JPH03137463A - Heat pump device utilizing waste heat - Google Patents
Heat pump device utilizing waste heatInfo
- Publication number
- JPH03137463A JPH03137463A JP1275292A JP27529289A JPH03137463A JP H03137463 A JPH03137463 A JP H03137463A JP 1275292 A JP1275292 A JP 1275292A JP 27529289 A JP27529289 A JP 27529289A JP H03137463 A JPH03137463 A JP H03137463A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- conductor
- electrical conductor
- cooling
- pump device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002918 waste heat Substances 0.000 title claims abstract description 11
- 239000004020 conductor Substances 0.000 claims abstract description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 9
- 239000002470 thermal conductor Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 17
- 239000010408 film Substances 0.000 abstract description 12
- 230000005679 Peltier effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000010248 power generation Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 2
- 239000010409 thin film Substances 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 2
- 238000007599 discharging Methods 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 5
- 230000005678 Seebeck effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000005676 thermoelectric effect Effects 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VJHXXNYZXFPCGL-UHFFFAOYSA-N [Li].Br Chemical group [Li].Br VJHXXNYZXFPCGL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
Abstract
Description
産業上の利用分野
本発明(よ 排熱等高温空気または高温排水を利用して
、冷却を得るヒートポンプに関する。
従来の技術
従来 排熱を利用して冷却に用いる場合、吸収式冷凍機
が用いられていも
吸収式冷凍機1よ 第3図に示す様1.:、吸収器1、
発生器2、凝縮器3、蒸発器4、加圧ポンプ5および減
圧弁6から構成されていも 吸収器lで冷媒を吸収した
溶媒(よ 加圧ポンプ5で加圧され発生器2で排熱によ
り加熱されて、高温高圧の冷媒蒸気を発生する。冷媒蒸
気は凝縮器3で系外に熱を捨てて液化する。その後減圧
弁6により低温低圧となり、蒸発器4で系外より熱を受
は気化する。ガス状態となった冷媒は吸収器lへもどり
、発生器2からもどってきた溶媒に吸収される。
吸収式冷凍機の媒体として(よ 大型のものは水臭化リ
チウムであり、小型のものはアンモニア水が使用されて
いる。
発明が解決しようとする課題
しかしなが収 このような従来の吸収式冷凍機で(よ
(1)高圧または低圧で使用することから冷凍機全体が
圧力容器となり、また 冷媒および溶媒の配管が多数必
要であることかぺ 重量が大きく、コストが高(〜
(2)水−臭化リチウムを使用した場合、冷媒が水であ
ることか仮 氷点以下の冷却ができな(〜 また 臭化
リチウムの濃度を下げすぎると粘性が極度に大きくなる
こ七か収 空冷化ができな(t(3)アンモニア−水を
使用した場合、漏れによる環境問題のため大型機には使
用できない。
等の課題があっ九
本発明(友 上記課題にもとづき、コストおよび重量を
大幅に低減するととも圏 安全で、かス氷点以下の冷却
と空冷化が可能な排熱利用ヒートポンプ装置を提供する
ものである。
課題を解決するための手段
そこで本発明による熱電装置(友 絶縁性フィルム基板
上く N型半導依 導電体1、P型半導人導電体2の順
に 各半導体・導電体の端部が電気的に接触する熱電回
路を複数個形成した2組の熱電素子A、 Bを間隔を
おいて設置し 前記熱電素子Aの導電体1および熱電素
子Bの導電体1と熱的に接し 、かつ、 被熱交換流体
の流路を有する熱伝導体1を熱電素子A、 Bの間に
設置し 前記熱電素子Aの導電体2または熱電素子Bの
導電体2のいずれかと熱的に接する2つの被熱交換流体
の流路を有する熱伝導体2を前記フィルム基板の前記熱
伝導体lを有しない側に設置し 前記熱電素子A、
Bを電気的に閉回路で結ぶことにより、上記のような課
題を解決するための手段となしたものであも
作用
冷却手段および発電手段として、熱電効果を使用してい
る。熱電効果(友 金属と半導体との界面に温度差を与
えるとゼーベック効果により電位差が生よ 発電効果を
生へ また 界面に電位を与えるとペルチェ効果により
、吸熱またはジュール熱以外の発熱が生よ 冷却効果を
生むものであaこのような効果を有する薄膜素子を用(
\ 排熱と冷却部との温度差によりゼーベック効果によ
る発電を行1.X、得られた電力を用いてペルチェ効果
により冷却能力を得るものであム
この作用により、コストおよび重量を大幅に低減すると
とも置 安全で、かス 氷点以下の冷却と空冷化が可能
となる。
実施例
以下に本発明による実施例を図面により説明する。第1
図は本発明による一実施例の排熱利用ヒートポンプの構
成を示すものであ4
2枚の絶縁性フィルム基板11および12の片面にはN
型半導体13、導電体14、P型半導体15、導電体1
4が順に成膜されている。コルゲートフィン16、17
、18はフィルム基板11.12の上面または下面に位
置し 反対側に位置するコルゲートフィン16、17、
18が接する導電体14と異なる導電体14と1つおき
に接するように設置されている。また 中央部に位置す
るコルゲートフィン17は両側に位置する2つの進級性
フィルム基板11、12の双方と接する構造となってい
4N型半導体13、導電体14、P型半導体151上
各々の端部が重なり合う構造になっており、接触部の電
気抵抗および熱抵抗が大きくならない構造となっていも
導電体14の材料としては 電気抵抗の小さい銅また
はアルミが用いられも
図東 下部に位置するコルゲートフィン18は加熱部1
9に位置し 排熱空気から受ける熱によりコルゲートフ
ィン18と接する導電体14を加熱すも 中央部はのコ
ルゲートフィン17は放熱部20に位置し コルゲート
フィン17に接する導電体14を冷却する。これにより
、導電体14は交互に高温と低温となり、ゼーベック効
果により起電力を生ずることができる。ここで生じた電
流を上部の絶縁性フィルム基板11に導き、半導体13
、15および導電体14に電流を流す。これにより、絶
縁性フィルム基板11上の半導体13、15と導電体1
4の界面でペルチェ効果により発熱もしくは吸熱を生じ
る。このとき、N型半導体13とP型半導体15は交互
に並んでいることから、導電体14は交互に発熱部また
は吸熱部となり、前述のごとく導電体14の1つおきに
接するコルゲートフィン16;友 冷却部21となもし
たがって、絶縁性フィルム基板11の上部の空気から熱
を吸収し 放熱部20への熱の発散を行うヒートポンプ
として作用することになる。これにより、加熱部19か
ら熱を受けることにより、冷却部21を冷却する構造と
なム
本実施例では コルゲートフィン16、17.18の表
面はフラットとした力交 空気との伝熱性能を高めるス
リットフィンやルーバーフィンの加工も容易な形状と言
える。
第2図は本発明の他の実施例であり、排熱利用ヒートポ
ンプ装置の構成を示すものであム絶縁性フィルム基板1
1、12上の半導恢 導電体およびコルゲートフィン1
6、18の構成(よ第1図に示した構成と同様であるの
玄 説明を省略すも 絶縁性フィルム基板11と12の
間に位置する放熱部20に(よ 圧力容器22が位置し
ている。圧力容器22内にtit、 被熱交換流体の
流路23が形成されていも 圧力容器23(友 絶縁性
フィルム基板11,12の導電体14を一つおきく 、
かつ、 コルゲートフィン16、18が接している導電
体14と異なる導電体14と熱的に接するように設置さ
れていも これにより、排熱空気より熱を受(す、コル
ゲートフィン16と接する空気を冷却するとともへ 放
熱部20を流れる流体に放熱するヒートポンプを形成す
も以上のように本発明において(よ フィルムの表面に
成膜しているたべ 薄く構成することが可能でありコン
パクトで軽い装置とすることができもまた 熱電素子部
分、フィン部分、流路部を独立して作製した後に一体化
できることか収 作製上も容易で安価な熱電装置が提供
されも
発明の効果
本発明による排熱利用ヒートポンプ装置(よ コストお
よび重量を大幅に低減するととも圏 安全で、、かつ、
氷点以下の冷却と空冷化が可能になも4、INDUSTRIAL APPLICATION FIELD The present invention relates to a heat pump that obtains cooling by using high-temperature air such as exhaust heat or high-temperature waste water.Prior art When exhaust heat is used for cooling, an absorption refrigerator is used. Absorption chiller 1 As shown in Figure 3: Absorber 1,
It consists of a generator 2, a condenser 3, an evaporator 4, a pressure pump 5, and a pressure reducing valve 6. The refrigerant vapor is heated by the condenser 3 to generate high-temperature, high-pressure refrigerant vapor.The refrigerant vapor is liquefied by discarding heat outside the system in the condenser 3.Then, it becomes low-temperature and low-pressure by the pressure reducing valve 6, and receives heat from outside the system in the evaporator 4. is vaporized.The refrigerant in a gaseous state returns to the absorber 1 and is absorbed by the solvent returned from the generator 2.As a medium for absorption refrigerators (the larger one is lithium hydrobromide, Ammonia water is used for small-sized ones.However, the problem to be solved by the invention is that in such conventional absorption refrigerators (1) the entire refrigerator is used at high or low pressure. It becomes a pressure vessel, and requires a large number of pipes for refrigerant and solvent. It is heavy and expensive. (~ Also, if the concentration of lithium bromide is lowered too much, the viscosity will become extremely high.) Air cooling is not possible (t(3) If ammonia-water is used, there may be environmental problems due to leakage. Therefore, it cannot be used for large machines.There are nine problems with the present invention. Means for Solving the Problems The thermoelectric device according to the present invention (component) consists of an N-type semiconductor conductor 1 and a P-type semiconductor conductor 2 on an insulating film substrate. Two sets of thermoelectric elements A and B each having a plurality of thermoelectric circuits in which the ends of each semiconductor/conductor are in electrical contact are installed at a distance, and the conductor 1 of the thermoelectric element A and the conductor of the thermoelectric element B are electrically conductive. A thermal conductor 1 that is in thermal contact with the body 1 and has a flow path for a fluid to be heat exchanged is installed between the thermoelectric elements A and B, and the conductor 2 of the thermoelectric element A or the conductor 2 of the thermoelectric element B is installed between the thermoelectric elements A and B. A thermal conductor 2 having two heat exchange fluid flow paths in thermal contact with one of the thermoelectric elements A is installed on the side of the film substrate that does not have the thermal conductor l;
By electrically connecting B in a closed circuit, the thermoelectric effect is used as a cooling means and a power generation means. Thermoelectric effect (Friend) When a temperature difference is applied to the interface between a metal and a semiconductor, a potential difference is generated due to the Seebeck effect, producing a power generation effect.Also, when a potential is applied to the interface, heat absorption other than Joule heat is generated due to the Peltier effect. Cooling A thin film element with such an effect is used (
\ Electricity is generated by the Seebeck effect due to the temperature difference between the exhaust heat and the cooling part.1. X. The obtained electric power is used to obtain cooling capacity through the Peltier effect.This effect significantly reduces cost and weight, and also enables safe and cool cooling below the freezing point and air cooling. . Examples Examples according to the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of a heat pump utilizing waste heat according to an embodiment of the present invention.4 One side of two insulating film substrates 11 and 12 is
type semiconductor 13, conductor 14, P-type semiconductor 15, conductor 1
4 are formed in order. Corrugated fins 16, 17
, 18 are located on the upper or lower surface of the film substrate 11.12, and corrugated fins 16, 17 located on the opposite side,
The conductor 18 is installed so as to contact every other conductor 14 different from the conductor 14 in contact with the conductor 18 . Further, the corrugated fin 17 located in the center has a structure in which it is in contact with both of the two progressive film substrates 11 and 12 located on both sides, and is placed on the 4N type semiconductor 13, the conductor 14, and the P type semiconductor 151.
Even if the structure is such that each end overlaps and the electrical resistance and thermal resistance of the contact area does not increase, the conductor 14 may be made of copper or aluminum, which has low electrical resistance. The corrugated fins 18 located in the heating section 1
The corrugated fins 17 located in the central part are located in the heat dissipation part 20 and cool the conductors 14 in contact with the corrugated fins 17. As a result, the conductor 14 becomes high and low temperature alternately, and an electromotive force can be generated due to the Seebeck effect. The current generated here is guided to the upper insulating film substrate 11, and the semiconductor 13
, 15 and the conductor 14. As a result, the semiconductors 13 and 15 on the insulating film substrate 11 and the conductor 1
At the interface of 4, heat generation or endotherm occurs due to the Peltier effect. At this time, since the N-type semiconductors 13 and the P-type semiconductors 15 are arranged alternately, the conductors 14 alternately become heat generating parts or heat absorbing parts, and as described above, the corrugated fins 16 are in contact with every other conductor 14; Therefore, the cooling section 21 also functions as a heat pump that absorbs heat from the air above the insulating film substrate 11 and radiates the heat to the heat dissipation section 20 . This creates a structure in which the cooling part 21 is cooled by receiving heat from the heating part 19. In this embodiment, the surfaces of the corrugated fins 16, 17, and 18 are flat to improve heat transfer performance with the air. It can be said that the shape makes it easy to process slit fins and louver fins. FIG. 2 is another embodiment of the present invention, showing the configuration of a heat pump device utilizing waste heat.
Semiconductor conductor and corrugated fin 1 on 1 and 12
6 and 18 (the structure is the same as that shown in FIG. Even if the flow path 23 for the fluid to be heat exchanged is formed in the pressure vessel 22, the conductors 14 of the insulating film substrates 11 and 12 are connected to each other.
In addition, even if the corrugated fins 16 and 18 are installed so as to be in thermal contact with a conductor 14 different from the conductor 14 that they are in contact with, this allows the air in contact with the corrugated fins 16 to receive heat from the exhaust heat air. As described above, in the present invention, a heat pump is formed that radiates heat to the fluid flowing through the heat radiating section 20. In addition, it is possible to fabricate the thermoelectric element portion, fin portion, and flow path portion independently and then integrate them.A thermoelectric device that is easy to manufacture and inexpensive is provided.Advantages of the Invention Heat pump equipment (which can significantly reduce cost and weight) is safe, and
Cooling below freezing point and air cooling are possible 4.
第1図は本発明の一実施例の排熱利用ヒートポンプ装置
の概略医 第2図は本発明の他の実施例の排熱利用ヒー
トポンプ装置の概略@ 第3図は従来の排熱利用吸収式
冷凍機の構成図である。
13、15・・半導& 11.12・・絶縁性フィル
ム基板14・・導電化 16.17.18・・コルゲー
トフィン、23・・流応Fig. 1 is a schematic diagram of a heat pump device using waste heat according to one embodiment of the present invention. Fig. 2 is a schematic diagram of a heat pump device using waste heat according to another embodiment of the present invention. Figure 3 is a conventional absorption type heat pump device using waste heat. It is a block diagram of a refrigerator. 13, 15... Semiconductor & 11.12... Insulating film substrate 14... Conductive 16.17.18... Corrugated fin, 23... Flow resistance
Claims (5)
体、導電体A、P(またはN)型半導体導電体Bの順に
、各半導体・導電体の端部が電気的に接触する熱電回路
を複数個形成した2組の熱電素子A、Bを間隔をおいて
設置し、前記熱電素子Aの導電体Aおよび熱電素子Bの
導電体Aと熱的に接し、かつ、被熱交換流体の流路を有
する熱伝導体Aを熱電素子A、Bの間に設置し、前記熱
電素子Aの導電体Bまたは熱電素子Bの導電体Bのいず
れかと熱的に接する2つの被熱交換流体の流路を有する
熱伝導体Bを前記フィルム基板の前記熱伝導体Aを有し
ない側に設置し、熱電素子A、Bを電気的に閉回路で結
んだ排熱利用ヒートポンプ装置。(1) On an insulating film substrate, an N (or P) type semiconductor, a conductor A, and a P (or N) type semiconductor conductor B are placed in this order, and the ends of each semiconductor/conductor are in electrical contact with each other. Two sets of thermoelectric elements A and B each formed with a plurality of circuits are installed at intervals, and are in thermal contact with the conductor A of the thermoelectric element A and the conductor A of the thermoelectric element B, and are connected to a fluid to be heat exchanged. A thermal conductor A having a flow path is installed between thermoelectric elements A and B, and two heat exchange fluids are in thermal contact with either conductor B of thermoelectric element A or conductor B of thermoelectric element B. A heat pump device utilizing waste heat, in which a heat conductor B having a flow path is installed on the side of the film substrate not having the heat conductor A, and thermoelectric elements A and B are electrically connected in a closed circuit.
フィンとする請求項1記載の排熱利用ヒートポンプ装置
。(2) The heat pump device utilizing waste heat according to claim 1, wherein the heat conductor A or B is a fin whose heat exchange fluid is gas.
流体を被熱交換流体とする圧力容器とする請求項1記載
の排熱利用ヒートポンプ装置。(3) The heat pump device utilizing waste heat according to claim 1, wherein the heat conductor A or B is a pressure vessel whose heat exchange fluid is a liquid or a fluid with a phase change.
2記載の排熱利用ヒートポンプ装置。(4) The exhaust heat utilizing heat pump device according to claim 2, wherein the fins are integrated into a corrugated shape.
項2記載の排熱利用ヒートポンプ装置。(5) The exhaust heat utilizing heat pump device according to claim 2, wherein the fins are provided with slits or louvers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1275292A JPH03137463A (en) | 1989-10-23 | 1989-10-23 | Heat pump device utilizing waste heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1275292A JPH03137463A (en) | 1989-10-23 | 1989-10-23 | Heat pump device utilizing waste heat |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03137463A true JPH03137463A (en) | 1991-06-12 |
Family
ID=17553399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1275292A Pending JPH03137463A (en) | 1989-10-23 | 1989-10-23 | Heat pump device utilizing waste heat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03137463A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113555492A (en) * | 2021-09-16 | 2021-10-26 | 中国电子科技集团公司信息科学研究院 | Electronic waste heat collecting device and control method thereof |
-
1989
- 1989-10-23 JP JP1275292A patent/JPH03137463A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113555492A (en) * | 2021-09-16 | 2021-10-26 | 中国电子科技集团公司信息科学研究院 | Electronic waste heat collecting device and control method thereof |
CN113555492B (en) * | 2021-09-16 | 2021-11-23 | 中国电子科技集团公司信息科学研究院 | Electronic waste heat collecting device and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6233944B1 (en) | Thermoelectric module unit | |
EP1336204B1 (en) | Thermoelectric module with integrated heat exchanger and method of use | |
US5737923A (en) | Thermoelectric device with evaporating/condensing heat exchanger | |
JP2008528912A (en) | Counterflow thermoelectric configuration using heat transfer fluid in a closed cycle | |
WO1999050604A1 (en) | Thermoelectric cooling device using heat pipe for conducting and radiating | |
CN113793837A (en) | A chip self-sensing temperature control system | |
JPH05219765A (en) | Thermoelectric generator | |
JPH06151979A (en) | Thermoelectric device | |
AU2018220031A1 (en) | Thermoelectric device | |
JP3915609B2 (en) | Heating element cooler | |
JPH0430586A (en) | Thermoelectric device | |
JPH1054624A (en) | Thermoelectric cooling device | |
JPH03137463A (en) | Heat pump device utilizing waste heat | |
US3441449A (en) | Thermoelectric system | |
CN215068111U (en) | Heat dissipation base for notebook computer | |
KR200143379Y1 (en) | Heatsink of heat pump for good heat dissipation | |
KR100306513B1 (en) | A cooling pipe for improving cooling efficient in thermoelectric element and a cooler using thereof | |
KR950002255Y1 (en) | Cooling device used electrical heat pump | |
KR20190091765A (en) | Heat exchanging Apparatus | |
CA2910958A1 (en) | Thermoelectric device | |
CN115164445B (en) | Semiconductor thermoelectric refrigerator structure and enhanced heat exchange method | |
KR100414379B1 (en) | Cooling element | |
JP2005156026A (en) | Cooling device | |
JP2001221583A (en) | Heat pipe for diffusing cold and its installing method | |
JP3235185B2 (en) | Heat dissipation device for thermoelectric conversion element |