[go: up one dir, main page]

JPH02289492A - Formation of artificial diamond coating film - Google Patents

Formation of artificial diamond coating film

Info

Publication number
JPH02289492A
JPH02289492A JP11012689A JP11012689A JPH02289492A JP H02289492 A JPH02289492 A JP H02289492A JP 11012689 A JP11012689 A JP 11012689A JP 11012689 A JP11012689 A JP 11012689A JP H02289492 A JPH02289492 A JP H02289492A
Authority
JP
Japan
Prior art keywords
artificial diamond
substrate
diamond
artificial
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11012689A
Other languages
Japanese (ja)
Inventor
Yuzo Osawa
大沢 雄三
Noribumi Kikuchi
菊池 則文
Yoshitaka Tamao
玉生 良孝
Hiroaki Yamashita
山下 博明
Munenori Kato
加藤 宗則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11012689A priority Critical patent/JPH02289492A/en
Publication of JPH02289492A publication Critical patent/JPH02289492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form an artificial diamond coating film in a short time by distributing fine diamond particles on the surface of a substrate and depositing artificial diamond by a thermoelectron radiating process or other process. CONSTITUTION:When an artificial diamond film is formed on the surface of a substrate by a thermoelectron radiating process, a high frequency plasma process or a microwave process, fine diamond powder of <=3mum particle size is previously distributed on the surface of the substrate so that 70-95% of the surface is covered with the powder. Since the fine diamond powder renders ruggedness to the surface of the substrate and has many horh-shaped projections, the reaction rate of deposition of artificial diamond is increased especially in the early stage of deposition and an artificial diamond coating film of a desired thickness can be formed in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、密着性のすぐれた人工ダイヤモンド皮膜を
速い析出速度で形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for forming an artificial diamond film with excellent adhesion at a high deposition rate.

[従来の技術] 従来、一般に、基体表面に人工ダイヤモンド皮膜を析出
形成する方法としては多数の方法が提案され、この中で
反応混合ガスを加熱し、活性化する手段として、 (a)  例えば特開昭511−91100号公報に記
載される熱電子放射材を用いる方法、 (b)  例えば特開昭58−135117号公報に記
載される高周波によるプラズマ放電を用いる方法、(C
)  例えば特開昭58−110494号公報に記載さ
れるマイクロ波によるプラズマ放電を用いる方法、など
が代表的方法として知られている。
[Prior Art] In general, many methods have been proposed for depositing and forming an artificial diamond film on the surface of a substrate. A method using a thermionic emitting material described in JP-A No. 511-91100, (b) A method using plasma discharge by high frequency as described in, for example, JP-A No. 58-135117, (C
) For example, a method using plasma discharge using microwaves described in Japanese Unexamined Patent Publication No. 58-110494 is known as a typical method.

また、この人工ダイヤモンド皮膜の実用化が、(t)W
CC超超硬合金TICIC−メット、さらにAI  O
系あるいは5t3N4系セラミツ、23 クスなどの材料が用いられる各種切削工具や耐摩耗工具
、 (2)各種半導体装置の構成部材である半導体素子や基
板、さらに放熱板、 (3)  各種ガラスレンズ、 (4)  1@気抵抗変化を利用するサーミスタ、など
各種分野で検討されている。
In addition, the practical application of this artificial diamond film is (t)W
CC cemented carbide TICIC-Met, plus AIO
(2) Semiconductor elements and substrates that are components of various semiconductor devices, as well as heat sinks, (3) Various glass lenses, 4) 1@It is being studied in various fields such as thermistors that utilize changes in air resistance.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの従来方法においては、いずれも共通し
て反応初期における人工ダイヤモンドの析出速度が遅く
、したがって所定の膜厚を有する人工ダイヤモンド皮膜
を析出形成するには、かなりの反応時間を必要とするの
が現状である。
However, in all of these conventional methods, the precipitation rate of artificial diamond at the initial stage of the reaction is slow, and therefore a considerable reaction time is required to deposit and form an artificial diamond film having a predetermined thickness. is the current situation.

[3題を解決するための手段〕 そこで、本発明者等は、上述のような観点から、特に人
工ダイヤモンドの析出反応初期に着目し、この時期にお
ける人工ダイヤモンドの析出反応の高速化をはかるべく
研究を行なった結果、人工ダイヤモンド皮膜を形成しよ
うとする基体表面上に、予め粒度:3tm以下の微細ダ
イヤモンド粉末を70〜95%の平面面積率で分布させ
ておき、この状態で通常の熱電子放射法、高周波プラズ
マ法、あるいはマイクロ波法を用い、人工ダイヤモンド
析出処理を施すと、前記微細ダイヤモンド粉末が、ダイ
ヤモンド結晶核として作用するばかりでなく、主として
炭化水素と水素で構成される反応混合ガスによって活性
化されることから、析出反応初期であるにもかかわらず
、前記微細ダイヤモンド粉末を中心に、きわめて速い速
度で人工ダイヤモンドの析出反応が起り、膜状に成長す
るようになることから、短時間での人工ダイヤモンド皮
膜の形成が可能となるという知見を得たのである。
[Means for Solving the Three Problems] Therefore, from the above-mentioned viewpoint, the present inventors focused particularly on the early stage of the precipitation reaction of artificial diamond, and in order to speed up the precipitation reaction of artificial diamond during this period. As a result of research, it was found that fine diamond powder with a particle size of 3 tm or less was distributed in advance at a planar area ratio of 70 to 95% on the surface of the substrate on which an artificial diamond film was to be formed, and in this state normal thermionic When artificial diamond precipitation is performed using a radiation method, high-frequency plasma method, or microwave method, the fine diamond powder not only acts as a diamond crystal nucleus but also forms a reaction mixture gas mainly composed of hydrocarbons and hydrogen. As a result, even though the precipitation reaction is still in the early stages, the precipitation reaction of artificial diamond occurs at an extremely high speed centering on the fine diamond powder, and the artificial diamond grows into a film, resulting in a short period of time. They obtained the knowledge that it is possible to form an artificial diamond film in just a few hours.

この発明は、上記知見にもとづいてなされたものであっ
て、熱電子放射法、高周波プラズマ法、あるいはマイク
ロ波法を用いて基体表面に人工ダイヤモンド皮膜を形成
するに先だって、予め前記基体表面上に粒度:3−以下
の微細ダイヤモンド粉末を70〜95%の平面面積率で
分布させておき、この微細ダイヤモンド粉末の分布特有
の基体表面凹凸化効果、並びに粉末表面上の多数の角状
突起効果(粉末自体がダイヤモンド独得の角ばった形状
をもつため、表面上に多数の突起が存在することになる
)によって、特に析出処理初期における人工ダイヤモン
ドの析出反応速度を著しく高め、もって短時間で所望の
厚さの人工ダイヤモンド皮膜を形成する方法に特徴を有
するものである。
This invention was made based on the above knowledge, and prior to forming an artificial diamond film on the surface of a substrate using the thermionic emission method, high frequency plasma method, or microwave method, Particle size: 3- or less fine diamond powder is distributed at a plane area ratio of 70 to 95%, and the unevenness effect on the substrate surface peculiar to the distribution of this fine diamond powder, as well as the effect of many angular protrusions on the powder surface ( Because the powder itself has an angular shape unique to diamond, there are many protrusions on the surface), which significantly increases the precipitation reaction rate of artificial diamond, especially in the early stages of the precipitation process, allowing the desired thickness to be achieved in a short time. This method is characterized by the method of forming the artificial diamond film.

なお、この発明の方法において、ダイヤモンド粉末の粒
度を3tna以下としたのは、その粒度が3−を越える
と、所望のダイヤモンド粉末分布効果、すなわち析出処
理初期における人工ダイヤモンド析出反応促進効果が得
られないからであり、またダイヤモンド粉末の分布平面
面積率を70〜95%と定めたのは、その面積率が70
%未満では、ダイヤモンド粉末の分布割合が少なすぎて
、所望のすぐれた人工ダイヤモンド析出反応促進効果が
得られず、一方その面積率が95%を越えると、基体表
面がほとんどダイヤモンド粉末で覆われた状態となり、
この状態で析出処理を行なうと、形成された人工ダイヤ
モンド皮膜の基体表面に対する密着性が低下するよへに
なるという理由にもとづくものである。
In addition, in the method of the present invention, the particle size of the diamond powder is set to 3 tna or less because if the particle size exceeds 3-tna, the desired diamond powder distribution effect, that is, the effect of promoting the artificial diamond precipitation reaction in the early stage of the precipitation process is not obtained. The reason why the distribution plane area ratio of diamond powder was set at 70 to 95% is because the area ratio is 70%.
If the area ratio is less than 95%, the distribution ratio of the diamond powder is too small and the desired excellent effect of promoting the artificial diamond precipitation reaction cannot be obtained. On the other hand, if the area ratio exceeds 95%, the surface of the substrate is almost covered with the diamond powder. state,
This is based on the reason that if the precipitation treatment is carried out in this state, the adhesion of the formed artificial diamond film to the substrate surface will deteriorate.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

基体として、いずれも平面: 20mm X 2011
1%厚さ:1鰭の寸法を有し、かつそれぞれ第1表に示
される材質のチップ基板を用意し、このチップ基板の表
面上に、第1表に示される粒度のダイヤモンド粉末をア
セトンと混合した状態で散布し、アセトン蒸発を行なっ
て、同じく第1表に示される平面面積率でのダイヤモン
ド粉末分布とし、ついで第1図に概略断面図で示される
熱電子放射法の実施装置、同じく第2図に示される高周
波プラズマ法の実施装置、さらに同じく第3図に示され
るマイクロ波法の実施装置を用い、上記ダイヤモンド粉
末表面分布のチップ基板に、同じく第1表に示される析
出処理条件で人工ダイヤモンド皮膜を形成することによ
り本発明法1〜18をそれぞれ実施した。
Both are flat as a base: 20mm x 2011
Prepare a chip substrate having the dimensions of 1% thickness: 1 fin and made of the material shown in Table 1, and add diamond powder with the particle size shown in Table 1 onto the surface of this chip substrate with acetone. The mixed state is dispersed, and acetone is evaporated to obtain a diamond powder distribution with the plane area ratio shown in Table 1. Then, the apparatus for carrying out the thermionic emission method shown in a schematic cross-sectional view in FIG. Using the apparatus for implementing the high-frequency plasma method shown in FIG. 2 and the apparatus for performing the microwave method shown in FIG. Each of Methods 1 to 18 of the present invention was carried out by forming an artificial diamond film.

また、比較の目的で、チップ基板表面上にダイヤモンド
粉末の散布を行なわない以外は、同一の条件で人工ダイ
ヤモンド皮膜を形成することにより従来法1〜18をそ
れぞれ実施した。
For comparison purposes, Conventional Methods 1 to 18 were each carried out by forming an artificial diamond film under the same conditions except that diamond powder was not sprinkled on the surface of the chip substrate.

なお、第1図1こ示される熱電子放射法の実施装置では
、石英製縦型反応容器1内の上方位置に開ロする反応混
合ガス導入口2から流入した、主として炭化水素と水素
で構成された反応混合ガスを、その下方位置に配置され
た、熱電子放射材としての例えば金属タングステン製フ
ィラメント3および台板4上に支持された基体5に向っ
て流し、この間、反応容器1内の雰囲気圧力を0.1〜
300【0「「に保持すると共に、フィラメント3を1
500〜2500℃に加熱して、反応混合ガスの加熱活
性化と、所定間隔をおいて下方配置された基体表面温度
を300−1300℃とする加熱を行ない、この状態で
所定時間の反応を行なわしめることにより前記基体5の
表面に所定厚さの人工ダイヤモンド皮膜の形成が行なわ
れる。
In the apparatus for carrying out the thermionic emission method shown in FIG. The reactant mixed gas is caused to flow toward a filament 3 made of, for example, metal tungsten as a thermionic emitting material and a substrate 5 supported on a base plate 4 disposed below it, and during this time, the inside of the reaction vessel 1 is Atmospheric pressure from 0.1 to
300" while holding filament 3 at 1
The reaction mixture gas is heated to 500 to 2500°C to activate it, and the surface temperature of the substrate placed below is heated to 300 to 1300°C at predetermined intervals, and the reaction is carried out for a predetermined time in this state. By tightening, an artificial diamond film of a predetermined thickness is formed on the surface of the base 5.

また、第2図に示される高周波プラズマ法の実施装置で
は、石英製横型反応容器1内の中央部に基体5が置かれ
、この反応容器1の一方側に設けた反応混合ガス導入管
2からは主として炭化水素と水素で構成された反応混合
ガスが流入され、反応容器1の他方側からは排気が行な
われ、この間、反応容器1内の雰囲気圧力を数torr
〜数10tOrrに保持すると共に、反応容器1の中央
部外周に設けた高周波コイル6には、例えば周波数: 
13.56MHz。
In addition, in the high-frequency plasma method implementation apparatus shown in FIG. A reaction mixture gas mainly composed of hydrocarbons and hydrogen is flowed into the reaction vessel 1, and exhaust is performed from the other side of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel 1 is kept at several torr.
~ several tens of tOrr, and the high frequency coil 6 provided on the outer periphery of the central part of the reaction vessel 1 has a frequency of, for example:
13.56MHz.

出カニ500Wの条件で印加して反応容器1内の基体5
の周囲にプラズマ放電を誘起させ、このプラズマ放電に
よって反応混合ガスの加熱活性化と基体表面温度の上昇
がはかられ、この状態で所定時間の反応を行なわしめる
ことにより基体表面に所定厚さの人工ダイヤモンド皮膜
の形成が行なわれる。
The substrate 5 in the reaction vessel 1 was
A plasma discharge is induced around the substrate, and this plasma discharge heats and activates the reaction mixture gas and increases the substrate surface temperature. By allowing the reaction to occur for a predetermined period of time in this state, a predetermined thickness is formed on the substrate surface. Formation of an artificial diamond film takes place.

さらに、第3図に示されるマイクロ波法の実施装置では
、石英製縦型反応容器1内の中央位置に基体5が置かれ
、この反応容器1の上部に設けた反応混合ガス導入管2
から、主として炭化水素と水素で構成された反応混合ガ
スが流入され、一方反応容器1の下部からは排気がなさ
れ、この間、反応容器内の雰囲気圧力を0.1〜300
を評■ζ持しながら、反応容器1の中央部外周に設けた
導波管7を通して供給された、例えば2450MHzの
マイクロ波をプラズマ調整用プランジャ8によって調整
して、反応容器1内の基体5の周囲にプラズマ放電を発
生させ、このプラズマ放電によって反応混合ガスの加熱
活性化と基体表面温度の上昇がはかられ、この状態で所
定時間の反応を行なわしめることにより基体表面に所定
厚さの人工ダイヤモンド皮膜の形成が行なわれる。
Furthermore, in the microwave method implementation apparatus shown in FIG.
A reaction mixture gas consisting mainly of hydrocarbons and hydrogen is flowed in from the bottom of the reaction vessel 1, while exhaust is exhausted from the lower part of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel is maintained at 0.1 to 300%.
While maintaining the evaluation of A plasma discharge is generated around the substrate, and this plasma discharge heats and activates the reaction mixture gas and increases the substrate surface temperature. By allowing the reaction to take place for a predetermined period of time in this state, a predetermined thickness is formed on the substrate surface. Formation of an artificial diamond film takes place.

この結果形成された人工ダイヤモンド皮膜の平均厚さを
測定し、第1表に示したが、従来法1〜18では人工ダ
イヤモンド皮膜の形成が行なわれず、粒状の人工ダイヤ
モンドが基体表面上に分散分布した状態であったので、
その単位当り(C−)の個数をim定した。
The average thickness of the artificial diamond film formed as a result was measured and shown in Table 1. However, in conventional methods 1 to 18, no artificial diamond film was formed, and the granular artificial diamond was dispersed and distributed on the substrate surface. Since the situation was
The number of (C-) per unit was determined as im.

〔発明の効果〕 第1表に示される結果から明らかなように、本発明法1
〜18では、いずれの場合も前処理としてダイヤモンド
粉末の基体表面上分布処理により短時間の析出処理でか
なりの厚さの人工ダイヤモンド皮膜を形成することがで
きるのに対して、ダイヤモンド粉末の分布処理を行なわ
ない従来法1〜18では、析出反応速度が遅く、短時間
の析出処理では人工ダイヤモンド皮膜の形成がなされず
、粒状ダイヤモンドの分散生成が見られるだけである。
[Effect of the invention] As is clear from the results shown in Table 1, the present invention method 1
~18, in any case, an artificial diamond film of considerable thickness can be formed in a short time precipitation treatment by distributing diamond powder on the surface of the substrate as a pretreatment, whereas distribution treatment of diamond powder In conventional methods 1 to 18 in which this step is not carried out, the precipitation reaction rate is slow, and an artificial diamond film is not formed in the short-time precipitation treatment, and only the dispersed formation of granular diamond is observed.

上述のように、従来析出反応速度がきわめて遅く、所定
厚さの大王ダイヤモンド皮膜を形成するのに長時間の析
出処理時間を必要としていたが、この発明の方法によれ
ば、析出処理前に、基体表面上に微細ダイヤモンド粉末
を分散分布しておくだけで、きわめて速い析出反応速度
で人工ダイヤモンド皮膜を形成することができるのであ
る。
As mentioned above, in the past, the precipitation reaction rate was extremely slow and a long time was required for the precipitation process to form a Daio diamond film of a predetermined thickness, but according to the method of the present invention, before the precipitation process, By simply dispersing fine diamond powder on the surface of a substrate, an artificial diamond film can be formed at an extremely fast precipitation reaction rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱電子放射法の実施装置を示す概略断面図、第
2図は高周波プラズマ法の実施装置を示す概略断面図、
第3図はマイクロ波法の実施装置を示す概略断面図であ
る。 1・・・反応容器、   2・・・反応混合ガス導入管
、3・・・熱電子放射材、 4・・・台 板、5・・・
基 板、    6・・・高周波コイル、7・・・導波
管、     8・・・プランジャ。
FIG. 1 is a schematic sectional view showing an apparatus for implementing the thermionic emission method, FIG. 2 is a schematic sectional view showing an apparatus for implementing the high-frequency plasma method,
FIG. 3 is a schematic cross-sectional view showing an apparatus for implementing the microwave method. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Reaction mixed gas introduction pipe, 3... Thermionic emission material, 4... Base plate, 5...
Substrate, 6...High frequency coil, 7... Waveguide, 8... Plunger.

Claims (1)

【特許請求の範囲】[Claims] (1)基体表面上に、粒度:3μm以下の微細ダイヤモ
ンド粉末を70〜95%の平面面積率で分布させ、この
状態から熱電子放射法、高周波プラズマ法、またはマイ
クロ波法による人工ダイヤモンド析出処理を施して、前
記基体表面に人工ダイヤモンド皮膜を形成することを特
徴とする人工ダイヤモンド皮膜の形成方法。
(1) Fine diamond powder with a particle size of 3 μm or less is distributed on the surface of the substrate at a planar area ratio of 70 to 95%, and from this state artificial diamond precipitation is performed using thermionic emission method, high-frequency plasma method, or microwave method. A method for forming an artificial diamond film, comprising: forming an artificial diamond film on the surface of the substrate.
JP11012689A 1989-04-28 1989-04-28 Formation of artificial diamond coating film Pending JPH02289492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11012689A JPH02289492A (en) 1989-04-28 1989-04-28 Formation of artificial diamond coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11012689A JPH02289492A (en) 1989-04-28 1989-04-28 Formation of artificial diamond coating film

Publications (1)

Publication Number Publication Date
JPH02289492A true JPH02289492A (en) 1990-11-29

Family

ID=14527689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11012689A Pending JPH02289492A (en) 1989-04-28 1989-04-28 Formation of artificial diamond coating film

Country Status (1)

Country Link
JP (1) JPH02289492A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138395A (en) * 1985-12-09 1987-06-22 Kyocera Corp Diamond film manufacturing method
JPS6418991A (en) * 1987-07-10 1989-01-23 Matsushita Electric Ind Co Ltd Formation of diamond thin film
JPH0218392A (en) * 1988-05-27 1990-01-22 Xerox Corp Production of polycrystalline diamond film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138395A (en) * 1985-12-09 1987-06-22 Kyocera Corp Diamond film manufacturing method
JPS6418991A (en) * 1987-07-10 1989-01-23 Matsushita Electric Ind Co Ltd Formation of diamond thin film
JPH0218392A (en) * 1988-05-27 1990-01-22 Xerox Corp Production of polycrystalline diamond film

Similar Documents

Publication Publication Date Title
US5306530A (en) Method for producing high quality thin layer films on substrates
US6340499B1 (en) Method to increase gas residence time in a reactor
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
US3845738A (en) Vapor deposition apparatus with pyrolytic graphite heat shield
JPH04304290A (en) Phosphor and its manufacture
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPS6327319B2 (en)
JPH02289492A (en) Formation of artificial diamond coating film
Sequeda Thin film deposition techniques in microelectronics
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
TW594853B (en) The manufacturing method of diamond film and diamond film
US4390571A (en) Boatless point source evaporation method
JPH0366280B2 (en)
JPS6286161A (en) Method for forming artificial diamond film with fast precipitation formation rate
JPH0793191B2 (en) Method of manufacturing thin film EL device
JPH05102077A (en) Manufacture of semiconductor device
JPH0797690A (en) Plasma cvd device
JPS6261109B2 (en)
JPS5915983B2 (en) Formation method of boron film
JPS63270394A (en) Flow type method for synthesizing diamond and apparatus therefor
JPH0234917B2 (en)
JPH0427690B2 (en)
JP2646582B2 (en) Plasma CVD equipment
JPS59177919A (en) Selective growth of thin film
JPH0237087B2 (en)