[go: up one dir, main page]

JPH0310083A - Method for manufacturing superconducting membrane - Google Patents

Method for manufacturing superconducting membrane

Info

Publication number
JPH0310083A
JPH0310083A JP1144502A JP14450289A JPH0310083A JP H0310083 A JPH0310083 A JP H0310083A JP 1144502 A JP1144502 A JP 1144502A JP 14450289 A JP14450289 A JP 14450289A JP H0310083 A JPH0310083 A JP H0310083A
Authority
JP
Japan
Prior art keywords
film
superconducting film
phase
type
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1144502A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
厚志 田中
Nobuo Kamehara
亀原 伸男
Koichi Niwa
丹羽 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1144502A priority Critical patent/JPH0310083A/en
Priority to CA002003850A priority patent/CA2003850C/en
Priority to KR1019890017434A priority patent/KR930008648B1/en
Priority to EP89312400A priority patent/EP0372808B1/en
Priority to DE68928256T priority patent/DE68928256T2/en
Priority to US07/565,209 priority patent/US5141917A/en
Publication of JPH0310083A publication Critical patent/JPH0310083A/en
Priority to US08/378,087 priority patent/US5585332A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/642

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To produce a superconducting film improved in critical temp. and critical current density by controlling the components of metallic elements in an oxide film by a specific equation at the time of synthesizing a Bi-type lamellar Perovskite-type superconducting film on a substrate. CONSTITUTION:In a process for producing a Bi-type lamellar Perovskite-type superconducting film, a film of oxides for synthesizing the above superconducting film is deposited on a substrate, and the components of the metallic elements of the oxides are controlled so that they satisfy the relations in an equation B:Pb:Sr:Ca:Cu=s:t:1:u:v (where the symbols (s), (t), (u), and (v) stand for >0 to <1.5, >0.5 to <1.5, >0 to <1.5, and >1.5 to <1.7, respectively). By forming the superconducting film in which large amounts of Pb are added and Cu content is slightly increased as mentioned above, the Bi lamellar Perovskite-type superconducting film having sufficiently high critical current density as well as sufficiently high critical temp. can be formed.

Description

【発明の詳細な説明】 〔概要〕 本発明は、pbを添加したBi系超超伝導膜製造方法に
関し、pbを多量に添加し、Cuの組成比を化学量論組
成より若干多くすることにより、臨界温度が110にの
超伝導相を多く含み、臨界温度が高く、臨界電流密度も
大きな超伝導膜を短時間で形成する製造方法を提供する
ことを目的とし、84系層状ペロブスカイト型超伝導膜
を製造する工程において、基板上に該超伝導膜を合成す
るための酸化物の膜を堆積した該酸化物の金属元素の成
分が以下の式 %式%:: で表される超伝導膜の製造方法により構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing a Bi-based superconducting film with the addition of PB, by adding a large amount of PB and making the composition ratio of Cu slightly higher than the stoichiometric composition. The purpose is to provide a manufacturing method for forming a superconducting film containing many superconducting phases with a critical temperature of 110, a high critical temperature, and a large critical current density in a short time. In the process of manufacturing a film, an oxide film for synthesizing the superconducting film is deposited on a substrate, and the composition of the metal element of the oxide is expressed by the following formula: Constructed by the manufacturing method.

(産業上の利用分野) 本発明は、ビスマス系Bi系超伝導膜の製造方法の改良
に関する。特に、臨界温度と臨界電流密度とを向上する
改良に関する。
(Industrial Application Field) The present invention relates to an improvement in a method for manufacturing a bismuth-based Bi-based superconducting film. In particular, it relates to improvements in increasing critical temperature and critical current density.

〔従来の技術〕[Conventional technology]

pbを添加したBi系超超伝導体作製する方法としては
、出発原料としてBito、、pbo、 SrCO3C
aC01,CUO等の粉末を混合し、仮焼、粉砕、圧粉
、本焼成を行うのが、−船釣である。Bi系趙伝導体で
臨界温度が最も高い110 K相を合成するときの原料
粉末の混合割合としては、Bi:Pb:Sr:Ca:C
uの比が、およそ1.8:0.34:1.9:2.0:
3.0程度とするのがよいとされている。
As a method for producing a Bi-based superconductor doped with pb, Bito, pbo, SrCO3C are used as starting materials.
The process of mixing powders such as aC01 and CUO, calcination, pulverization, powder compaction, and main firing is - Funatsuri. The mixing ratio of raw material powders when synthesizing the 110 K phase, which has the highest critical temperature in the Bi-based conductor, is Bi:Pb:Sr:Ca:C.
The ratio of u is approximately 1.8:0.34:1.9:2.0:
It is said that it is good to set it to about 3.0.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Bi系超超伝導膜、単位胞内に含まれるCu−0平面の
数の違いに応じて臨界温度(Tc)が異なる超伝導相が
存在することが知られている。今までのところ、式 B
izSrzCaa−+CuaOxにおいてn・1に対す
るτC=10にの相、n・2に対するTc=80にの相
、n=3に対するTc=110 Kの相が知られている
。実用的には、臨界温度が最も高い110に相を合成す
ることが望まれるが、単に110 K相の化学量論組成
に合わせても80 K相が合成され易い、これは、Ca
Oが存在する場合には焼成温度領域(850−870”
C)では先ず80 K相が安定して生成してしまい目的
とする110に相に変化するには、100時間を越える
ような焼成時間を必要とするためと考えられる。
It is known that a Bi-based superconducting film has superconducting phases with different critical temperatures (Tc) depending on the number of Cu-0 planes included in the unit cell. So far, formula B
In izSrzCaa-+CuaOx, a phase of τC=10 for n·1, a phase of Tc=80 for n·2, and a phase of Tc=110 K for n=3 are known. Practically speaking, it is desirable to synthesize the 110 phase, which has the highest critical temperature, but even if the stoichiometric composition of the 110 K phase is simply adjusted, the 80 K phase is easily synthesized.
If O is present, the firing temperature range (850-870"
This is thought to be because in C), the 80 K phase is first stably generated and requires a firing time of over 100 hours to change to the desired 110 phase.

高野等(Jpn、J、Appl、Phys、27,19
8B、 L1041)はBi系超超伝導体、pboを添
加することにより110に相比較的生成され易いことを
報告している。さらに、用台等(Jpn、J、Appl
、Phys、27,1988. L1476)は110
に相の単相化を試みBi:Pb:Sr:Ca:Cuの比
が1.84:0.34:1.91:2.03:3.06
の時に110 K相がほぼ100χのバルクが得られる
ことを見出している。
Takano et al. (Jpn, J, Appl, Phys, 27, 19
8B, L1041) reported that by adding pbo, a Bi-based superconductor, 110 is relatively easily produced. Furthermore, the table etc. (Jpn, J, Appl
, Phys, 27, 1988. L1476) is 110
Attempting to make the phase into a single phase, the ratio of Bi:Pb:Sr:Ca:Cu was 1.84:0.34:1.91:2.03:3.06
It has been found that a 110 K phase with a bulk of approximately 100 χ can be obtained when .

通常の薄膜の形成方法(スパッタ法、蒸着法等)では、
膜を基板上に堆積後熱処理を加え、超伝導膜を合成する
が、その過程において相当量のpbが蒸発し、また、C
uも若干蒸発した。 Cuの量が減少するとpbの添加
量を最適化しても80 K相が合成され、110 K相
を単一相として合成することは困難であった。
In normal thin film formation methods (sputtering method, vapor deposition method, etc.),
After depositing the film on the substrate, heat treatment is applied to synthesize a superconducting film, but in the process, a considerable amount of PB evaporates, and C
u also evaporated slightly. When the amount of Cu decreased, an 80 K phase was synthesized even if the amount of Pb added was optimized, and it was difficult to synthesize a 110 K phase as a single phase.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はBi系系層状ペロブスカイト型超伝導膜を製造
する工程において、基板上に該超伝導膜を合成するため
の酸化物の膜を堆積した該酸化物の金属元素の成分が以
下の式 %式%:: で表される超伝導膜の製造方法により達成される本発明
は、Bi系系層状ペロブスカイト超超伝導膜堆積する工
程において、バルクにおけるpbの添加量の最適値より
多いpbを添加し、また、化学量論組成より多いCuを
堆積することにより、堆積後の熱処理時にpbが蒸発し
ても十分な量の110に相を合成することを特徴とする
In the process of manufacturing a Bi-based layered perovskite superconducting film, the present invention involves depositing an oxide film on a substrate for synthesizing the superconducting film, in which the composition of the metal element of the oxide is expressed in % by the following formula: The present invention, which is achieved by a method for manufacturing a superconducting film represented by the formula %::, involves adding more Pb than the optimum amount of Pb in the bulk in the step of depositing a Bi-based layered perovskite superconducting film. Furthermore, by depositing more Cu than the stoichiometric composition, a sufficient amount of 110 phase is synthesized even if PB evaporates during the heat treatment after deposition.

このような十分な膜を堆積するためには、堆積中にPb
とCuとが欠損しないようにB1−5r−Ca−Cu−
0層とPbOとCuOとを高濃度に含む層とを積層した
多層膜とするのが現実的である。
In order to deposit such a sufficient film, Pb
B1-5r-Ca-Cu-
It is realistic to form a multilayer film in which a 0 layer and a layer containing a high concentration of PbO and CuO are laminated.

〔作用〕[Effect]

本発明では、比較的多量のPbを添加し、また、焼成中
に蒸発し昌いCuを若干多めにした非晶質の膜を基板上
に堆積し、その後短時間の焼成で、Bi系層状ペロブス
カイト型超伝導体を合成する。
In the present invention, a relatively large amount of Pb is added and an amorphous film with a slightly large amount of Cu that evaporates during firing is deposited on the substrate, and then a Bi-based layer is formed by short firing. Synthesize perovskite superconductors.

この方法により焼成時に80に相が合成されにくく、1
10 K相をほぼ単一相として合成できる。従って、基
板と超伝導膜との反応を抑制しつつ、高い臨界温度と電
流密度の膜が合成できる。
With this method, it is difficult to synthesize the 80 phase during firing, and the 1
The 10 K phase can be synthesized as almost a single phase. Therefore, a film with a high critical temperature and current density can be synthesized while suppressing the reaction between the substrate and the superconducting film.

〔実施例〕〔Example〕

膜の堆積はRFマグネトロンスパッタ法により行った。 The film was deposited by RF magnetron sputtering.

スパッタ条件を表1に示す。The sputtering conditions are shown in Table 1.

表1スパッタ条件 基板温度       400°C スパッタガス     A「:0□−2:1スパツタガ
ス圧    IPa 高周波電力      75〜100W堆積速度   
    80人/ m i n膜厚         
0.85μm ターゲットには、Bi:Sr:Ca:Cu= 3:2:
2:3となるような組成比の酸化物ターゲット■とpb
o、のターゲラ)IIおよびCuOのターゲット■を用
いた。
Table 1 Sputtering conditions Substrate temperature 400°C Sputtering gas A':0□-2:1 Sputtering gas pressure IPa High frequency power 75-100W Deposition rate
80 people/min film thickness
0.85μm target has Bi:Sr:Ca:Cu=3:2:
Oxide target ■ and pb with a composition ratio of 2:3
o, Targetera II) and CuO target ■ were used.

400’Cに加熱された一go基板上に、それぞれのタ
ーゲットを交互にスパッタし、B1−5r−Ca−Cu
−0層PbO□層、CuO層とを多層に堆積した。ター
ゲット■としてBi:Sr:Ca:Cu= 3:2:2
:3となるようにBiを多くしたのは酸化ビスマスは堆
積されにくいためでる。ターゲットIにより堆積すると
、膜組成が110に相の化学l膜組成である’2:2:
’2:3に近くなる。それぞれの層の厚さは以下の通り
であるB1−5r−Ca−Cu−0層:  2000 
 人pbo、層;300  人 CuON:    300人 各層を2回収上積層し、得られた薄膜の組成はICP分
析の結果以下の通りであった。
Each target was alternately sputtered onto a substrate heated to 400'C, and B1-5r-Ca-Cu
A -0 layer, a PbO□ layer, and a CuO layer were deposited in multiple layers. Target ■Bi:Sr:Ca:Cu=3:2:2
The reason why Bi was increased so that the ratio was 3 was because bismuth oxide is difficult to deposit. When deposited with target I, the film composition is 110 phase chemical l film composition '2:2:
'The ratio will be close to 2:3. The thickness of each layer is as follows: B1-5r-Ca-Cu-0 layer: 2000
Layer: 300 CuON: 300 Each layer was laminated twice, and the composition of the obtained thin film was as follows as a result of ICP analysis.

Bi:Pb:Sr:Ca:Cu=1.O:0.8:1.
0:1.0:1.6B1が適切な置台まれ、Cuが化学
量論組成より多く含まれていることがわかる。上記の多
層膜を大気中850’Cで1時間焼成し、超伝導膜を得
た。
Bi:Pb:Sr:Ca:Cu=1. O:0.8:1.
It can be seen that 0:1.0:1.6B1 was properly placed and contained more Cu than the stoichiometric composition. The above multilayer film was fired in the air at 850'C for 1 hour to obtain a superconducting film.

得られた膜のX線回折パターン(CuKα)を第1図に
示す、膜はほぼ単一の高温相からなっていることがわか
る。また、第2図にSEM観察による膜の微細構造を示
す、鱗片状の超伝導結晶がC軸配向して重なっているこ
とがわかる。第2図(b)は第2図(a)の拡大図であ
る。
The X-ray diffraction pattern (CuKα) of the obtained film is shown in FIG. 1, and it can be seen that the film consists of almost a single high-temperature phase. Further, FIG. 2 shows the fine structure of the film by SEM observation, and it can be seen that the scale-like superconducting crystals are C-axis oriented and overlapped. FIG. 2(b) is an enlarged view of FIG. 2(a).

第3図に直流法4端子法による電気抵抗の温度変化を示
す、120に付近から電気抵抗が急激に減少し、106
.5にで電気抵抗がゼロとなった。また臨界電流密度は
77.3Kにおいて5.8xlO’ A/cII” と
十分おおきかった。
Figure 3 shows the temperature change in electrical resistance using the DC four-terminal method.The electrical resistance suddenly decreases from around 120,
.. At 5, the electrical resistance became zero. Further, the critical current density was 5.8xlO'A/cII'' at 77.3K, which was sufficiently large.

〔比較例〕[Comparative example]

CuOの組成比が化学量論組成にほぼ等しいBi:Pb
:Sr:Ca:Cu=1.O:1.0:1.0:1.1
:1.5の膜を850’Cで1時間焼成した膜のX線回
折パターンを第4図に示す、先に述べた実施例と同一条
件で焼成しても、110 K相の割合があまり、増えな
いことがわかる。これは、焼成によりCuが蒸発してし
まい膜中から失われるため110に相が生成する条件か
ら組成がずれてしまうためと考えられる。 77.3K
における臨界型2it密度は1.2xlO’ A/cm
であり実施例で示した膜にくらべ4分の1以下と劣って
いる。
Bi:Pb composition ratio of CuO is almost equal to stoichiometric composition
:Sr:Ca:Cu=1. O:1.0:1.0:1.1
Figure 4 shows the X-ray diffraction pattern of a film obtained by firing a film of 1.5 at 850'C for 1 hour. , it turns out that it does not increase. This is considered to be because Cu evaporates during firing and is lost from the film, causing the composition to deviate from the conditions under which a phase is formed in 110. 77.3K
The critical type 2it density in is 1.2xlO' A/cm
This is inferior to the membranes shown in Examples by one-fourth or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、Bii状ペロブス
カイト型超伝導体のなかて、最も臨界温度が高い110
 K相を高純度でしかも短時間に合成でき、十分臨界温
度が高く、また十分大きな臨界型2it密度を有するB
i層層状ペロブスカイト超超伝導膜形成できる。
As explained above, according to the present invention, 110 has the highest critical temperature among Bii-like perovskite superconductors.
B that can synthesize K phase with high purity and in a short time, has a sufficiently high critical temperature, and has a sufficiently large critical type 2it density.
An i-layer perovskite superconducting film can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られた膜のX線回折パターンを
示す図、 第2図は本発明により得られた膜のSEM観察による膜
の微細構造を示す図、 第3図は本発明により得られた膜の電気抵抗の温度変化
を示す図、 第4図は比較例の方法により得られた膜のX線回折パタ
ーンを示す図である。 手 続 補 正 書 (方式) %式% 発明の名称 超伝導膜の製造方法 3゜ 補正をする者 事件との関係 特許出願伏 住所 神奈川県用崎市中原区上小田中1 5番地 名称 (522) 富士通株式会社 代表者 山 本 卓 眞 4゜
Fig. 1 shows the X-ray diffraction pattern of the film obtained according to the present invention, Fig. 2 shows the fine structure of the film obtained by SEM observation of the film obtained according to the present invention, and Fig. 3 shows the X-ray diffraction pattern of the film obtained according to the present invention. FIG. 4 is a diagram showing the temperature change in electrical resistance of the obtained film. FIG. 4 is a diagram showing the X-ray diffraction pattern of the film obtained by the method of the comparative example. Procedural amendment (method) % formula % Name of the invention Method for manufacturing superconducting membranes 3゜Relationship with the case Patent application address Address 1-5 Kamiodanaka, Nakahara-ku, Yozaki-shi, Kanagawa Name (522) Fujitsu Stock Company representative Takuma Yamamoto 4゜

Claims (1)

【特許請求の範囲】  Bi系層状ペロブスカイト型超伝導膜を製造する工程
において、基板上に該超伝導膜を合成するための酸化物
の膜を堆積した該酸化物の金属元素の成分が以下の式で
表されることを特徴とする超伝導膜の製造方法。 Bi:Pb:Sr:Ca:Cu=s:t:l:u:v但
し0<s<1.5,0.5<t<1.5 0<u<1.5,1.5<v<1.7
[Claims] In the process of manufacturing a Bi-based layered perovskite superconducting film, an oxide film is deposited on a substrate to synthesize the superconducting film, and the components of the metal elements of the oxide are as follows: A method for producing a superconducting film characterized by being represented by the following formula. Bi:Pb:Sr:Ca:Cu=s:t:l:u:v However, 0<s<1.5, 0.5<t<1.5 0<u<1.5, 1.5<v <1.7
JP1144502A 1988-11-29 1989-06-06 Method for manufacturing superconducting membrane Pending JPH0310083A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1144502A JPH0310083A (en) 1989-06-06 1989-06-06 Method for manufacturing superconducting membrane
CA002003850A CA2003850C (en) 1988-11-29 1989-11-24 Process for preparing a perovskite type superconductor film
KR1019890017434A KR930008648B1 (en) 1988-11-29 1989-11-29 Perovskite Superconductor Film Preparation Process
EP89312400A EP0372808B1 (en) 1988-11-29 1989-11-29 Process for preparing a perovskite type superconductor film
DE68928256T DE68928256T2 (en) 1988-11-29 1989-11-29 Process for producing a superconducting thin film of the perovskite type
US07/565,209 US5141917A (en) 1988-11-29 1990-08-09 Multilayer deposition method for forming Pb-doped Bi-Sr-Ca-Cu-O Superconducting films
US08/378,087 US5585332A (en) 1988-11-29 1995-01-25 Process for preparing a perovskite Bi-containing superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144502A JPH0310083A (en) 1989-06-06 1989-06-06 Method for manufacturing superconducting membrane

Publications (1)

Publication Number Publication Date
JPH0310083A true JPH0310083A (en) 1991-01-17

Family

ID=15363855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144502A Pending JPH0310083A (en) 1988-11-29 1989-06-06 Method for manufacturing superconducting membrane

Country Status (1)

Country Link
JP (1) JPH0310083A (en)

Similar Documents

Publication Publication Date Title
JP2545403B2 (en) Superconductor
JPH029721A (en) Metal oxide material
Ohbayashi et al. As‐grown superconducting Bi2Si2Ca2Cu3O x thin films with T c zero of 102 K prepared by rf magnetron sputtering
JPH02145761A (en) Manufacture of thin superconductor film
KR930008648B1 (en) Perovskite Superconductor Film Preparation Process
JPH0310083A (en) Method for manufacturing superconducting membrane
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2002068894A (en) A method and apparatus for producing a composite oxide thin film and a composite oxide thin film produced by the method.
JPH038722A (en) Production of superconducting film
JPH02252618A (en) Method for manufacturing Bi-based superconducting thin film
JPS63307614A (en) High-temperature oxide superconductor thin film
JP3251093B2 (en) Superconductor and method of manufacturing the same
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP2785038B2 (en) Manufacturing method of superconductor film
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH01219023A (en) Method for manufacturing superconductor thin film
JPH02311396A (en) Thin-film superconductor and its production
JPH02124717A (en) Oxide superconductor
JPH05194095A (en) Method for manufacturing thin film electric conductor
JPH02167827A (en) Thin-film superconductor
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH01105416A (en) Manufacture of thin film superconductor
JPH042181A (en) Thin film superconductor and manufacture thereof
JPH0848520A (en) Oxide superconductor and manufacturing method