[go: up one dir, main page]

JPH03164077A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH03164077A
JPH03164077A JP1300509A JP30050989A JPH03164077A JP H03164077 A JPH03164077 A JP H03164077A JP 1300509 A JP1300509 A JP 1300509A JP 30050989 A JP30050989 A JP 30050989A JP H03164077 A JPH03164077 A JP H03164077A
Authority
JP
Japan
Prior art keywords
electrode
wavelength
traveling wave
small electrode
piezoelectric body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1300509A
Other languages
Japanese (ja)
Other versions
JP2568707B2 (en
Inventor
Katsu Takeda
克 武田
Masanori Sumihara
正則 住原
Takahiro Nishikura
西倉 孝弘
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1300509A priority Critical patent/JP2568707B2/en
Publication of JPH03164077A publication Critical patent/JPH03164077A/en
Application granted granted Critical
Publication of JP2568707B2 publication Critical patent/JP2568707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To suppress excitation of unnecessary resonance by forming two sets of driving electrodes, arranged on the first surface of a piezoelectric body, of small electrode sections corresponding in length to one half of the wavelength of traveling wave and bringing the profile of the electrode close to the reference function of vibration mode. CONSTITUTION:Piezoelectric body 2 of a circular ultrasonic motor is provided, on the first face thereof, with electrode groups A and B having positional phase difference of 90 deg. (corresponding to 1/4 of wavelength). The electrode group A comprises small electrode sections a1, a2,... having base La corresponding to 1/2 of the wavelength of traveling wave in excited vibration mode, whereas the electrode group B comprises small electrode group b1, b2,... having the base Lb. The circular vibration body is strongly excited only with primary radial and 9th circumferential bending vibrations. The profile of the electrode is brought close to a reference function of approximately triangular vibration mode having amplitude, in the direction perpendicular to the advancing direction of traveling wave, which decreases in front and rear of the central part. By such arrangement, excitation of unnecessary vibration can be suppressed resulting in the improvement of driving efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 圧電体により励振した弾性振動を駆動力と
する超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor whose driving force is elastic vibration excited by a piezoelectric body.

従来の技術 近承 圧電セラミック等の圧電体により構戒した振動体
に弾性振動を励振し これを駆動カとする超音波モータ
が注目されていも 以下、図面を参照しながら従来の超音波モータについて
説明を行う。
Conventional technology Ultrasonic motors, which use piezoelectric materials such as piezoelectric ceramics to excite elastic vibrations in a vibrating body and use this as a driving force, are attracting attention. Give an explanation.

第7図は円環型超音波モータの斜視図であり、円環形の
弾性体1の主面の一方に 円環形の圧電体2を貼り合わ
せて振動体3を構成していも 4は耐摩耗性材料の摩擦
材、5は弾性体であり、互いに貼合わせられて移動体6
を構成していも 移動体61よ 摩擦材4を介して、振
動体3に加圧接触している(加圧手段は図示せず〉。圧
電体2に電界を印加すると振動体3の周方向に曲げ振動
の進行波が励振され 移動体6が図中の矢印方向に摩擦
力により駆動される。
FIG. 7 is a perspective view of a toroidal ultrasonic motor, in which a vibrating body 3 is constructed by bonding a toroidal piezoelectric body 2 to one of the principal surfaces of a toroidal elastic body 1. A friction material 5 made of a flexible material is an elastic body, and is attached to each other to form a moving body 6.
The moving body 61 is in pressure contact with the vibrating body 3 via the friction material 4 (the pressure means is not shown). When an electric field is applied to the piezoelectric body 2, the vibration in the circumferential direction of the vibrating body 3 A traveling wave of bending vibration is excited, and the moving body 6 is driven by the frictional force in the direction of the arrow in the figure.

第8図は上記超音波モータにおける圧電体2の電極構造
の一例を示すもので、円周方向に9波の曲げ振動を励振
する構戒である。同図において、斜線を施したA *,
  B * (t,  それぞれ2分のL波長相当の小
領域からなる電極群であ4C−は4分の3波長、D一は
4分のl波長の長さの電極であも従って、Asの電極群
とB●の電極群とは互いに位置的に4分の1波長(−9
0度)の位相差を持つ。また電極群A●、B.内の隣合
う小電極部ζよ互いに反対に厚み方向に分極されていも
 圧電体2の弾性体1との接着面(よ 同図に示された
面と反対の面であり、電極はベタ電極であも 使用時に
it  同図に斜線で示したようにそれぞれ短絡して用
いられる。
FIG. 8 shows an example of the electrode structure of the piezoelectric body 2 in the ultrasonic motor, which is designed to excite nine waves of bending vibration in the circumferential direction. In the same figure, the hatched A*,
B*(t) is a group of electrodes each consisting of a small area corresponding to 2 minutes of the L wavelength. The electrode group and the electrode group B● are located at a quarter wavelength (-9
It has a phase difference of 0 degrees). Also, electrode groups A●, B. Even if the adjoining small electrode parts ζ in the piezoelectric body 2 are polarized in opposite directions in the thickness direction, When in use, they are short-circuited as indicated by diagonal lines in the figure.

この電極群A●、Biに Vl =  Vs sin(ωt )      −−
−(1)Vt =  V@cos(ωt )     
 −−−(2)ただL,Vs:電圧の瞬時値 ω :角周波数 t :時間 で表される電圧V1及び■2をそれぞれ印加すれ{ヱ振
勅体3には ξ = ξ@(cos(ωt ) cos(k x )
+  sin( ω t  )  sin(k  x 
 >)ξs cos(ωt  − k x )   −
−−(3)ただレ ξ :曲げ振動の振幅値 ξ●:曲げ振動の瞬時値 k :波数(2π/λ) λ :波長 X :位置 で表せ太 円周方向に進行する曲げ振動の進行波が励起
される。
For this electrode group A●, Bi, Vl = Vs sin(ωt) --
−(1) Vt = V@cos(ωt)
--- (2) Apply voltages V1 and ■2, respectively, where L, Vs: instantaneous value of voltage ω: angular frequency t: time expressed. ωt ) cos(k x )
+ sin(ωt) sin(k x
>) ξs cos(ωt − k x ) −
--(3) Only ξ: Amplitude value of bending vibration ξ●: Instantaneous value of bending vibration k: Wave number (2π/λ) λ: Wavelength is excited.

第9図は振動体3の表面のA点が進行波の励起によって
、長軸2W、短軸2uの楕円運動をし振動体3上に加圧
して設置された移動体6が、 楕円の頂点近傍で接触す
ることにより、摩擦力により波の進行方向とは逆方向に
V=ω・Uの速度で運動する様子を示している。
Figure 9 shows that point A on the surface of the vibrating body 3 moves in an ellipse with major axis 2W and minor axis 2u due to the excitation of the traveling wave, and the movable body 6 placed under pressure on the vibrating body 3 moves to the vertex of the ellipse. It is shown that due to close contact, the waves move at a speed of V=ω·U in the direction opposite to the direction of wave propagation due to frictional force.

発明が解決しようとする課題 従来の電極構造を有した圧電体から戒る振動体の場合、
使用振動モードに対する共振周波数近傍に 多数の不要
共振が出易く、使用振動モードに対する共振周波数の交
流電圧を印加してL 振勅体の非線形及び駆動電圧のわ
ずかな歪によって、励振している振動モード以外の不要
振動が励振される。このため駆動時に雑音が発生し 加
えてモータの駆動効率も低下させるという課題があも更
眠 通常は圧電体2と弾性体lの接着後番コ第8図に示
した2組の電極群のそれぞれの小電極をの結線と言う煩
雑な工程を必要とした本発明は上記課題を解決すること
を目的とするものであも 課題を解決するための手段 超音波モータの振動体を構成する圧電体の第1面に設け
られた2組の駆動電極を、それぞれ進行波の2分の1波
長相当の小!極部で構戊すると共に 小電極の形状を、
進行波の進行方向に直角な方向に測った前記小電極の幅
が小電極の中央部の前後で漸次減少する形状もしくは小
電極の一端部から他端部に向かうにつれ減少する形状と
なしまた前記小電極はその両端で隣接する小電極に接続
する構造とするものである。
Problems to be Solved by the Invention In the case of a vibrating body that differs from a piezoelectric body with a conventional electrode structure,
Many unnecessary resonances tend to occur near the resonant frequency for the vibration mode in use, and by applying an AC voltage at the resonant frequency for the vibration mode in use, the vibration mode that is being excited is caused by the nonlinearity of the vibrating body and a slight distortion in the drive voltage. Other unnecessary vibrations are excited. For this reason, noise is generated during driving, and the driving efficiency of the motor is also reduced. The present invention, which requires a complicated process of connecting each small electrode, aims to solve the above problem. Two sets of drive electrodes provided on the first surface of the body are each small, equivalent to half the wavelength of the traveling wave! In addition to configuring the poles, the shape of the small electrode is
The width of the small electrode measured in a direction perpendicular to the traveling direction of the traveling wave gradually decreases before and after the center of the small electrode, or decreases from one end of the small electrode toward the other end; The small electrode has a structure in which both ends thereof are connected to adjacent small electrodes.

また 圧電体の第2面に設けられた2組の駆動電極を、
第1面に設けられた2組の駆動電極に対応し それぞれ
の駆動電極は進行波の2分の1波長またはI波長相当の
小電極部から構威すも作  用 圧電体の第1面に設けられた2組の駆動電極力丈それぞ
れ進行波の2分の1波長相当の小電極部から或り、小電
極の形状を上記の形状となして電極形状を振動モードの
基準関数に近づけることで不要共振の励振を抑制するこ
とが可能となもその粘気  駆動時の雑音が減少し 駆
動効率が良く、 しかも動作の安定した超音波モータが
実現できる。
In addition, two sets of drive electrodes provided on the second surface of the piezoelectric body,
Corresponding to the two sets of drive electrodes provided on the first surface, each drive electrode is constructed from a small electrode portion corresponding to a half wavelength of the traveling wave or I wavelength, and acts on the first surface of the piezoelectric material. The power of the two sets of drive electrodes provided is from the small electrode portions each corresponding to 1/2 wavelength of the traveling wave, and the shape of the small electrode is made into the above shape to bring the electrode shape close to the reference function of the vibration mode. This makes it possible to suppress the excitation of unnecessary resonance and reduce the noise during driving, making it possible to realize an ultrasonic motor with good driving efficiency and stable operation.

また 小電極の構造は上記の様に 既に両端で隣接する
小電極に接続された構造となされているため配線工程を
簡略化できる。
Furthermore, since the structure of the small electrode is such that both ends are already connected to adjacent small electrodes as described above, the wiring process can be simplified.

実施例 以下、図面に従って本発明の実施例について詳細な説明
を行う。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例における円環型超音波モータ
の圧電体の第1面の電極構造図であり、円環形振動体に
 径方向1次・周方向9次の撓み振動を励振する。同図
において、圧電体2の第1面には位置的に90度(4分
の1波長相当)の位相差を持つ電極群A,  Bが構成
されていも  電極群Aはそれぞれ励振する振動モード
の進行波の2分の1波長相当の底辺Laを有する小電極
部a1、a2、・・・から或る。また 同様に電極群B
はそれぞれ励振する振動モードの進行波の2分の1波長
相当の底辺Lbを有する小電極部b1、b2、・・・か
ら戊も 小電極部d’sa2、・・・及び小電極部b1、b2、
・・・(よ それぞれの底辺部La及びLbの両端部で
隣接する小電極部に電気的に接続された構造となされて
いも 第2図は第1図に示した圧電体2の第2面の電極構造の
1例を示す。同図において、小電極CI・C2、・・・
は上記進行波の1波長相当の長さを有し第1図における
電極群A,  Bを構成する小電極部のうち隣合うlu
l1の電極a1とb1、 a2とb2、゜゜゜に対応し
ていも すなわ板 第2図を裏返して第l図に重ねた場
合、例え1′L c+はa1とb1に C2はa2とb
2に対向していも 振動体に励振できる振動モード{友 駆動電極構造によ
って決まも 従って、振動モードが決まれぱ その振動
モードが強勢に励振され その周波数近傍に不要共振が
励振されないようにする最適な駆動電極構造があん 着
目振動モードによって圧電体の電極に誘起される電荷量
を大きくし 不要振動モードによって圧電体の電極に誘
起される電荷量を出来る限り小さくすればよ鶏 通常{
友電極構造を振動モードの基準関数に近づけるようにす
も 第1図に示した電極構造(友 この様な観点から設計さ
れたものであり、径方向l次・周方向9次の撓み振動の
みを強勢に励振するものであもすなわ執 実施例で(上
 電極形状(戴 進行波の進行方向と直角な方向に測っ
た幅力支 中央部の前後で減少する略3角形状で、振動
モードの基準関数に近づけたので、使用する振動モード
以外の不要振動の励振を抑制することができ、雑音の発
生が少く、駆動効率が良く、しかも安定に駆動する超音
波モータを実現することができも その上 従来の電極
構造に比べて、駆動面に対して電極総面積を大きくとれ
るので、駆動力を大きくできも第3図は第1図に示した
圧電体2の第2面の電極構造の別の例を示す。同図にお
いて、小電極d,、d2、d3、d4、・・・は上記進
行波の2分の1波長相当の長さを有し 第1図における
電極群A、Bを構成する小電極部b1、a1、b2、a
2、・・・にそれぞれ対応していも 圧電体2を分極するとき(よ 第1面を金属などの導電
体の上に置くことにより共通電極として、第2面の小電
極を第2図または第3図に示した符号の様に分極すも 
分極後の圧電体2は第2面を接着面として弾性体と接着
され 円環形振動体を構戊すも 通常は圧電体2と弾性
体の接着後に第l図に示した第1面の2組の電極群のそ
れぞれの小電極は結線しなくてはならない八 本実施例
では小電極は既に配線されているので、それぞれの電極
群からリード線を取り出すだけで超音波モータを容易に
構戒することができる。従って、圧電体の分極後の配線
工程を簡略化し 超音波モータの信頼性を向上すること
ができも 以上、円環型の超音波モータについて説明を行なったバ
 円板の撓み振動を利用した円板型超音波モータの場合
でも同様の効果が得られも 以下、円板型の超音波モー
タの実施例に基づき説明を行な う。
FIG. 1 is a diagram of the structure of the electrodes on the first surface of the piezoelectric body of the annular ultrasonic motor in one embodiment of the present invention, in which the annular vibrating body is excited with first-order radial and ninth-order bending vibrations in the circumferential direction. do. In the figure, even though electrode groups A and B with a phase difference of 90 degrees (equivalent to a quarter wavelength) are formed on the first surface of the piezoelectric body 2, each electrode group A has an exciting vibration mode. The small electrode portions a1, a2, . . . each have a base La corresponding to a half wavelength of the traveling wave. Similarly, electrode group B
are the small electrode parts b1, b2, . b2,
(Yo) Although the structure is such that both ends of each base part La and Lb are electrically connected to the adjacent small electrode parts, FIG. 2 shows the second surface of the piezoelectric body 2 shown in FIG. 1. An example of the electrode structure is shown in the figure.In the same figure, small electrodes CI・C2,...
has a length equivalent to one wavelength of the traveling wave, and the adjacent lu of the small electrode parts constituting the electrode groups A and B in FIG.
Even if the electrodes a1 and b1, a2 and b2 of l1 correspond to ゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜゜。 correspond to electrodes a1 and b1, a2 and b2, a2 and b2 of l1.
2. The vibration mode that can be excited in the vibrating body even when facing the vibration mode is determined by the structure of the driving electrode. If the drive electrode structure is poor, increase the amount of charge induced on the piezoelectric electrode by the vibration mode of interest, and minimize the amount of charge induced on the piezoelectric electrode by the unnecessary vibration mode.
The electrode structure shown in Figure 1 was designed to bring the electrode structure closer to the reference function of the vibration mode. In this example, the width of the electrode is measured perpendicular to the direction of travel of the traveling wave. Since it approximates the standard function of the mode, it is possible to suppress the excitation of unnecessary vibrations other than the vibration mode used, and it is possible to realize an ultrasonic motor that generates less noise, has good drive efficiency, and drives stably. Furthermore, compared to the conventional electrode structure, the total area of the electrodes relative to the driving surface can be increased, so the driving force can be increased. Another example of the structure is shown. In the same figure, the small electrodes d, d2, d3, d4, ... have a length equivalent to half the wavelength of the traveling wave. Electrode group A in FIG. , B constitute small electrode parts b1, a1, b2, a
2,... When polarizing the piezoelectric body 2 (by placing the first surface on a conductor such as metal, the small electrode on the second surface is used as a common electrode, and the small electrode on the second surface is Polarized as shown in Figure 3
After polarization, the piezoelectric body 2 is bonded to an elastic body using the second surface as the adhesive surface to form a ring-shaped vibrating body, but usually after the piezoelectric body 2 and the elastic body are bonded, the first surface 2 shown in FIG. In this example, the small electrodes are already wired, so you can easily set up the ultrasonic motor by simply taking out the lead wires from each electrode group. can do. Therefore, the wiring process after polarization of the piezoelectric body can be simplified and the reliability of the ultrasonic motor can be improved. Although similar effects can be obtained in the case of a plate-type ultrasonic motor, the following explanation will be based on an example of a disk-type ultrasonic motor.

第4図は本発明の円板型超音波モータの一実施例におけ
る圧電体の第1面の電極構造図であり、径方向2次・周
方向4次の撓み振動のみを強勢に励振するものであも 同図において、圧電体2の第1面には位置的に90度(
4分のl波長相当)の位相差を持つ電極群B,Fが構成
されている。電極群Eはそれぞれ励振する振動モードの
進行波の2分の1波長相当の底辺Leを有する小電極部
e1、e2、・・・から或も また 同様に電極群Fは
それぞれ励振する振動モードの進行波の2分の1波長相
当の底辺Lfを有する小電極部f1、f2、・・・から
戊る。小電極部e1、e2、・・・の両端及び小電極部
r1、f2、・・・の両端はそれぞれ隣接する小電極部
に電気的に接続されていも 第5図は第4図に示した圧電体2の第2面の電極構造の
1例を示すものである。同図において、小電極g1、g
2、・・・は上記進行波の1波長相当の長さを有L 第
4図における電極群F,.Fを構成する小電極部のうち
隣合う1組の電極e1とf1、e2とf2、・・・に対
応していも 第6図は第4図に示した圧電体2の第2面の電極構造の
別の例を示す。同図において、小電極h1、h2、h3
、h4、・・・は上記進行波の2分のl波長相当の長さ
を有L  第4図における電極群ムFを構成する小電極
部e1、r1、e2、「2、・・・に対応している。
FIG. 4 is a diagram of the structure of the electrodes on the first surface of the piezoelectric body in one embodiment of the disc-type ultrasonic motor of the present invention, which strongly excites only the second-order flexural vibration in the radial direction and the fourth-order bending vibration in the circumferential direction. However, in the same figure, the first surface of the piezoelectric body 2 has a position of 90 degrees (
Electrode groups B and F have a phase difference of 1/4 wavelength). The electrode group E is formed from small electrode parts e1, e2, etc. each having a base Le corresponding to half the wavelength of the traveling wave of the vibration mode to be excited. The small electrode portions f1, f2, . . . have a base Lf corresponding to one-half wavelength of the traveling wave. Even though both ends of the small electrode parts e1, e2, . . . and both ends of the small electrode parts r1, f2, . . . are electrically connected to the adjacent small electrode parts, FIG. An example of the electrode structure on the second surface of the piezoelectric body 2 is shown. In the same figure, small electrodes g1, g
2, . . . have a length corresponding to one wavelength of the traveling wave L. Electrode groups F, . FIG. 6 shows the electrodes on the second surface of the piezoelectric body 2 shown in FIG. Here is another example of the structure. In the same figure, small electrodes h1, h2, h3
, h4, . . . have a length equivalent to half the wavelength of the traveling wave. Compatible.

上記電極構造によって、上記円環型超音波モータの場合
と同様に 駆動周波数以外の不要振動の励振を抑制する
た取 雑音の発生が減少し しかも駆動効率良く、動作
が安定した高信頼性の超音波モータを実現することがで
きも な抵 上記実施例で(友 径方向1次・周方向9次、お
よび径方向2次・周方向4次の撓み振動について説明し
た力丈 その他の振動モードにも本発明が有効であるこ
とは勿論である。
The above electrode structure reduces the generation of noise by suppressing the excitation of unnecessary vibrations other than the drive frequency, as in the case of the annular ultrasonic motor. In the above example, it is impossible to realize a sonic motor. Of course, the present invention is also effective.

発明の効果 本発明は 上記構成により、使用する振動モード振動以
外の不要振動による雑音が抑制され 駆動効率がよく、
しかも動作が安定した超音波モータを提供できも また 圧電体の分極後の配線工程を大幅に簡略化する事
が可能である。
Effects of the Invention With the above configuration, the present invention suppresses noise caused by unnecessary vibrations other than the vibration mode vibration used, and has good drive efficiency.
Moreover, it is possible to provide an ultrasonic motor with stable operation, and it is also possible to greatly simplify the wiring process after polarization of the piezoelectric body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(よ 本発明の一実施例における円環型超音波モ
ータの圧電体の第1面の電極構造を示す平面は 第2図
及び第3図は第1図の圧電体の第2面の電極構造を示す
平面は 第4図{よ 本発明の他の実施例における円板
型超音波モータの圧電体の第1面の電極構造を示す平面
@ 第5図及び第6図は第4図の圧電体の第2面の電極
構造を示す平面@ 第7図は円環型超音波モータの切り
欠き斜視は 第8図は従来の圧電体の電極構造を示す平
面は 第9図は超音波モータの動作原理の説明図である
FIG. 1 is a plane showing the electrode structure on the first surface of the piezoelectric body of the annular ultrasonic motor in one embodiment of the present invention. The plane showing the electrode structure of the first surface of the piezoelectric body of the disk-type ultrasonic motor in another embodiment of the present invention is shown in FIG. 4. A plane showing the electrode structure on the second surface of the piezoelectric body in the figure; FIG. 2 is an explanatory diagram of the operating principle of a sonic motor.

Claims (1)

【特許請求の範囲】[Claims] (1)圧電体を交流電圧で駆動して、該圧電体と弾性体
とから構成される振動体に弾性進行波を励振することに
より、該振動体上に接触して設置された移動体を移動さ
せる超音波モータにおいて、前記圧電体の第1面に設け
られた2組の駆動電極が、それぞれ前記進行波の2分の
1波長相当の小電極部から成ると共に、前記小電極の形
状は、前記進行波の進行方向に直角な方向に測った前記
小電極の幅が前記小電極の中央部の前後で漸次減少する
形状もしくは前記小電極の一端部から他端部に向かうに
つれ減少する形状であり、かつ前記小電極はその両端で
隣接する小電極に接続されていることを特徴とする超音
波モータ。(2)圧電体の第2面に設けられた2組の駆
動電極が、第1面に設けられた2組の駆動電極に対応し
、それぞれの前記駆動電極は前記進行波の2分の1波長
または1波長相当の小電極部から成ることを特徴とする
請求項1記載の超音波モータ。
(1) By driving a piezoelectric body with an alternating current voltage and exciting an elastic traveling wave in a vibrating body composed of the piezoelectric body and an elastic body, a moving body placed in contact with the vibrating body can be moved. In the ultrasonic motor for movement, two sets of drive electrodes provided on the first surface of the piezoelectric body each consist of a small electrode portion corresponding to a half wavelength of the traveling wave, and the shape of the small electrode is , a shape in which the width of the small electrode, measured in a direction perpendicular to the traveling direction of the traveling wave, gradually decreases before and after the center of the small electrode, or a shape in which the width decreases from one end of the small electrode toward the other end. An ultrasonic motor characterized in that the small electrode is connected to adjacent small electrodes at both ends thereof. (2) The two sets of drive electrodes provided on the second surface of the piezoelectric body correspond to the two sets of drive electrodes provided on the first surface, and each of the drive electrodes is a half of the traveling wave. 2. The ultrasonic motor according to claim 1, wherein the ultrasonic motor comprises a wavelength or a small electrode portion corresponding to one wavelength.
JP1300509A 1989-11-17 1989-11-17 Ultrasonic motor Expired - Fee Related JP2568707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300509A JP2568707B2 (en) 1989-11-17 1989-11-17 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300509A JP2568707B2 (en) 1989-11-17 1989-11-17 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH03164077A true JPH03164077A (en) 1991-07-16
JP2568707B2 JP2568707B2 (en) 1997-01-08

Family

ID=17885673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300509A Expired - Fee Related JP2568707B2 (en) 1989-11-17 1989-11-17 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2568707B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417581A (en) * 1990-05-08 1992-01-22 Matsushita Electric Ind Co Ltd Ultrasonic motor
US7608981B2 (en) * 2005-06-15 2009-10-27 Tdk Corporation Piezoelectric thin film vibrator and fabrication method thereof, driving apparatus and piezoelectric motor using the same
CN103166501A (en) * 2013-02-01 2013-06-19 东南大学 A variable structure three power supply space phase modulation traveling wave ultrasonic motor
JP2017163837A (en) * 2017-05-01 2017-09-14 株式会社ニコン Vibration actuator, lens barrel and camera

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044496U (en) * 1983-08-31 1985-03-28 セイコーインスツルメンツ株式会社 Piezoelectric element for piezoelectric motor
JPS62196084A (en) * 1986-02-20 1987-08-29 Matsushita Electric Ind Co Ltd Ultrasonic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044496U (en) * 1983-08-31 1985-03-28 セイコーインスツルメンツ株式会社 Piezoelectric element for piezoelectric motor
JPS62196084A (en) * 1986-02-20 1987-08-29 Matsushita Electric Ind Co Ltd Ultrasonic motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417581A (en) * 1990-05-08 1992-01-22 Matsushita Electric Ind Co Ltd Ultrasonic motor
US7608981B2 (en) * 2005-06-15 2009-10-27 Tdk Corporation Piezoelectric thin film vibrator and fabrication method thereof, driving apparatus and piezoelectric motor using the same
CN103166501A (en) * 2013-02-01 2013-06-19 东南大学 A variable structure three power supply space phase modulation traveling wave ultrasonic motor
JP2017163837A (en) * 2017-05-01 2017-09-14 株式会社ニコン Vibration actuator, lens barrel and camera

Also Published As

Publication number Publication date
JP2568707B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JPH0458273B2 (en)
JPH01129782A (en) Ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH03164077A (en) Ultrasonic motor
JPS62225182A (en) Oscillatory wave motor
JPH01177877A (en) Oscillatory wave motor
JP3001956B2 (en) Disk type ultrasonic motor
JPS62277079A (en) Piezoelectric driving device
JP2537874B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPH0479238B2 (en)
JPH0491677A (en) ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPS63283475A (en) Ultrasonic motor
JPS63110973A (en) Piezoelectric driver
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPS61224885A (en) Vibration wave motor
JP2558661B2 (en) Ultrasonic motor
JPH0744855B2 (en) Ultrasonic motor
JPH0470875B2 (en)
JPS60207468A (en) Supersonic motor
JPH0732609B2 (en) Ultrasonic motor
JPH08228491A (en) Ultrasonic motor
JPH04236177A (en) Disposition of vibrating segment of piezoelectric element and shape of driving part
JPH02131374A (en) Ultrasonic motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees