wave resonator
JPH06177703A (en) Longitudinal triplex mode saw filter
KR100465975B1 (en) Surface acoustic wave device and communication device
JPH0322703A (en) Saw resonator
JPH04373304A (en) Surface acoustic wave filter
JP3137081B2 (en) Surface acoustic wave filter
JP3203796B2 (en) Multi-mode surface acoustic wave filter
JPH05129884A (en) Multistage connection multiplex mode filter
JPH1084248A (en) Surface acoustic wave device and its production
JP3201088B2 (en) Surface acoustic wave resonator
EP0881762B1 (en) Surface acoustic wave device
JPH07336187A (en) Surface acoustic wave device
JPH0774588A (en) Vertical dual mode surface acoustic wave filter
JP2753352B2 (en) Surface acoustic wave double mode filter and communication device using the same
JPH0613836A (en) Surface acoustic wave element
KR0181400B1 (en) Electrode Structure of Elastic Surface Resonator