JPH03287738A - Fin material for heat exchanger assembled by vacuum brazing method and its manufacture - Google Patents
Fin material for heat exchanger assembled by vacuum brazing method and its manufactureInfo
- Publication number
- JPH03287738A JPH03287738A JP8869790A JP8869790A JPH03287738A JP H03287738 A JPH03287738 A JP H03287738A JP 8869790 A JP8869790 A JP 8869790A JP 8869790 A JP8869790 A JP 8869790A JP H03287738 A JPH03287738 A JP H03287738A
- Authority
- JP
- Japan
- Prior art keywords
- fin material
- brazing
- heat exchanger
- vacuum brazing
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 69
- 238000005219 brazing Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000002791 soaking Methods 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 11
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000005097 cold rolling Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 238000007670 refining Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 239000011701 zinc Substances 0.000 description 10
- 238000007747 plating Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229910018131 Al-Mn Inorganic materials 0.000 description 2
- 229910018461 Al—Mn Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910018473 Al—Mn—Si Inorganic materials 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は真空ろう付け法により組立られる熱交換器用フ
ィン材に係り、より詳細には、特にろう付け後の強度、
ろう付け時の耐座屈性に優れ、フィン材の薄肉化を可能
にする熱交換器用フィン材及びその製造方法、並びに真
空ろう付け法により組立てられた熱交換器フィン材に関
するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a fin material for a heat exchanger assembled by vacuum brazing, and more particularly, to
The present invention relates to a fin material for a heat exchanger that has excellent buckling resistance during brazing and allows thinning of the fin material, a method for manufacturing the same, and a fin material for a heat exchanger assembled by a vacuum brazing method.
(従来の技術)
一般に、ろう付け熱交換器は、プレージングシートより
なるプレート材とチューブとコルゲートフィン材より構
成され、各種のろう付け法により組立てられている。(Prior Art) Generally, a brazed heat exchanger is composed of a plate material made of a plating sheet, a tube, and a corrugated fin material, and is assembled by various brazing methods.
エバポレータ等の熱交換器においては、フィン材を薄肉
化してコストダウンや軽量化を図ることが検討されてい
るが、ろう付け時の耐座屈性やろう付け後の強度不足等
の問題点も多い。また、ろう付け法により組立てられる
熱交換器のフィン材を犠牲陽極として使用し、チューブ
やプレート材の貫通腐食を抑制することも検討され、一
部実用化されているが、フィン材の板厚が100μ墓以
下になってくると1強度向上を目的として添加されるM
gの蒸発量が増大し、充分な強度が得られない。同様に
フィン材を犠牲陽極として作用させるために添加される
Znについても蒸発量が増大し、充分な犠牲陽極効果が
得られない。In heat exchangers such as evaporators, attempts are being made to reduce costs and weight by making the fin materials thinner, but there are also problems such as buckling resistance during brazing and insufficient strength after brazing. many. In addition, using the fin material of heat exchangers assembled by brazing as a sacrificial anode to suppress penetrating corrosion of tubes and plate materials has been considered, and some have been put into practical use, but the thickness of the fin material M is added for the purpose of improving strength when it becomes less than 100 μm.
The amount of evaporation of g is increased and sufficient strength cannot be obtained. Similarly, the amount of evaporation of Zn added to make the fin material act as a sacrificial anode increases, making it impossible to obtain a sufficient sacrificial anode effect.
(発明が解決しようとする課題)
犠牲陽極フィン材として用いられているアルミニウム合
金としては、Al−1,2%Mn−0,1%Sn(又は
In)系の合金が知られている(例、特開昭59−22
6144号など)。しかし、この合金は熱間圧延時に割
れを生じ易く、またスクラップの管理、処理に問題があ
るため、素材コストが上昇する。(Problems to be Solved by the Invention) Al-1,2%Mn-0,1%Sn (or In) alloys are known as aluminum alloys used as sacrificial anode fin materials (for example, , Japanese Patent Publication No. 59-22
6144 etc.). However, this alloy is prone to cracking during hot rolling, and there are problems with scrap management and processing, which increases material costs.
また、Al−1,2%Mn−1,5%Zn系合金も検討
されてきた(例、特開昭56−142845号など)。Furthermore, Al-1,2% Mn-1,5% Zn alloys have also been studied (for example, JP-A-56-142845).
しかし、犠牲陽極効果の不安定と蒸発Znによる真空ろ
う付け炉の汚染等の問題により実用化するには至ってい
ない。However, it has not been put into practical use due to problems such as instability of the sacrificial anode effect and contamination of the vacuum brazing furnace by evaporated Zn.
更に、フィン材の薄肉化に対応していくには、現行製品
についての耐座屈性の改善と、ろう付け後の高強度化が
望まれており、これらの解決がフィン材の薄肉化を推進
する上で不可欠となる。Furthermore, in order to respond to the thinning of fin materials, it is desired to improve the buckling resistance of current products and increase the strength after brazing. This will be essential for promoting the project.
本発明は、かきる要請に応えるべくなされたものであっ
て、真空ろう付け法により組立てられる熱交換器用フィ
ン材において、耐座屈性とろう付け後の強度を向上でき
、フィン材の薄肉化を可能にする技術を提供することを
目的とするものである。The present invention has been made in response to these demands, and is capable of improving buckling resistance and strength after brazing in a fin material for a heat exchanger assembled by vacuum brazing, and making it possible to reduce the thickness of the fin material. The purpose is to provide technology that makes it possible.
(課題を解決するための手段)
本発明者は、これらの問題点に鑑みて、真空ろう付け法
により組立てられる熱交換器のフィン材の組成や製造工
程について鋭意研究を重ねた結果。(Means for Solving the Problems) In view of these problems, the present inventor has conducted extensive research into the composition and manufacturing process of fin materials for heat exchangers assembled by vacuum brazing.
プレージンクシートよりなるチューブ材に対して犠牲陽
極的に作用すると共に、耐座屈性とろう付け後の強度も
向上でき、フィン材の薄肉化に対応可能であることを知
見し、ここに本発明をなしたものである。We discovered that it acts as a sacrificial anode on the tube material made of pre-zinc sheet, and also improves the buckling resistance and strength after brazing, making it possible to make the fin material thinner. It is an invention.
すなわち、本発明は、Mn:0.7〜1.1%、Si:
0.6〜1.0%、Mg:0.3〜1.5%、zr:0
.01〜0.2%及びTi:0.05〜0.2%を含み
、必要に応じて更にZn: 0 、5〜3%を含み、残
部が実質的にAlよりなることを特徴とする真空ろう付
け法により組立てられる熱交換器用フィン材を要旨とす
るものである。That is, in the present invention, Mn: 0.7 to 1.1%, Si:
0.6-1.0%, Mg: 0.3-1.5%, zr: 0
.. 01 to 0.2% and Ti: 0.05 to 0.2%, and if necessary further contains Zn: 0 and 5 to 3%, with the remainder substantially consisting of Al. The gist of this article is a fin material for heat exchangers that can be assembled by brazing.
また、その製造方法は、上記化学成分を有するアルミニ
ウム合金鋳塊を均熱温度が450〜520℃の範囲で均
熱処理し、熱間圧延終了後、中間焼鈍を行うことなく冷
間圧廷を行い、最終で調質焼鈍を施すことを特徴とする
ものである。In addition, the manufacturing method involves soaking an aluminum alloy ingot having the above chemical components at a soaking temperature of 450 to 520°C, and after hot rolling, cold rolling without intermediate annealing. , and is characterized by subjecting it to final temper annealing.
更に、真空ろう付け法により組立てられた熱交換器のフ
ィン材は、上記化学成分を有すると共に、真空ろう付け
後のMg残留量が0.05〜0.4%の範囲にあること
を特徴とするものであり、或いは真空ろう付け後の平均
結晶粒径が100〜400μmの範囲にあることを特徴
とするものである。Furthermore, the fin material of the heat exchanger assembled by the vacuum brazing method is characterized in that it has the above chemical components and the residual amount of Mg after vacuum brazing is in the range of 0.05 to 0.4%. Alternatively, the average crystal grain size after vacuum brazing is in the range of 100 to 400 μm.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
(作用) まず、本発明をなすに至った知見について説明する。(effect) First, the knowledge that led to the present invention will be explained.
真空ろう付け法により組立られる熱交換器のチューブや
タンクを構成するプレージングシートには、一般に、芯
材にはAl2−Mn系合金の3003を用い、ろう材に
はAl−3i −Mg系合金の4004や4104が使
用されている。For plating sheets that make up the tubes and tanks of heat exchangers assembled by vacuum brazing, the core material is generally made of Al2-Mn alloy 3003, and the brazing material is Al-3i-Mg alloy. 4004 and 4104 are used.
これらのプレージングシートに対し、犠牲陽極的に作用
させるためには、フィン材の孔食電位をプレージングシ
ート表面の孔食電位より30mV以上卑にする必要があ
ることが種々の実験輪より判明した。合金元素としてS
nやInを使用せずにプレージングシートより30mV
卑な孔食電位を有するアルミニウム合金として1例えば
純アルミニウムが知られているが、フィン材としての強
度が不十分なため実用的ではない。フィン材として一般
的に用いられているAl−Mn系合金の3003は、中
程度の強度を有し、ろう付け性等は良好であるが、プレ
ージングシートとの孔食電位の差は殆どないため、犠牲
陽極効果は得られない。Various experiments have revealed that in order to act as a sacrificial anode on these plating sheets, it is necessary to make the pitting potential of the fin material 30 mV or more more base than the pitting potential of the plating sheet surface. did. S as an alloying element
30mV from plating sheet without using n or indium
For example, pure aluminum is known as an aluminum alloy having a base pitting potential, but it is not practical as it has insufficient strength as a fin material. 3003, an Al-Mn alloy commonly used as a fin material, has medium strength and good brazing properties, but there is almost no difference in pitting potential from the plating sheet. Therefore, the sacrificial anode effect cannot be obtained.
そこで、Al−Mn系合金の孔食電位を卑に移行させる
方法を検討した結果、Mn固溶量を抑制させることが最
も効果的であることが判明した。Therefore, as a result of investigating a method for shifting the pitting corrosion potential of the Al-Mn alloy to a less noble state, it was found that the most effective method is to suppress the amount of solid solution of Mn.
すなわち、具体的には、Mn添加量の規制、Fe添加に
よるMnのAM−Mn−Fe系化合物としての固定、均
熱処現の最適化によるAM−Mn系化合物の析出等であ
る。Specifically, these include regulating the amount of Mn added, fixing Mn as an AM-Mn-Fe-based compound by adding Fe, and precipitating the AM-Mn-based compound by optimizing the soaking process.
一方、フィン材の板厚が100μ−以上であれば、この
ような対策は有効であるが、フィン材の薄肉化に対応し
ていくためには、ろう付け後の強度を向上させる必要が
ある。On the other hand, if the thickness of the fin material is 100μ or more, such measures are effective, but in order to cope with the thinning of the fin material, it is necessary to improve the strength after brazing. .
Mn量規制による強度低下に対しては、Mgの添加が有
効であり、またサグ性、耐座屈性の向上には再結晶を抑
制させる効果が大きく、電位を責に移行させないZrの
添加及びろう付け前の冷間加工率のコントロールが有効
であることが明らかになった。しかしながら、前述の如
く、フィン材の薄肉化が進むとろう付け時のMgの蒸発
飛散が大きくなり、Mgの添加のみでは充分なろう付け
後強度が得られないことが判明した。The addition of Mg is effective against the decrease in strength due to the regulation of Mn content, and the addition of Mg is effective in suppressing recrystallization in improving sag resistance and buckling resistance. It has become clear that controlling the cold working rate before brazing is effective. However, as described above, as the fin material becomes thinner, the evaporation and scattering of Mg during brazing increases, and it has been found that sufficient post-brazing strength cannot be obtained by adding Mg alone.
そこで、ろう付け後の強度を向上させるため、種々の組
成の合金について検討した結果、Al−Mn−Si系合
金がフィン材としての特性の低下が少なく、Mgが共存
すれば更に強度が向上することが判明した。また、同一
組成の合金で製造条件の影響について検討した結果、M
nの粗大析出物が生成しない低温均熱はど、高強度が得
られ、中間焼鈍を行うHlタイプよりH2タイプの方が
高強度が得られた。Therefore, in order to improve the strength after brazing, we investigated alloys with various compositions and found that Al-Mn-Si alloys show less deterioration in properties as fin materials, and that the coexistence of Mg further improves the strength. It has been found. In addition, as a result of examining the influence of manufacturing conditions on alloys with the same composition, we found that M
High strength was obtained by low-temperature soaking in which n coarse precipitates were not formed, and higher strength was obtained in the H2 type than in the H1 type in which intermediate annealing was performed.
また、同一組成の合金であれば、ろう付け後の結晶粒径
が小さい程、高強度が得られることも判明した。It has also been found that for alloys with the same composition, the smaller the crystal grain size after brazing, the higher the strength can be obtained.
以上の知見より明らかなとおり、本発明は、ろう付け後
の強度向上を目的として種々検討し、その結果を基にフ
ィン材に要求される特性の改善を進めた結果、完成され
たものである。As is clear from the above findings, the present invention was completed as a result of various studies aimed at improving the strength after brazing, and based on the results, progress was made to improve the characteristics required of the fin material. .
すなわち、ろう付け後の強度を向上させる方法について
は、前述の通りであるが、フィン材にはろう付け時の耐
座屈性やろう付け性、チューブ等に対し少なくとも電気
化学的に卑であること等が要求される。In other words, the method for improving the strength after brazing is as described above, but the fin material has buckling resistance and brazing properties during brazing, and is at least electrochemically abrasive to tubes, etc. etc. are required.
ろう付け時の耐座屈性を向上させるためには。To improve buckling resistance during brazing.
板表面よりみた結晶粒径がろう付け後で少なくとも10
0μm以上あることが必要であり、これに対してはZr
の添加や、製造条件のコントロールで対応できる。ろう
付け性の改善についても同様である。反面、結晶粒径が
粗大化すると強度が低下する。ろう付け時の耐座屈性を
維持しながらろう付け後の強度を確保できるろう付け後
における結晶粒径は、100〜400μIの範囲に限定
される。The grain size seen from the plate surface is at least 10 after brazing.
It is necessary that the thickness is 0 μm or more, and for this purpose, Zr
This can be done by adding or controlling manufacturing conditions. The same applies to improvement of brazing properties. On the other hand, as the crystal grain size becomes coarser, the strength decreases. The crystal grain size after brazing that can ensure strength after brazing while maintaining buckling resistance during brazing is limited to a range of 100 to 400 μI.
チューブ材に対する犠牲陽極作用を得るためには、Mn
の固溶量を極力抑制するのが好ましいが、キャリアガス
を使用するろう付け方法では、Znを添加することによ
り炉の汚染は生じるものの、残存したZnにより犠牲陽
極効果が得られる。In order to obtain a sacrificial anode effect on the tube material, Mn
Although it is preferable to suppress the solid solution amount as much as possible, in the brazing method using a carrier gas, although the addition of Zn causes contamination of the furnace, the remaining Zn provides a sacrificial anode effect.
次に本発明における化学成分の限定理由−について述べ
る。Next, the reasons for limiting the chemical components in the present invention will be described.
Mn:
Mnはろう付け時及びろう付け後の強度、ろう付け性の
確保に必要な元素であるが、反面、固溶量が増大すると
アルミニウム合金の孔食電位が責に移行するため、固溶
量は極力抑制する必要がある。ろう付け性やろう付け後
の強度維持に必要な最低添加量として0.7%を下限値
とする。一方、Fe、Siの添加や製造条件のコントロ
ールにより。Mn: Mn is an element necessary to ensure strength and brazability during and after brazing, but on the other hand, as the amount of solid solution increases, the pitting potential of the aluminum alloy becomes more It is necessary to suppress the amount as much as possible. The lower limit value is set at 0.7% as the minimum addition amount necessary to maintain brazeability and strength after brazing. On the other hand, by adding Fe and Si and controlling manufacturing conditions.
固溶量を抑制し、プレージングシートに対して卑な孔食
電位が得られる上限添加量は1.1%である。The upper limit of the addition amount that suppresses the amount of solid solution and provides a base pitting potential for the plating sheet is 1.1%.
Si:
Siはろう付け後の強度を向上させる合金元素として添
加される。しかし、添加量が0.6%未満では充分な強
度が得られず、また1、0%を超えて添加すると強度は
向上するものの融点が低下し、耐座屈性を低下させるの
で好ましくない、したがって、ろう付け性を阻害するこ
となく強度が向上できるSiの添加量0.6〜1.0%
の範囲に限定される。Si: Si is added as an alloying element to improve strength after brazing. However, if the amount added is less than 0.6%, sufficient strength will not be obtained, and if it is added more than 1.0%, the strength will improve, but the melting point will decrease and the buckling resistance will decrease, which is not preferable. Therefore, the amount of Si added is 0.6 to 1.0%, which can improve the strength without inhibiting brazing properties.
limited to the range of
Mg:
Mgはろう付け後の強度を得るために必要であり、フィ
ン材の要求されるろう付け後の強度が、例えば16 k
g / am”とした場合には、残存M、量が0.15
%程度必要になる。ろう付け時の蒸発飛散を勘案すると
、素材への添加量は0.3〜1.5%が必要になる。な
お、Mgが0.3%未満では充分な強度が得られず、ま
た1、5%を超えて含有されるとろう付け性の低下やろ
う材によるフィン材の浸食を招くので好ましくない。Mg: Mg is necessary to obtain strength after brazing, and the required strength after brazing of the fin material is, for example, 16K.
g/am”, residual M, amount is 0.15
% is required. Considering evaporation and scattering during brazing, the amount added to the material needs to be 0.3 to 1.5%. It should be noted that if Mg is contained less than 0.3%, sufficient strength cannot be obtained, and if it is contained more than 1.5%, it is not preferable because it causes a decrease in brazing properties and erosion of the fin material by the brazing material.
zr:
Zrはフィン材の組織をコントロールし、ろう付け時の
耐座屈性を向上させるのに有効である。Zr: Zr is effective in controlling the structure of the fin material and improving buckling resistance during brazing.
しかし、0.01%未満ではその効果が不十分であり、
また0、2%を超えると、その効果は飽和し、逆に粗大
金属間化合物が形成され、加工性の低下を招くので好ま
しくない。したがって、Zr量は0.01〜0.2%の
範囲とする。However, if it is less than 0.01%, the effect is insufficient;
Moreover, if it exceeds 0.2%, the effect will be saturated, and on the contrary, coarse intermetallic compounds will be formed, resulting in a decrease in workability, which is not preferable. Therefore, the Zr content is in the range of 0.01 to 0.2%.
Ti:
TiはAlとTiAl、系の化合物を作って晶出し、そ
の後の熱間圧延や冷間圧廷時に層状に分散し、ろう付け
時の再結晶粒を圧延方向に沿った偏平にさせる効果があ
る。その結果、強度の低下を抑制し、耐座屈性が向上で
きる。しかし、添加量が0.05%未満ではそのような
効果が不充分であり、また0、2%を超えると粗大金属
間化合物を生じ、加工性の低下を招くので好ましくない
。Ti: Ti forms a compound of Al and TiAl, crystallizes, and then disperses in layers during hot rolling and cold rolling, and has the effect of flattening recrystallized grains along the rolling direction during brazing. There is. As a result, reduction in strength can be suppressed and buckling resistance can be improved. However, if the amount added is less than 0.05%, such effects will be insufficient, and if it exceeds 0.2%, coarse intermetallic compounds will be formed, resulting in a decrease in workability, which is not preferable.
したがって、Ti量は0.05〜0.2%の範囲とする
。Therefore, the amount of Ti is set in the range of 0.05 to 0.2%.
Zn:
Znはフィン材の電位を卑に移行させてフィン材をチュ
ーブ材に対し犠牲陽極的に作用させる効果を有するが、
真空ろう付けにより蒸発飛散する。Zn: Zn has the effect of shifting the potential of the fin material to a less noble state and causing the fin material to act as a sacrificial anode on the tube material.
Evaporates and scatters due to vacuum brazing.
しかしながら、フィン材の組成や結晶粒径のコントロー
ルにより、一部残留させることが可能である。残留量は
ろう付け時の真空度により異なる。However, by controlling the composition and crystal grain size of the fin material, it is possible to allow some of it to remain. The amount remaining varies depending on the degree of vacuum during brazing.
ろう付けにより蒸発する量を勘案すると、Znの添加量
は0.5〜3%の範囲である。0.5%未満では犠牲陽
極効果が不十分であり、また3%を超えると炉の汚染が
促進されるので好ましくない。Considering the amount evaporated during brazing, the amount of Zn added is in the range of 0.5 to 3%. If it is less than 0.5%, the sacrificial anode effect will be insufficient, and if it exceeds 3%, contamination of the furnace will be accelerated, which is not preferable.
なお、Znの添加は必要に応じて行えばよい。Note that Zn may be added as necessary.
(製造条件) 次にフィン材の製造条件について説明する。(Manufacturing conditions) Next, the manufacturing conditions of the fin material will be explained.
まず、熱間圧延前の均熱温度を規制したのは、以下の理
由による。First, the reason why the soaking temperature before hot rolling was regulated is as follows.
すなわち、耐座屈性やろう付け後の強度はフィン材の組
織に大きく依存し、ろう付け温度直下の温度において再
結晶が完了しており且つ結晶粒サイズが100μ璽以上
あれば耐座屈性に優れることが判明した。また、ろう付
け後の平均結晶粒が400μ■を超えると組織をコント
ロールしても強度が大きく低下する。したがって、ろう
付け後におけるフィン材の平均結晶粒は板表面より観察
し、100〜400μ墓の範囲になるように素材の製造
条件を確立する必要がある。このような組織を得るため
の製造工程として、熱間圧延前の均熱温度を450〜5
20℃の範囲に規制するものである。In other words, buckling resistance and strength after brazing greatly depend on the structure of the fin material, and if recrystallization is completed at a temperature just below the brazing temperature and the crystal grain size is 100 μm or more, buckling resistance is achieved. It turned out to be excellent. Furthermore, if the average crystal grain after brazing exceeds 400 μι, the strength will decrease significantly even if the structure is controlled. Therefore, it is necessary to observe the average crystal grains of the fin material after brazing from the plate surface and establish the manufacturing conditions of the material so that the grain size is in the range of 100 to 400 μm. As a manufacturing process to obtain such a structure, the soaking temperature before hot rolling is set at 450 to 5
It is regulated within the range of 20°C.
均熱処理後に熱間圧延を行い、冷間圧廷を行うが、冷間
圧廷に伴い中間焼鈍を行わず、冷間圧廷後に最終で調質
焼鈍を行うのは、ろう付け後の強度を向上させるためで
ある。After soaking treatment, hot rolling is performed and cold rolling is performed, but intermediate annealing is not performed along with cold rolling, and temper annealing is performed at the end after cold rolling to improve the strength after brazing. This is to improve the performance.
以下に本発明の実施例を示す。Examples of the present invention are shown below.
(実施例)
まず、第1表に水化学成分を有するアルミニウム合金に
ついて同表に示す条件の工程により、01o8鵬■板厚
のアルミニウム合金フィン材(供試材)を製造し、以下
の実験に供した。なお、製造工程は、H24材は均熱処
理→熱間圧延→冷間圧廷→最終焼鈍であり、HI3材は
均熱処理→熱間圧延→冷間圧廷(中間焼鈍を含む)であ
る。(Example) First, an aluminum alloy fin material (sample material) with a thickness of 01 o 8 Peng was manufactured by the process under the conditions shown in Table 1 for an aluminum alloy having a water chemical component, and was used in the following experiment. provided. The manufacturing process for the H24 material is soaking treatment → hot rolling → cold rolling → final annealing, and for the HI3 material, it is soaking treatment → hot rolling → cold rolling (including intermediate annealing).
去】11L
得られた供試材を第2表に示す2種類の真空度A(2X
10’Torr)、B (I X 10’Torr、
キャリアガス使用)の真空中で595℃X3m1n加熱
した後、機械的性質の測定を行った。その結果を第2表
に示す。]11L The obtained test material was heated to two types of vacuum degree A (2X) shown in Table 2.
10'Torr), B (I x 10'Torr,
After heating at 595° C. for 3 ml in a vacuum (using a carrier gas), mechanical properties were measured. The results are shown in Table 2.
第2表より明らかなように、同本発明材は何れも、従来
よりフィン材として多用されている3003合金(Na
23)と比較すると、かなり高強度が得られている。ま
た、同一条件で加熱したフィン材の板表面側より観察し
た結晶粒径の平均値、及び湿式化学分析で測定したフィ
ン材中のMgの平均含有量も併記したが、本発明材は、
結晶粒径が100〜400μ鳳の範囲にあり、Mg残存
量が0105〜0.4%の範囲にあることが確認された
。As is clear from Table 2, the materials of the present invention are all 3003 alloy (Na
Compared with 23), considerably high strength is obtained. In addition, the average value of the crystal grain size observed from the plate surface side of the fin material heated under the same conditions and the average content of Mg in the fin material measured by wet chemical analysis are also listed.
It was confirmed that the crystal grain size was in the range of 100 to 400 μm and the residual amount of Mg was in the range of 0.105 to 0.4%.
失嵐五又
供試材を第1図に示す形状の試験片(10山、ピッチ5
Il園のフィンで、フィン高さ121鳳、フィン輻25
■鳳)にセットし、5X10Torrの真空中で595
℃X3m1n加熱し、座屈量を測定して耐座屈性につい
て評価を行った。その結果を第2表に併記する。A test piece of the shape shown in Figure 1 (10 peaks, pitch 5
Il Garden's fin, fin height 121, fin width 25
■ Set it in a vacuum of 5X10 Torr and
℃×3mln, and the amount of buckling was measured to evaluate the buckling resistance. The results are also listed in Table 2.
第2表より、本発明材は何れも、従来よりフィン材とし
て多用されている3003合金と同等乃至同等以上の耐
座屈性が得られていることがわかる。From Table 2, it can be seen that all of the materials of the present invention have a buckling resistance equivalent to or higher than that of the 3003 alloy, which has been conventionally frequently used as a fin material.
去n灸
供試材を5X10Torrの真空中で595℃X3 w
in加熱した後、電気化学的特性の測定を行った。その
結果を第2表に併記する。The moxibustion sample material was heated at 595°C x 3 w in a vacuum of 5 x 10 Torr.
After in-heating, electrochemical properties were measured. The results are also listed in Table 2.
第2表より、本発明材は何れも、従来よりフィン材とし
て多用されている3003合金に比べ、卑な孔食電位を
示している。したがって、チューブプレージングシート
に対して電気化学的に卑であるため、少なくとも腐食を
促進させることはない。From Table 2, all of the materials of the present invention exhibit lower pitting corrosion potentials than the 3003 alloy, which has conventionally been widely used as a fin material. Therefore, since it is electrochemically less noble with respect to the tube plating sheet, at least it does not promote corrosion.
【以下余白1
(発明の効果)
以上詳述したように、本発明によれば、優れた耐座屈性
とろう付け後強度が得られ、また、チューブプレージン
グシートに対して卑な電位を有しているため、犠牲陽極
作用によるチューブ材の防食効果も期待できる。したが
って、熱交換器のコストダウン、軽量化等、工業上顕著
な効果が得られるものである。[Blank 1 (Effects of the Invention) As detailed above, according to the present invention, excellent buckling resistance and strength after brazing can be obtained, and a base potential can be reduced with respect to the tube plating sheet. Therefore, the anticorrosion effect of the tube material can be expected due to the sacrificial anode action. Therefore, significant industrial effects such as cost reduction and weight reduction of the heat exchanger can be obtained.
【図面の簡単な説明】
第1図は耐座屈性試験の試験片の形状を示す説明図であ
る。
1・・・フィン。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an explanatory diagram showing the shape of a test piece for a buckling resistance test. 1...fin.
Claims (5)
%、Si:0.6〜1.0%、Mg:0.3〜1.5%
、Zr:0.01〜0.2%及びTi:0.05〜0.
2%を含み、残部が実質的にAlよりなることを特徴と
する真空ろう付け法により組立てられる熱交換器用フィ
ン材。(1) In weight% (the same applies hereinafter), Mn: 0.7 to 1.1
%, Si: 0.6-1.0%, Mg: 0.3-1.5%
, Zr: 0.01-0.2% and Ti: 0.05-0.
A fin material for a heat exchanger assembled by a vacuum brazing method, characterized in that the fin material contains 2% Al and the remainder is substantially made of Al.
%、Mg:0.3〜1.5%、Zr:0.01〜0.2
%及びTi:0.05〜0.2%を含み、更にZn:0
.5〜3%を含み、残部が実質的にAlよりなることを
特徴とする真空ろう付け法により組立てられる熱交換器
用フィン材。(2) Mn: 0.7-1.1%, Si: 0.6-1.0
%, Mg: 0.3-1.5%, Zr: 0.01-0.2
% and Ti: 0.05 to 0.2%, and further Zn: 0
.. A fin material for a heat exchanger assembled by a vacuum brazing method, characterized in that the fin material contains 5 to 3% of Al, and the remainder is substantially made of Al.
1又は2に記載の化学成分を有するアルミニウム合金鋳
塊を均熱温度が450〜520℃の範囲で均熱処理し、
熱間圧延終了後、中間焼鈍を行うことなく冷間圧廷を行
い、最終で調質焼鈍を施すことを特徴とする真空ろう付
け法により組立てられる熱交換器用フィン材の製造方法
。(3) In producing a fin material for a heat exchanger, an aluminum alloy ingot having the chemical composition according to claim 1 or 2 is soaked at a soaking temperature of 450 to 520°C,
A method for producing a fin material for a heat exchanger assembled by a vacuum brazing method, which comprises performing cold rolling without intermediate annealing after hot rolling, and finally subjecting the material to temper annealing.
真空ろう付け後のMg残留量が0.05〜0.4%の範
囲にあることを特徴とする真空ろう付け法により組立て
られた熱交換器のフィン材。(4) It has the chemical component according to claim 1 or 2, and
A fin material for a heat exchanger assembled by a vacuum brazing method, characterized in that the residual amount of Mg after vacuum brazing is in the range of 0.05 to 0.4%.
真空ろう付け後の平均結晶粒径が100〜400μmの
範囲にあることを特徴とする真空ろう付け法により組立
てられた熱交換器のフィン材。(5) It has the chemical component according to claim 1 or 2, and
A fin material for a heat exchanger assembled by a vacuum brazing method, characterized in that the average crystal grain size after vacuum brazing is in the range of 100 to 400 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8869790A JPH03287738A (en) | 1990-04-03 | 1990-04-03 | Fin material for heat exchanger assembled by vacuum brazing method and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8869790A JPH03287738A (en) | 1990-04-03 | 1990-04-03 | Fin material for heat exchanger assembled by vacuum brazing method and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03287738A true JPH03287738A (en) | 1991-12-18 |
Family
ID=13950052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8869790A Pending JPH03287738A (en) | 1990-04-03 | 1990-04-03 | Fin material for heat exchanger assembled by vacuum brazing method and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03287738A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08232033A (en) * | 1994-12-19 | 1996-09-10 | Hoogovens Alum Walzprod Gmbh | Covering sheet |
EP1247873A1 (en) * | 2001-04-04 | 2002-10-09 | VAW Aluminium AG | Process for producing AlMn strip or sheet |
WO2003054243A1 (en) * | 2001-12-21 | 2003-07-03 | Daimlerchrysler Ag | Hot- and cold-formed aluminium alloy |
EP1386975A1 (en) * | 2002-08-01 | 2004-02-04 | Hydro Aluminium Deutschland GmbH | Aluminium alloy for strip production |
EP1388591A1 (en) * | 2002-08-01 | 2004-02-11 | Hydro Aluminium Deutschland GmbH | Aluminium alloy for strip production |
EP1918394A2 (en) * | 2006-10-13 | 2008-05-07 | Sapa Heat Transfer AB | High strength and sagging resistant fin material |
WO2021064320A1 (en) * | 2019-10-04 | 2021-04-08 | Constellium Issoire | Aluminum alloy precision plates |
-
1990
- 1990-04-03 JP JP8869790A patent/JPH03287738A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08232033A (en) * | 1994-12-19 | 1996-09-10 | Hoogovens Alum Walzprod Gmbh | Covering sheet |
KR100496943B1 (en) * | 2001-04-04 | 2005-06-23 | 바우 알루미늄 아게 | METHOD FOR PRODUCING AlMn STRIPS OR SHEETS AND AlMn STRIPS OR SHEETS PRODUCED THEREBY |
EP1247873A1 (en) * | 2001-04-04 | 2002-10-09 | VAW Aluminium AG | Process for producing AlMn strip or sheet |
WO2002083967A1 (en) * | 2001-04-04 | 2002-10-24 | Vaw Aluminium Ag | Method for producing almn strips or sheets |
CZ298104B6 (en) * | 2001-04-04 | 2007-06-20 | Vaw Aluminium Ag | Process for producing aluminium or manganese strips or sheets and corresponding strip or sheet per se |
US6743396B2 (en) | 2001-04-04 | 2004-06-01 | Hydro Aluminium Deutschland Gmbh | Method for producing AlMn strips or sheets |
WO2003054243A1 (en) * | 2001-12-21 | 2003-07-03 | Daimlerchrysler Ag | Hot- and cold-formed aluminium alloy |
EP1386975A1 (en) * | 2002-08-01 | 2004-02-04 | Hydro Aluminium Deutschland GmbH | Aluminium alloy for strip production |
EP1388591A1 (en) * | 2002-08-01 | 2004-02-11 | Hydro Aluminium Deutschland GmbH | Aluminium alloy for strip production |
EP1918394A2 (en) * | 2006-10-13 | 2008-05-07 | Sapa Heat Transfer AB | High strength and sagging resistant fin material |
EP1918394A3 (en) * | 2006-10-13 | 2010-03-03 | Sapa Heat Transfer AB | High strength and sagging resistant fin material |
EP2551364A1 (en) | 2006-10-13 | 2013-01-30 | Sapa Heat Transfer AB | High strength and sagging resistant fin material |
US9493861B2 (en) | 2006-10-13 | 2016-11-15 | Gränges Sweden Ab | High strength and sagging resistant fin material |
US10131970B2 (en) | 2006-10-13 | 2018-11-20 | Gränges Sweden Ab | High strength and sagging resistant fin material |
WO2021064320A1 (en) * | 2019-10-04 | 2021-04-08 | Constellium Issoire | Aluminum alloy precision plates |
FR3101641A1 (en) * | 2019-10-04 | 2021-04-09 | Constellium Issoire | Precision aluminum alloy sheets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100425726C (en) | Method for producing aluminum alloy composite material for heat exchanger and aluminum alloy composite material | |
JPH08134574A (en) | Aluminum alloy brazing sheet, production of the brazing sheet, heat exchanger using the brazing sheet, and production of the heat exchanger | |
EP1250468B8 (en) | Process of producing aluminum fin alloy | |
JPH03287738A (en) | Fin material for heat exchanger assembled by vacuum brazing method and its manufacture | |
JP7498591B2 (en) | Aluminum alloy clad material | |
JP5545798B2 (en) | Method for producing aluminum alloy fin material for heat exchanger | |
JP5952995B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP2004027253A (en) | Aluminum alloy sheet for forming and method of manufacturing the same | |
JPH01195263A (en) | Manufacture of al-alloy fin material for heat exchanger | |
JPH0543974A (en) | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production | |
JPH058087A (en) | Production of high-strength aluminum brazing sheet | |
JPH0536498B2 (en) | ||
JP3735700B2 (en) | Aluminum alloy fin material for heat exchanger and method for producing the same | |
JPH04304339A (en) | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production | |
JPS6358217B2 (en) | ||
JPH04325643A (en) | Heat exchanger fin material and its production | |
JP7429153B2 (en) | Aluminum alloy clad material | |
JP5306836B2 (en) | Aluminum alloy brazing sheet with excellent strength and corrosion resistance | |
JPH0931614A (en) | Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger | |
JP2607245B2 (en) | High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers | |
JP2575689B2 (en) | Aluminum alloy fin material for heat exchanger | |
JPH02129337A (en) | Aluminum fin material | |
JPS58171546A (en) | Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect | |
JP2004232003A (en) | Aluminum alloy brazing sheet with excellent corrosion resistance | |
JPH0441646A (en) | Aluminum alloy having good corrosion resistance and excellent in formability and baking hardenability |