JPS59153854A - Copper alloy with superior corrosion resistance - Google Patents
Copper alloy with superior corrosion resistanceInfo
- Publication number
- JPS59153854A JPS59153854A JP2378583A JP2378583A JPS59153854A JP S59153854 A JPS59153854 A JP S59153854A JP 2378583 A JP2378583 A JP 2378583A JP 2378583 A JP2378583 A JP 2378583A JP S59153854 A JPS59153854 A JP S59153854A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- alloy
- owt
- copper alloy
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は優れた耐食性を有する銅合金で、復水器、給水
加熱器、蒸留器、冷却器、造水装置などの熱交換器用の
材料として、特に自動車等に用いられるラジェーターの
タンク(容器)。Detailed Description of the Invention The present invention is a copper alloy with excellent corrosion resistance, which is used as a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water generators, especially in automobiles. Radiator tank (container).
チューブ(管)、フィン等の材料として最適な銅合金に
関するものである。It relates to copper alloys that are optimal as materials for tubes, fins, etc.
黄銅は一般に機械的性質や成形性が良好であり、そのほ
かの銅合金にくらべて価格も安いため、広範囲の用途で
使用されている。自動車用ラジェーターとしても好んで
使用されているが。Brass generally has good mechanical properties and formability, and is cheaper than other copper alloys, so it is used in a wide range of applications. It is also popularly used as a radiator for automobiles.
黄銅は環境によっては脱亜鉛腐食現象が起き。Depending on the environment, brass may experience dezincification corrosion.
これが太き力問題となっている。This is the problem of thickness.
自動車用ラジェーターは本体の温度を調節するために液
体を冷却媒体として、エンジンとラジェーターとを循環
させて熱を放散させるもので、ラジェーターは冷却媒体
と常時接触しており、この冷却媒体により、内面から腐
食が生じる問題がある。寸だ、自動車の走行中にラジェ
ーターは排気ガス、塩分を含む海岸大気、さらには工場
大気のSO■ガス等にさらされている場合には、外面か
らも腐食される。An automobile radiator dissipates heat by circulating liquid as a cooling medium between the engine and the radiator in order to adjust the temperature of the main body.The radiator is in constant contact with the cooling medium, and this cooling medium causes There is a problem that corrosion occurs from In fact, if a radiator is exposed to exhaust gas, salty coastal air, or even SO gas from a factory atmosphere while the car is running, it will corrode from the outside as well.
従来ラジェーターに使用されている材料としては@ 6
S wt係、亜鉛35 wt4からなる黄銅が用いら
れているが、腐食環境の悪化等によシ従来の黄銅を用い
たラジェーターの寿命が短かぐなりつつある。Materials conventionally used for radiators are @6
Brass made of S wt and zinc 35 wt4 is used, but the lifespan of conventional radiators using brass is becoming shorter due to deterioration of the corrosive environment.
さらに壕だ近年特にラジェーターチューブ(管)には、
従来のカシメによるロックシームチューブにかわってコ
スト低減と生産効率の向上の面から高周波抵抗溶接また
は高周波誘導溶接による銅合金溶接が採用されるように
なってきた。しかしながら銅合金溶接管は、その溶接組
織の特異性からその溶接部は他の部分と比較して耐食性
が大幅に劣るという欠点を持っている。このことは銅合
金溶接管の使用上の大きた制約となる。さらには銅合金
溶接管の製造の際に溶接方法として高周波誘導溶接もl
、 <は高周波抵抗溶接を用いた場合その溶接方法の特
徴から特に溶接割れ街発生し易いという製造上の難点を
もっている。Furthermore, in recent years, especially in radiator tubes,
Copper alloy welding using high-frequency resistance welding or high-frequency induction welding has come to be used instead of the conventional lock seam tube using crimping to reduce costs and improve production efficiency. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. This poses a major restriction on the use of copper alloy welded pipes. Furthermore, high frequency induction welding is also used as a welding method when manufacturing copper alloy welded pipes.
When high frequency resistance welding is used, weld cracks are particularly likely to occur due to the characteristics of the welding method, which is a manufacturing drawback.
このような状況から熱交換器、特にラジェーターのタン
ク(容器)、チューブl)、フィン等に耐食性の向上が
要求されると同時に溶接部位において(は耐食性と同時
に溶接割れ感受性の低い材料の開発が望まれていた。Under these circumstances, improvements in corrosion resistance are required for heat exchangers, especially radiator tanks, tubes, fins, etc. At the same time, it is necessary to develop materials that are both corrosion resistant and less susceptible to weld cracking at welded areas. It was wanted.
この要求に対し、すでに黄銅に添加元素を加え、耐食性
を向上せしめんとする試みは多くなされてきているが、
内面及び外面両方からの腐食に対して優れた耐食性を示
すものは見つかっていない状況である。In response to this demand, many attempts have already been made to add additive elements to brass to improve its corrosion resistance.
So far, no material has been found that exhibits excellent corrosion resistance against corrosion from both the inner and outer surfaces.
本発明はかかる点に鑑み、熱交換器用、特にラジェータ
ー用材料として優れた耐食性を有する銅合金を提供する
ものである。In view of this, the present invention provides a copper alloy having excellent corrosion resistance as a material for heat exchangers, particularly radiators.
本発明は亜鉛25〜40vyt係、りん0.005〜0
、070 wt係、錫0.05〜1. Owt係、ニッ
ケル0.05〜2. Owt係を含み、さら匠鉄0.0
05〜1、 Owt係、鉛0.0 O5〜0.5 wt
係の内側れが1種または2種を総量で0.005〜1.
3 wt係含み。The present invention has zinc of 25 to 40 vyt and phosphorus of 0.005 to 0.
, 070 wt, tin 0.05-1. Owt section, nickel 0.05-2. Including Owt staff, Sarakakutetsu 0.0
05~1, Owt, lead 0.0 O5~0.5 wt
The total amount of 1 or 2 types of inner surface cracks is 0.005 to 1.
3 Including wt staff.
残部銅及び不可避的な不純物からなる合金、及び該合金
を最終焼鈍後さらに3〜2o係の加工度で冷間圧延をほ
どこした合金、及び該合金を最終焼鈍で結晶粒度が0.
015m以下と方るように調整された合金、及び該合金
′IC最終41f、鈍で結晶粒度が0.015F+以下
となるように調整した後、さらに3〜20%の加工度で
冷間圧延をほどこした合金であって優れた耐食性を有す
る銅合金に関する。An alloy consisting of the remainder copper and unavoidable impurities, an alloy in which this alloy is further cold-rolled at a working degree of 3 to 2 degrees after final annealing, and an alloy in which the grain size is reduced to 0.
After adjusting the alloy so that the grain size is 0.015F or less, and the alloy' IC final 41f, the alloy is dull and adjusted to have a grain size of 0.015F or less, it is further cold rolled with a working degree of 3 to 20%. The present invention relates to a copper alloy that has been processed and has excellent corrosion resistance.
次に本発明合金を47’を成する合金成分及び内容の限
定理由を説明する。銅と亜鉛は本発明合金の基本材料と
々るもので、加工性1機械的強度に優れていると共に、
熱伝導性にも優れている。Next, the reasons for limiting the alloy components and contents forming 47' of the alloy of the present invention will be explained. Copper and zinc are the basic materials for the alloy of the present invention, and they have excellent workability and mechanical strength.
It also has excellent thermal conductivity.
亜鉛含有量を25〜40 wt係とする理由は。The reason why the zinc content is set at 25 to 40 wt.
亜鉛含有量が25 wtef6未満では加工性が悪くな
ること、及び亜鉛含有量が40 wt%を越えると銅−
亜鉛合金Kf6−けるβ相の析出がみられ、耐食性及び
冷間加工性が悪く浸るためである。りんの含有量を00
05〜0.070 Wt96とする理由は、シん含有量
が0.005 wt%未泗では耐食性の改善がみられず
、逆にりん含有量が0.070wtチを越えると耐食性
は改善されるが9粒界病食の徴侯が見られるためである
。錫の含有量を0.05〜t o wt%とする理由は
、錫の含有量が0、05 wt係未満では耐食性特に溶
接した場合溶接部の耐食性の改善が認められず、またt
o wdを越えるとその効果が飽和するためである。If the zinc content is less than 25 wtef6, the workability will deteriorate, and if the zinc content exceeds 40 wt%, copper-
This is because precipitation of β phase is observed in the zinc alloy Kf6, resulting in poor corrosion resistance and cold workability. 00 phosphorus content
The reason for setting 05 to 0.070 Wt96 is that no improvement in corrosion resistance is observed when the phosphorus content exceeds 0.005 wt%, whereas corrosion resistance is improved when the phosphorus content exceeds 0.070 wt%. This is because signs of grain boundary disease can be seen. The reason for setting the tin content to 0.05 to 0.05 wt.
This is because the effect becomes saturated when the value exceeds o wd.
ニッケルの含有量k 0.05〜2; Owt%とする
理由は、ニッケルの含有骨が0.05 wt係未満では
耐食性特に溶接した場合溶接部の耐食性の改善が認めら
れず、また2、 Owtチを越えるとその効果が飽和す
るだめである。鉄の含有量を0.0 O5〜1. Ow
t%とする理由は、鉄の含有量が0.005wt%未満
では耐食性の改善が認められず、また1、 Owt%を
越えるとその効果が飽和するためである。鉛の含有量を
0005〜0.3 wt%とする理由は、鉛の含有量が
0.005 wtチ未満では耐食性の改善が認められず
、また0、 5 wt%を越えると加工性が劣化するだ
めである。The reason why the nickel content k is 0.05 to 2; If it exceeds 1, the effect will become saturated. The iron content is 0.0 O5 to 1. Ow
The reason for setting it as t% is that if the iron content is less than 0.005 wt%, no improvement in corrosion resistance will be observed, and if it exceeds 1.0 wt%, the effect will be saturated. The reason why the lead content is set to 0.005 to 0.3 wt% is that if the lead content is less than 0.005 wt%, no improvement in corrosion resistance is observed, and if it exceeds 0.5 wt%, workability deteriorates. It is no use.
以上のようにりん、鉄、鉛を添加することによって素材
に耐食性を付加し、錫、ニッケルを添加することによっ
て素材及び溶接した場合。As mentioned above, corrosion resistance is added to the material by adding phosphorus, iron, and lead, and when the material is welded by adding tin and nickel.
溶接部に耐食性を付加するものである。This adds corrosion resistance to the weld.
さらに結晶粒度’r 0.015 mm以下に限定した
理由について説明する。高周波抵抗溶接及び高周波誘導
溶接によって起こる溶接割れの原因について調査した結
果9本発明者らは、溶融した母材金属と接触していると
粒界が脆化し倉で軽い衝撃を受けた場合に溶接割れが発
生することを知見した。そこでこのような現象について
種々の調査を行なった結果、結晶粒度を小さくすること
により、このような現象を大幅に抑制することができる
ことを知見した。さらに本発明者らは、耐食性に及ばず
結晶粒度の影+vvKついても調査した結果、耐食性と
くに耐脱亜鉛腐食性は結晶粒度の影響を受は結晶粒度を
小さくすることによシ耐食性を向上させることができる
ことを知見した。結晶粒度を0.015m++以下に限
定した理由は、結晶粒度が0.015wnnを越えると
溶接割れが発生し易くなり、また耐食性の劣化が認めら
れるためである。Furthermore, the reason why the crystal grain size 'r is limited to 0.015 mm or less will be explained. As a result of investigating the causes of weld cracking caused by high-frequency resistance welding and high-frequency induction welding, the present inventors found that grain boundaries become brittle when in contact with molten base metal, and welding occurs when subjected to a light impact in a warehouse. It was discovered that cracks occur. As a result of various investigations into such phenomena, it has been found that such phenomena can be significantly suppressed by reducing the crystal grain size. Furthermore, the present inventors also investigated the effect of grain size + vvK, which does not affect corrosion resistance, and found that corrosion resistance, especially dezincification corrosion resistance, is affected by grain size.Corrosion resistance can be improved by reducing grain size. I found out that it is possible. The reason why the grain size is limited to 0.015m++ or less is that if the grain size exceeds 0.015wnn, weld cracking is likely to occur and deterioration of corrosion resistance is observed.
また1本発明合金を最終焼鈍した後、さらに3〜20%
の加工度で冷間圧延をほどこす理由は、冷間圧延をほど
こすことによシ木発明合金のけんだ付は性が向上するた
めであるが、加工度が3チ未満では、はんだ付は性の向
上が認められず、また20チを越えると機械的強度が高
くなりすぎ、ラジエーターデユープ成形時の加工性が劣
化するだめである。In addition, after final annealing of the alloy of the present invention, an additional 3 to 20%
The reason why cold rolling is performed at a working degree of No improvement in properties was observed, and if it exceeded 20 inches, the mechanical strength would become too high and the workability during radiator duplex molding would deteriorate.
このような本発明合金は、良好な耐食性及び耐溶接割れ
性を示すとともにはんだ付は性も良好な合金であるため
、熱交換器用特にラジェーター用銅合金として適した材
料である。The alloy of the present invention exhibits good corrosion resistance and weld cracking resistance, and also has good solderability, so it is a material suitable as a copper alloy for heat exchangers, particularly for radiators.
実施例
第1表に示す諸組成の合金を溶製し、熱間圧延及び適宜
焼きなましを加えなから冷開圧延により1■厚さの板と
し、最終的に種々の温度で焼きなましを加え第2表に示
す結晶粒度に調整した。耐食性試験に供する溶接部材は
第2表に示された結晶粒度をもつ1燗厚さの諸組成の合
金を突き合わせてT工G溶接することによって作製した
。耐食性試験は1tの蒸留水に炭酸水素ナトリウム
1.3 t/を硫酸ナトリウム t 5v/l。Examples Alloys having the various compositions shown in Table 1 were melted, hot rolled and appropriately annealed, then cold rolled to form a plate with a thickness of 1 inch, and finally annealed at various temperatures to form a second plate. The grain size was adjusted as shown in the table. The welded parts to be subjected to the corrosion resistance test were fabricated by T-welding and welding alloys of various compositions having grain sizes shown in Table 2, each having a thickness of 1 mm, butted against each other. Corrosion resistance test was conducted using sodium bicarbonate in 1 ton of distilled water.
1.3 t/t of sodium sulphate 5v/l.
塩化ナトリウム 1.’6 y/l
を各々溶かした液を液温88℃にイv持し、毎分100
−の空気を吹き込み、この液の中に500時間浸漬した
。その時発生した最大脱亜鉛腐食深さを溶接部及び母材
部について測定し、これをもって耐食性を評価した。そ
の結果を第3表に示した。Sodium chloride 1. '6 y/l of each solution was kept at a temperature of 88°C, and the rate was 100% per minute.
- air was blown into the sample, and the sample was immersed in this solution for 500 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 3.
溶融した母材全屈と接触した場合に粒界が脆化して溶接
割れが発生することに対する耐性についての試験は第2
Nに示される結晶粒度をもつ諸組成の合金を第1゛図に
示きれるようにパイプ状に加工し、これを同一組成の融
点+50℃に保持された溶融金属に3秒間浸漬し、その
後取り出して保持炉中で付着している金属が溶融してい
る状態で第2図のように衝撃を加えた。The second test was for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with the molten base material.
Alloys of various compositions with the grain size shown in N are processed into a pipe shape as shown in Figure 1, which is immersed for 3 seconds in molten metal of the same composition maintained at a melting point of +50°C, and then taken out. An impact was applied as shown in Fig. 2 while the attached metal was melted in a holding furnace.
その時変形したパイプ断面を顕微@によって観察し2粒
界破壊の有、無を確認し、これをもって溶接割れに対す
る耐性を評価した。その結果を第4表に示した。The cross section of the pipe deformed at that time was observed under a microscope to confirm the presence or absence of two-grain boundary fracture, and this was used to evaluate the resistance to weld cracking. The results are shown in Table 4.
さらに第2表に示がれだ結晶粒度をもつ1門厚さの合金
を第5表に示す加工度で冷間圧延を加えたのち、はんだ
付は性試験に供したはんだ付は性試験は直径80門、深
さ60唄の円筒形ルツボにSn 20 wt係−Pb
80 wt係からなるはんだを320℃に加熱して溶湯
をつくり、その中に降下速度25 m / secでサ
ンプル(表面を清浄にした1llj;、 j Q 閂、
長さ50門の形状)を浸漬したとき、はんだ浴からサン
プルが受ける浮力と。Further, after cold rolling an alloy of one thickness with the grain size shown in Table 2 at the working degree shown in Table 5, it was subjected to a soldering test. Sn 20wt-Pb in a cylindrical crucible with a diameter of 80mm and a depth of 60mm
80 wt of solder was heated to 320°C to create a molten metal, and a sample (with a clean surface) was placed into the molten metal at a falling speed of 25 m/sec.
The buoyancy force that the sample receives from the solder bath when it is immersed in the solder bath.
はんだ浴に引き込まれる力とが平衡に達するまでの時間
を測定し、これをもってはんだ付は性を評価した。その
結果を第6表に示した。The time required for the force drawn into the solder bath to reach equilibrium was measured, and the soldering performance was evaluated based on this measurement. The results are shown in Table 6.
第3表、第4岩、ゴロ表かられかるように本発明合金は
脱亜鉛居食に対して、素材及び溶接した(1合溶接部に
卦いて作れた耐食性を示すとともに耐溶接割れ性及びは
んだ付は性も良好な合金であることが判明した。As can be seen from Tables 3, 4, and 4, the alloy of the present invention exhibits excellent corrosion resistance against dezincification corrosion due to the material and welded parts (1), as well as weld cracking resistance and The alloy was found to have good soldering properties.
すなわち比軸合金(試料番号1〜10)ではf1十大脱
亜鉛腐食深さが母材で235μ〜396μ。That is, for the ratio-axis alloys (sample numbers 1 to 10), the f1 dezincification corrosion depth in the base metal is 235μ to 396μ.
溶接部で436μ〜720μに達するのに対し本発明合
金(試料番号11〜25)は母材で最低値26p−m高
値96μ、溶接部で最低値63μ〜最高値180μであ
り耐脱亜鉛腐食性に優れていることがわかる。そして本
発明合金の中でも結晶粒度が0.015m+++以下の
合金はより耐脱亜鉛腐食性に優れている。In contrast, the alloys of the present invention (sample numbers 11 to 25) have a minimum value of 26p-m in the base metal and a high value of 96μ, and a minimum value of 63μ to a maximum value of 180μ in the welded part, indicating dezincification corrosion resistance. It can be seen that it is excellent. Among the alloys of the present invention, alloys with a grain size of 0.015 m+++ or less have better dezincification corrosion resistance.
咬た本発明合金は上記のように耐脱亜鉛腐食性に優れて
いるが、さらに結晶粒度が0.015門以下であるもの
(試料番号12.14.16.1a20)は第2図に示
される溶接割れ性の試験において単に延、性変形するの
みで割れ発生がなく耐溶接割れ性が改善される。逆に結
晶粒度が0.015門を越えるものについては粒界破壌
を起こすので好壕しくない。The alloy of the present invention has excellent dezincification corrosion resistance as described above, but the alloy with a grain size of 0.015 or less (sample number 12.14.16.1a20) is shown in Figure 2. In tests for weld cracking resistance, the weld cracking resistance is improved, with only ductile deformation and no cracking. On the other hand, if the crystal grain size exceeds 0.015 grains, grain boundary failure will occur, so this is not a good choice.
さらに本発明合金のうち加工度3〜20チの冷間圧延を
施したもの(試料番号11〜19)け同冷間圧延を施し
ていないもの(試料番号20〜23)のはんだ付は性の
評価(はんだ浴からサンプルが受ける浮力とはんだ浴に
引き込まれる力とが平衡に達するまでの時間による)に
おいて2.23秒〜2.40秒と比較的長時間かかるの
に比べてより短時間に平衡に達しはんだ付は性に優れて
いることがわかる。Furthermore, among the alloys of the present invention, those that were cold-rolled with a working degree of 3 to 20 inches (sample numbers 11-19) and those that were not cold-rolled (sample numbers 20-23) had a low soldering temperature. Compared to the comparatively long time of 2.23 seconds to 2.40 seconds in evaluation (depending on the time it takes for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium), it is much shorter. It can be seen that equilibrium has been reached and the soldering properties are excellent.
以上のように本発明合金は熱交換器用、特にラジェータ
ー用として極めて優れた特性を有するものである。As described above, the alloy of the present invention has extremely excellent properties for use in heat exchangers, especially radiators.
第 2 表 第 3 ? 第 4 7 第5表 第 6 表Table 2 Third? Part 4 7 Table 5 Table 6
第1図は耐溶接割れ性の試験に用いる厚さ1門の合金パ
イプの断面図、第2図は耐溶接割れ性の試験装置の概略
説明図である。
1:厚さ1門の合金パイプ(長さ10F11)2: 自
由落下体(型骨200区W)
3;支持台
4;加熱保持炉
a、: パイプ内径(σ20門)
b;パイプ外径(の22門)
C:落下体2の落下距離(50門)
特許出願人 日本鉱率株式会社FIG. 1 is a cross-sectional view of an alloy pipe of one thickness used for testing weld cracking resistance, and FIG. 2 is a schematic illustration of a weld cracking resistance testing apparatus. 1: Alloy pipe with 1 gate thickness (length 10F11) 2: Free falling body (200 section W of mold bone) 3: Support stand 4; Heating and holding furnace a,: Pipe inner diameter (σ20 gates) b: Pipe outer diameter ( (22 gates) C: Falling distance of falling object 2 (50 gates) Patent applicant Nippon Koryoku Co., Ltd.
Claims (4)
.070wt係。 錫0.05〜1. Owt係、ニッケル0.05〜2.
Owt係を含み、さらに鉄0.005〜1. Owt
係。 鉛0.005〜0.3 wt’lの内側れが1種または
2種を総量で0.005〜1.3 wt係含み、残部銅
及び不可避的な不純物からなる耐食性に優れた銅合金。(1) Zinc 25-40wt, phosphorus 0.005-0
.. 070wt person. Tin 0.05-1. Owt section, nickel 0.05-2.
Including Owt, and further iron 0.005~1. Owt
Person in charge. A copper alloy with excellent corrosion resistance, which contains one or two types of inner grains of 0.005 to 0.3 wt'l of lead in a total amount of 0.005 to 1.3 wt, and the balance is copper and unavoidable impurities.
る〜2. Owt4を含み、さらに鉄[1,oo5〜1
.。 wt係、鉛0. OO5〜o、 3 wt係の内側れが
1種または2種を総量で0.005〜t 3 wt係含
み。 残部銅及び不可避的な不純物からなる耐食性に優れた銅
合金。(2) Grain size is less than 0.015 mm in final annealing ~2. Contains Owt4 and further contains iron [1,oo5~1
.. . wt person, lead 0. OO5~o, 3wt type inner layer contains one or two types in total amount of 0.005~t3wt type. A copper alloy with excellent corrosion resistance consisting of the balance copper and unavoidable impurities.
度で冷間圧延をほどこした。亜鉛25〜40 wt4
。 りんO,OO5〜0.070 wt係、錫0.05〜1
.Owt%、ニッケル0.05〜2. Owt係を含み
、さらに鉄0. OO5〜t Owt係 、鉛0.00
5〜0.3wt係の内側れか1種または2種を総量で0
.005〜1.3 wt係含み、残部銅及び不可避的な
不純物からなる耐食性に優れた銅合金。(3) After the final annealing, cold rolling was further performed at a working degree of 3 to 20 wte4. Zinc 25-40 wt4
. Phosphorus O, OO5~0.070 wt, tin 0.05~1
.. Owt%, nickel 0.05-2. Including Owt section, and further iron 0. OO5~t Owt section, lead 0.00
Total amount of 1 or 2 types of 5 to 0.3wt inside 0
.. A copper alloy with excellent corrosion resistance, containing 0.005 to 1.3 wt, the balance being copper and unavoidable impurities.
ように調整した後、さらに3〜20係の加工度で冷間圧
延をほどこした。亜鉛25〜40wt憾、りん0.00
5〜0.070wt係、錫0.05〜1、 Owt係、
ニッケル0.05〜2. Owt係を含み。 さらに鉄0.0 O5〜1. Owt係、鉛0.0 O
5〜0、5 wt係の内側れか1種または2種を総量で
o、 o o s〜t s wt係含み、残部鋼及び不
可避的な不純物からなる耐食性に優れた銅合金。(4) After final annealing, the grain size was adjusted to 0.015 mm or less, and then cold rolling was performed at a working ratio of 3 to 20. Zinc 25-40wt, phosphorus 0.00
5~0.070wt, tin 0.05~1, Owt,
Nickel 0.05~2. Including Owt staff. Furthermore, iron 0.0 O5~1. Owt section, lead 0.0 O
A copper alloy with excellent corrosion resistance, containing one or two of the inner side of 5 to 0 and 5 wt in a total amount of o, o o s to t s wt, and the balance being steel and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2378583A JPS59153854A (en) | 1983-02-17 | 1983-02-17 | Copper alloy with superior corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2378583A JPS59153854A (en) | 1983-02-17 | 1983-02-17 | Copper alloy with superior corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59153854A true JPS59153854A (en) | 1984-09-01 |
Family
ID=12119975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2378583A Pending JPS59153854A (en) | 1983-02-17 | 1983-02-17 | Copper alloy with superior corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59153854A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014145095A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Materials Corp | Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal |
JP2014145096A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Materials Corp | Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal |
JP2016183381A (en) * | 2015-03-26 | 2016-10-20 | 三菱伸銅株式会社 | Copper alloy bar and copper alloy member |
-
1983
- 1983-02-17 JP JP2378583A patent/JPS59153854A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014145095A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Materials Corp | Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal |
JP2014145096A (en) * | 2013-01-28 | 2014-08-14 | Mitsubishi Materials Corp | Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, electroconductive component for electronic and electrical equipment and terminal |
JP2016183381A (en) * | 2015-03-26 | 2016-10-20 | 三菱伸銅株式会社 | Copper alloy bar and copper alloy member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3794971B2 (en) | Copper alloy tube for heat exchanger | |
KR102144203B1 (en) | High strength and corrosion resistant alloy for use in HVAC&R systems | |
JPH03170646A (en) | Manufacture of copper alloy having fine crystalline grains as well as low strength | |
JPS59153854A (en) | Copper alloy with superior corrosion resistance | |
JPH03193849A (en) | Copper alloy having fine crystalline grain and low strength and its production | |
JPS6230862A (en) | Manufacture of copper alloy having superior corrosion resistance | |
JPS59118842A (en) | Copper alloy with superior corrosion resistance | |
JPS6230861A (en) | Manufacture of copper alloy having superior corrosion resistance | |
JPS61199043A (en) | Copper alloy having superior corrosion resistance and its manufacture | |
JPS59153856A (en) | Copper alloy with superior corrosion resistance | |
JPS6082635A (en) | Copper alloy having superior corrosion resistance | |
JP3230685B2 (en) | Copper base alloy for heat exchanger | |
JPS59150045A (en) | Copper alloy with superior corrosion resistance | |
JPS59118841A (en) | Copper alloy with excellent corrosion resistance | |
JPS6082632A (en) | Copper alloy having superior corrosion resistance | |
JPS59107051A (en) | Copper alloy with superior corrosion resistance | |
JPS6082630A (en) | Copper alloy having superior corrosion resistance | |
JPS59153855A (en) | Copper alloy with excellent corrosion resistance | |
JPS59126744A (en) | Copper alloy with superior corrosion resistance | |
JPS6139387B2 (en) | ||
JPS59118839A (en) | Copper alloy having excellent corrosion resistance | |
JPS59150044A (en) | Copper alloy with superior corrosion resistance | |
JPS59118840A (en) | Copper alloy with excellent corrosion resistance | |
JP3243479B2 (en) | Copper base alloy for heat exchanger | |
JPS6082634A (en) | Copper alloy having superior corrosion resistance |