JPH03170646A - Manufacture of copper alloy having fine crystalline grains as well as low strength - Google Patents
Manufacture of copper alloy having fine crystalline grains as well as low strengthInfo
- Publication number
- JPH03170646A JPH03170646A JP30654489A JP30654489A JPH03170646A JP H03170646 A JPH03170646 A JP H03170646A JP 30654489 A JP30654489 A JP 30654489A JP 30654489 A JP30654489 A JP 30654489A JP H03170646 A JPH03170646 A JP H03170646A
- Authority
- JP
- Japan
- Prior art keywords
- brass
- copper alloy
- alloy
- grain size
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000956 alloy Substances 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 23
- 238000000137 annealing Methods 0.000 claims abstract description 15
- 238000005097 cold rolling Methods 0.000 claims abstract description 15
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 6
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 4
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 4
- 229910052745 lead Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052785 arsenic Inorganic materials 0.000 claims abstract 3
- 229910052796 boron Inorganic materials 0.000 claims abstract 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract 3
- 229910052738 indium Inorganic materials 0.000 claims abstract 3
- 229910052742 iron Inorganic materials 0.000 claims abstract 3
- 229910052749 magnesium Inorganic materials 0.000 claims abstract 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract 3
- 239000013078 crystal Substances 0.000 claims description 12
- 229910001369 Brass Inorganic materials 0.000 claims description 9
- 239000010951 brass Substances 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 2
- 238000005336 cracking Methods 0.000 abstract description 23
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 16
- 238000007670 refining Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000001270 Allium sibiricum Nutrition 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、復水器、給水加熱器、蒸留器、冷却器、遣水
装置などの熱交換器用の材料として、特に自動車等に用
いられるラジエーターのタンク、チーブ、フィン等の材
料として最適な黄銅及び黄銅系銅合金の製造方法に関す
るものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to radiators used in automobiles, etc. as materials for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water supply devices. The present invention relates to a method for producing brass and brass-based copper alloys that are optimal as materials for tanks, chives, fins, etc.
[従来の技術コ
従来、ラジエーターに使用されている銅合金材料として
は、Cu[i5重量%、Zn35重量%からなる苦銅が
知られている。しかし、ラジエーターは冷却媒体と常時
接触しており、又、自動車走行中は排気ガス、塩分を含
む馬岸大気更には工場排気のSO2ガス等にさらされて
おり、これら腐食環境により黄銅は応力腐食割れや脱亜
鉛腐食が起き、これが大きな問題になっている。更に又
、近年特にラジエーターチューブには従来のカシメによ
るロックシームチューブに代って、コスト低減と生産効
率の向上の面から高周波誘導溶接あるいは高周波抵抗溶
接による銅合金溶接管が採用されるようになってきた。[Prior Art] As a copper alloy material conventionally used for radiators, bitter copper is known, which is composed of 5% by weight of Cu[i] and 35% by weight of Zn. However, the radiator is in constant contact with the cooling medium, and while the car is running, it is exposed to exhaust gas, salt-containing atmosphere, and SO2 gas from factory exhaust, and these corrosive environments cause brass to undergo stress corrosion. Cracking and dezincification corrosion occur, which has become a major problem. Furthermore, in recent years, copper alloy welded tubes made by high-frequency induction welding or high-frequency resistance welding have been adopted, especially for radiator tubes, in place of the conventional lock-seamed tubes made by caulking, in order to reduce costs and improve production efficiency. It's here.
しかし、銅合金溶接管は、その溶接組織の特異性からそ
の溶接部は他の部分と比較して耐食性が大幅に劣るとい
う欠点をもっている。However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure.
[発明が解決しようとする課題コ
本発明者らは、上記の問題点について種々研究を行った
結果、結晶粒度を微細にすることが、溶接部の割れの減
少及び耐食性特に耐応力腐食割れ性の向上に有効な方法
であることが明らかになった。しかし、銅合金の結晶粒
を微細にすると、強度が向上し、それに伴ないチューブ
、フィン等への成形時の負荷や金型の摩耗の堆加及び成
形性の低下等が問題になっていた。[Problems to be Solved by the Invention] The present inventors have conducted various studies on the above-mentioned problems, and have found that making the grain size finer reduces cracking in welds and improves corrosion resistance, especially stress corrosion cracking resistance. It has become clear that this is an effective method for improving However, making the crystal grains of copper alloys finer improves their strength, but this has led to problems such as the load on tubes, fins, etc. during forming, the accumulation of mold wear, and a decrease in formability. .
このような状況から、本発明では結晶粒が微細でかつ結
晶粒の微細化に伴なう強度向上の起らない成形性に優れ
た材料を提供しようとするものである。Under these circumstances, the present invention aims to provide a material with fine crystal grains and excellent formability that does not suffer from an improvement in strength due to the refinement of the crystal grains.
[課題を解決するための手段]
本発明は、Zn:25〜45重量%あるいは更にPbx
Fe.SnSAl、Mn,Nix PsA s s
T e s C r % C o 1Z r SV s
B e sCd,St,BS In,TiSMg,H
f,Geよりなる群より1種又は2種以上を0.005
〜2.0重量%含み、残部Cu及び不可避的不純物から
なる合金材料を75%以上の加工度で冷間圧延後、最終
焼鈍により結晶粒度を0.Ol5mm以下とすることを
特徴とする結晶粒が微細でかつ低強度な黄銅あるいは黄
銅系銅合金の製造方法並びに上記組成の合金材料を75
%以上の加工度で冷間圧延後、最終焼鈍で結晶粒度が0
.015mm以下となるように調整した後、更にl−1
5%の冷間圧延を施すことを特徴とする製造方法である
。[Means for Solving the Problems] The present invention provides Zn: 25 to 45% by weight or further Pbx
Fe. SnSAl, Mn, Nix PsA s s
T e s C r % C o 1Z r SV s
B e sCd, St, BS In, TiSMg, H
f, one or two or more from the group consisting of Ge at 0.005
After cold rolling an alloy material containing ~2.0% by weight and the balance consisting of Cu and unavoidable impurities at a working degree of 75% or more, the grain size is reduced to 0.0% by final annealing. A method for producing brass or brass-based copper alloy with fine crystal grains and low strength, characterized by having a crystal grain size of 5 mm or less, and an alloy material having the above composition.
After cold rolling with a working degree of % or more, the grain size is 0 in the final annealing.
.. After adjusting it so that it is 0.015 mm or less, further l-1
This manufacturing method is characterized by performing 5% cold rolling.
かかる本発明を構成する合金成分及び他の構或要件の限
定理由を説明する。The reasons for limiting the alloy components and other structural requirements constituting the present invention will be explained.
CuとZnとは本発明を構成する合金の基本材料となる
もので、加工性、機械的強度に優れていると共に、熱伝
導性にも優れている。Zn含有量を25〜45重量%と
する理由は、Zn含有量が25重量%未満では加工性が
悪くなり、又はんだ付け性が低下するためで、45重量
%を超えるとCu−Zn合金におけるβ相の析出が顕著
になり、耐食性及び冷間加工性が悪くなるためである。Cu and Zn are the basic materials of the alloy constituting the present invention, and have excellent workability and mechanical strength, as well as excellent thermal conductivity. The reason why the Zn content is set to 25 to 45% by weight is that if the Zn content is less than 25% by weight, workability or solderability will deteriorate, but if it exceeds 45% by weight, the Cu-Zn alloy will This is because the precipitation of the β phase becomes significant, resulting in poor corrosion resistance and cold workability.
P b % F e SS n s A 1 、M n
SN is P sAs,TeS Crs Co,Z
r.VS Be,Cd,SiS B% InSTi,
MgSHf,Geよりなる群より1種又は2種以上を0
.005〜2.0重量%含有する理由は、素材及び溶接
部の耐食性を改善するためで、0.005重量%未満で
は耐食性の改善が認められず、又、2.0ffiffi
%を超えて含有してもその効果が飽和して、加工性を劣
化させるためである。P b % F e SS n s A 1 , M n
SN is P sAs, TeS Crs Co, Z
r. VS Be, Cd, SiS B% InSTi,
0 of one or two or more from the group consisting of MgSHf, Ge
.. The reason for containing 0.005 to 2.0% by weight is to improve the corrosion resistance of the material and welded parts.
This is because even if the content exceeds %, the effect will be saturated and the processability will deteriorate.
更に、最終焼鈍前の冷間圧延の加工度を75%以上にし
た理由は、最終焼1=11後の強度を低下させ、成形性
を改善するためで、加工度が75%未満ではその効果が
認められないためである。Furthermore, the reason why the working degree of cold rolling before final annealing is set to 75% or more is to reduce the strength after final annealing 1=11 and improve formability, and if the working degree is less than 75%, this effect will be reduced. This is because it is not recognized.
最終焼鈍により結晶粒度を0.015mm以下にする理
由は、結晶粒を小さくすることが、耐食性特に耐応力腐
食割れ性の向上に有効であること、更に高周波誘導溶接
あるいは高周波抵抗溶接によって起る溶接割れは溶融し
た母材金属と接触していると粒界が脆化することが原因
であるが、結晶粒度を小さくすることによりこのような
現象を大福に抑制することが可能となるためである。結
晶粒度が0.015+lla+を超えると溶接割れが発
生し易くなり、又、耐応力腐食割れ性の劣化が認められ
るためである。The reason for reducing the crystal grain size to 0.015 mm or less by final annealing is that reducing the crystal grain size is effective in improving corrosion resistance, especially stress corrosion cracking resistance, and that welding caused by high-frequency induction welding or high-frequency resistance welding Cracking is caused by grain boundaries becoming brittle when in contact with molten base metal, but by reducing the grain size it is possible to suppress this phenomenon in Daifuku. . This is because if the grain size exceeds 0.015+lla+, weld cracking is likely to occur and deterioration of stress corrosion cracking resistance is observed.
そして、本発明において、最終焼鈍した後1〜15%の
加工度で冷間圧延を施す理由は、冷間圧延を施すことに
より、はんだ付け性を向上させるためであるが、加工度
が1%未満でははんだ付け性の向上が認められず、又、
15%を超えると機械的強度が高くなり、成形性格にラ
ジエーターチューブで加工時の成形性が劣化するためで
ある。In the present invention, the reason why cold rolling is performed at a working degree of 1 to 15% after final annealing is to improve solderability by performing cold rolling, but the working degree is 1%. If it is less than that, no improvement in solderability is observed, and
This is because if it exceeds 15%, the mechanical strength increases and the moldability during processing with a radiator tube deteriorates.
[実施例] 次に本発明の実施例を説明する。[Example] Next, embodiments of the present invention will be described.
第1表に示す諸組成の合金を高周波溶解炉にて大気ある
いは不活性雰囲気中で溶解、鋳造し、熱間圧延後、冷間
圧延と焼鈍をくり返し中間板厚の素材とした。これを5
00℃で30〜60分焼鈍を行った後、第1表に示す加
工度で冷間圧延し、厚さ 0.8slwの板とした。こ
れを更に 500℃で60〜900秒熱処理し、第1表
に示す結晶粒度に調整した。又、1部の試料については
更に冷間圧延を行った。Alloys having various compositions shown in Table 1 were melted and cast in a high-frequency melting furnace in air or an inert atmosphere, and after hot rolling, cold rolling and annealing were repeated to obtain intermediate thickness materials. This is 5
After annealing at 00° C. for 30 to 60 minutes, the sheets were cold rolled at the working degree shown in Table 1 to form a plate having a thickness of 0.8 slw. This was further heat treated at 500°C for 60 to 900 seconds to adjust the crystal grain size shown in Table 1. Further, some of the samples were further cold rolled.
このような試料の評価として素材の強度、エリクセン値
、応力腐食割れ試験結果、溶接割れ発生に対する耐性及
びはんだ付け性を第1表に示す。As an evaluation of such samples, Table 1 shows the strength of the material, Erichsen value, stress corrosion cracking test results, resistance to weld cracking, and solderability.
なお、応力腐食割れ試験としては、JISコニカルカッ
プ試験工具の17型円筒平底ポンチを用い、絞り比2.
0のカップを作り、これを水酸化ナトリウムと塩化アン
モニウムで作ったpHlOのアンモニア雰囲気中に曝露
して割れ開始までの時間を測定した。The stress corrosion cracking test was conducted using a JIS conical cup test tool type 17 cylindrical flat bottom punch with a drawing ratio of 2.
0 cup was made and exposed to an ammonia atmosphere of pHlO made from sodium hydroxide and ammonium chloride, and the time until cracking started was measured.
溶接割れが発生することに対する耐性についての試験は
第1表に示される合金を第1図に示されるようにバイブ
1状に加工し(内径a:20■、外径b : 2211
長さ: 10mm) 、これを同一組成の融点+50℃
に保持された溶融金属に3秒間浸漬し、その後取り出し
て保持炉中で付着している金属が溶融している状態で第
2図に示すように、バイプ1を加熱保持炉4内で支持台
3にて保持し、重さ200gwの自由落下体を落下距離
c : 50tmで落下させて衝撃を加えた。その時変
形したバイブ断面を顕微鏡によって観察し、粒界破壊の
有無を確認し、これをもって溶融割れに対する耐性を評
価した。A test for resistance to weld cracking was carried out by processing the alloys shown in Table 1 into a vibrator 1 shape as shown in Fig. 1 (inner diameter a: 20 mm, outer diameter b: 2211 mm).
Length: 10mm), melting point of the same composition +50℃
The pipe 1 is immersed for 3 seconds in the molten metal held in the heating and holding furnace 4, and then taken out and placed in the holding furnace with the attached metal melted, as shown in FIG. 3, and a free-falling object weighing 200 gw was dropped at a falling distance c: 50 tm to apply an impact. The cross section of the vibrator deformed at that time was observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate the resistance to melt cracking.
又、はんだ付け性は直径80IImm高さBOIfll
の円筒形のるつぼにSn20%一Pb80%からなるは
んだを230℃に加熱して溶湯を作り、その中に降下速
度25a+m/secでサンプル(表面を清浄にした幅
lOII1%長さ50avの形状)を浸漬したときはん
だ浴からサンプルが受ける浮力とはんだ浴に引き込まれ
る力が平衡に達するまでの時間を測定し、評価した。Also, the solderability is 80IImm in diameter and BOIFll in height.
In a cylindrical crucible, a solder consisting of 20% Sn and 80% Pb was heated to 230°C to form a molten metal, and a sample (width lOII 1% length 50av with a clean surface) was poured into the melt at a descending speed of 25a+m/sec. The time required for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium was measured and evaluated.
第1表から明らかなよう゜に、本発明の合金はすべての
特性において満足すべき結果を得たが、比較合金No.
17〜24はそれぞれ本発明合金No.1,2,4,8
.7.8,11.12と合金組成、結晶粒度は同じだが
、最終焼鈍前加工度が低いため、本発明合金に比べ引張
強さが高く、エリクセン値が低くなっている。又、比較
合金No.25〜29はそれぞれ本発明合金No.l.
2,5.10.15と合金組或、最終焼鈍前加工度は同
じだが、結晶粒度が大きいため、本発明合金に比べ耐応
力腐食割れ性が悪く、又、溶接割れ性の試験において粒
界破壊をおこしており、,耐溶接割れ性が悪い。又、比
較合金No.30、31はZn含有量が少ないため、成
形性、はんだ付け性が悪い。更に、本発明合金No!.
9.12と比較合金24は本発明合金No.2.8.
11と比較合金No.23にスキンバスの冷間圧延を行
うことによりはんだ付け性が改善されている。As is clear from Table 1, the alloy of the present invention obtained satisfactory results in all properties, but the comparative alloy No.
Nos. 17 to 24 are alloy Nos. 17 to 24 of the present invention, respectively. 1, 2, 4, 8
.. Although the alloy composition and grain size are the same as 7.8 and 11.12, the degree of work before final annealing is lower, so the tensile strength is higher and the Erichsen value is lower than the invention alloy. Also, comparative alloy No. 25 to 29 are alloy Nos. 25 to 29 of the present invention, respectively. l.
Although the alloy composition and degree of work before final annealing are the same as those of 2, 5, and 10.15, the grain size is larger, so the stress corrosion cracking resistance is poorer than that of the present alloy, and the grain boundary was observed in the weld cracking test. The weld cracking resistance is poor. Also, comparative alloy No. Samples Nos. 30 and 31 have poor moldability and solderability due to their low Zn content. Furthermore, the invention alloy No. ..
9.12 and comparative alloy 24 are invention alloy No. 2.8.
11 and comparative alloy No. 23, the solderability is improved by cold rolling the skin bath.
[発明の効果]
以上詳述したように、本発明は低強度で優れた或形性を
有し、かつ耐応力腐食割れ性、耐溶接割れ性及びはんだ
付け性を有し、熱交換器特にラジエーターのタンク、プ
レート、チューブ用銅合金として最適な材料を提供する
ことができる。[Effects of the Invention] As detailed above, the present invention has low strength and excellent formability, and also has stress corrosion cracking resistance, weld cracking resistance, and solderability, and is suitable for use in heat exchangers, especially heat exchangers. We can provide the best material for copper alloys for radiator tanks, plates, and tubes.
第1図は耐溶接割れ性の試験に用いる厚さ0.8imの
合金パイプの断面図、第2図は耐溶接割れ性の試験装置
カ概略説明図である。
l・・・合金パイプ、2・・・自由落下体、3・・・支
持台、4・・・加熱保持炉。FIG. 1 is a sectional view of an alloy pipe with a thickness of 0.8 mm used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1... Alloy pipe, 2... Free falling body, 3... Support stand, 4... Heating and holding furnace.
Claims (4)
不純物からなる合金材料を75%以上の加工度で冷間圧
延後、最終焼鈍により結晶粒度を0.015mm以下に
することを特徴とする結晶粒が微細でかつ低強度な黄銅
の製造方法。(1) An alloy material consisting of Zn: 25 to 45% by weight, balance Cu and unavoidable impurities is cold rolled at a working degree of 75% or more, and then final annealed to reduce the grain size to 0.015mm or less. A method for producing brass with fine crystal grains and low strength.
Al、Mn、Ni、P、As、Te、Cr、Co、Zr
、V、Be、Cd、Si、B、 In、Ti、Mg、Hf、Geよりなる群より1種又は
2種以上を0.005〜2.0重量%含み、残部Cu及
び不可避的不純物からなる合金材料を75%以上の加工
度で冷間圧延後、最終焼鈍により結晶粒度を0.015
mm以下にすることを特徴とする結晶粒が微細でかつ低
強度な黄銅系銅合金の製造方法。(2) Zn: 25 to 45% by weight and Pb, Fe, Sn,
Al, Mn, Ni, P, As, Te, Cr, Co, Zr
, V, Be, Cd, Si, B, In, Ti, Mg, Hf, Ge, 0.005 to 2.0% by weight of one or more from the group consisting of Ge, and the balance consists of Cu and inevitable impurities. After cold rolling the alloy material with a working degree of 75% or more, the grain size is reduced to 0.015 by final annealing.
A method for producing a brass-based copper alloy having fine crystal grains and having low strength, characterized in that the grain size is less than mm.
不純物からなる合金材料を75%以上の加工度で冷間圧
延後、最終焼鈍で結晶粒度が0.015mm以下となる
ように調整した後、更に1〜15%の冷間圧延を施すこ
とを特徴とする結晶粒が微細でかつ低強度な黄銅の製造
方法。(3) After cold rolling an alloy material consisting of Zn: 25 to 45% by weight, balance Cu and unavoidable impurities at a working degree of 75% or more, the grain size was adjusted to 0.015 mm or less by final annealing. A method for producing brass having fine crystal grains and low strength, characterized in that the method further comprises cold rolling by 1 to 15%.
Al、Mn、Ni、P、As、Te、Cr、Co、Zr
、V、Be、Cd、Si、B、 In、Ti、Mg、Hf、Geよりなる群より1種又は
2種以上を0.005〜2.0重量%含み、残部Cu及
び不可避的不純物からなる合金材料を75%以上の加工
度で冷間圧延後、最終焼鈍で結晶粒度が0.015mm
以下となるように調整した後、更に1〜15%の冷間圧
延をすることを特徴とする結晶粒が微細でかつ低強度の
黄銅系銅合金の製造方法。(4) Zn: 25 to 45% by weight and Pb, Fe, Sn,
Al, Mn, Ni, P, As, Te, Cr, Co, Zr
, V, Be, Cd, Si, B, In, Ti, Mg, Hf, Ge, 0.005 to 2.0% by weight of one or more from the group consisting of Ge, and the balance consists of Cu and inevitable impurities. After cold rolling the alloy material with a working degree of 75% or more, the grain size is 0.015 mm in the final annealing.
A method for producing a brass-based copper alloy with fine crystal grains and low strength, which comprises adjusting the following properties and then cold-rolling the alloy by 1 to 15%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30654489A JPH03170646A (en) | 1989-11-28 | 1989-11-28 | Manufacture of copper alloy having fine crystalline grains as well as low strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30654489A JPH03170646A (en) | 1989-11-28 | 1989-11-28 | Manufacture of copper alloy having fine crystalline grains as well as low strength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03170646A true JPH03170646A (en) | 1991-07-24 |
Family
ID=17958317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30654489A Pending JPH03170646A (en) | 1989-11-28 | 1989-11-28 | Manufacture of copper alloy having fine crystalline grains as well as low strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03170646A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024628A1 (en) * | 1997-11-11 | 1999-05-20 | Toto Ltd. | Metallic material, brass, and process for producing the same |
US6280795B1 (en) * | 1998-05-22 | 2001-08-28 | Cominco, Ltd. | Galvanizing of reactive steels |
US6726877B1 (en) * | 1993-11-15 | 2004-04-27 | Anthony Phillip Eccles | Silver alloy compositions |
JP2007046101A (en) * | 2005-08-09 | 2007-02-22 | Mitsui Mining & Smelting Co Ltd | Hard α brass and method for producing the hard α brass |
JP2007204829A (en) * | 2006-02-03 | 2007-08-16 | Mitsui Mining & Smelting Co Ltd | Hard alpha-brass superior in formability, and manufacturing method therefor |
JP2012519781A (en) * | 2009-03-09 | 2012-08-30 | ナショナル ブロンズ アンド メタルズ インコーポレイテッド | Lead-free brass alloy |
WO2017071672A1 (en) * | 2015-10-27 | 2017-05-04 | 华南理工大学 | Lead-free easy cutting high strength corrosion resistant silicon brass alloy, and preparation method and application |
CN114438591A (en) * | 2020-11-05 | 2022-05-06 | 松山湖材料实验室 | Corrosion-resistant copper and electric vacuum devices |
CN115449655A (en) * | 2022-09-24 | 2022-12-09 | 宁波金田铜业(集团)股份有限公司 | Brass and preparation method thereof |
CN119194315A (en) * | 2024-11-26 | 2024-12-27 | 江西铜业集团铜板带有限公司 | A method for eliminating edge cracks of ultra-thin copper strip |
-
1989
- 1989-11-28 JP JP30654489A patent/JPH03170646A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726877B1 (en) * | 1993-11-15 | 2004-04-27 | Anthony Phillip Eccles | Silver alloy compositions |
WO1999024628A1 (en) * | 1997-11-11 | 1999-05-20 | Toto Ltd. | Metallic material, brass, and process for producing the same |
US6458222B1 (en) | 1997-11-11 | 2002-10-01 | Toto Ltd. | Metal material, brass and method for manufacturing the same |
US6280795B1 (en) * | 1998-05-22 | 2001-08-28 | Cominco, Ltd. | Galvanizing of reactive steels |
JP2007046101A (en) * | 2005-08-09 | 2007-02-22 | Mitsui Mining & Smelting Co Ltd | Hard α brass and method for producing the hard α brass |
JP2007204829A (en) * | 2006-02-03 | 2007-08-16 | Mitsui Mining & Smelting Co Ltd | Hard alpha-brass superior in formability, and manufacturing method therefor |
JP2012519781A (en) * | 2009-03-09 | 2012-08-30 | ナショナル ブロンズ アンド メタルズ インコーポレイテッド | Lead-free brass alloy |
WO2017071672A1 (en) * | 2015-10-27 | 2017-05-04 | 华南理工大学 | Lead-free easy cutting high strength corrosion resistant silicon brass alloy, and preparation method and application |
US10697045B2 (en) | 2015-10-27 | 2020-06-30 | South China University Of Technology | Lead-free easy-cutting high-strength corrosion-resistant silicon-brass alloy and the preparation method and use thereof |
CN114438591A (en) * | 2020-11-05 | 2022-05-06 | 松山湖材料实验室 | Corrosion-resistant copper and electric vacuum devices |
CN115449655A (en) * | 2022-09-24 | 2022-12-09 | 宁波金田铜业(集团)股份有限公司 | Brass and preparation method thereof |
CN119194315A (en) * | 2024-11-26 | 2024-12-27 | 江西铜业集团铜板带有限公司 | A method for eliminating edge cracks of ultra-thin copper strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101455874B1 (en) | METHOD FOR MANUFACTURING ALUMINUM ALLOY PIN MATERIAL FOR HEAT EXCHANGER AND METHOD FOR MANUFACTURING HEAT EXCHANGER WHICH FINE FINGER | |
TW486523B (en) | Aluminum alloy fin stock and its preparation | |
NO336134B1 (en) | Process for producing AlMn tapes or thin sheets. | |
CN110079706B (en) | A kind of brazing composite aluminum plate and strip for heat exchanger and its manufacturing method | |
CN109720036B (en) | High-corrosion-resistance aluminum alloy brazing sheet and heat treatment process thereof | |
JPH03170646A (en) | Manufacture of copper alloy having fine crystalline grains as well as low strength | |
JPH03193849A (en) | Copper alloy having fine crystalline grain and low strength and its production | |
JPH04272148A (en) | Heat resistant copper alloy for heat exchanger excellent brazability | |
JPH03287738A (en) | Fin material for heat exchanger assembled by vacuum brazing method and its manufacture | |
JP3713976B2 (en) | Aluminum alloy brazing material and aluminum alloy brazing sheet | |
JPS6230861A (en) | Manufacture of copper alloy having superior corrosion resistance | |
JPH0210212B2 (en) | ||
US7416620B2 (en) | Copper alloy and method for its manufacture | |
JPS59153856A (en) | Copper alloy with superior corrosion resistance | |
JPH0688177A (en) | Production of copper alloy pipe | |
JPS59153854A (en) | Copper alloy with superior corrosion resistance | |
JPS6230862A (en) | Manufacture of copper alloy having superior corrosion resistance | |
JPS6082630A (en) | Copper alloy having superior corrosion resistance | |
EP0111770B1 (en) | Copper alloy for welded tubes | |
JPS6082632A (en) | Copper alloy having superior corrosion resistance | |
JPS59118839A (en) | Copper alloy having excellent corrosion resistance | |
JPS59118842A (en) | Copper alloy with superior corrosion resistance | |
JPH0313549A (en) | Production of high strength aluminum alloy fin material for heat exchanger | |
RU2080973C1 (en) | Nickel-base alloy for manufacture of welding wire | |
JPS6082635A (en) | Copper alloy having superior corrosion resistance |