[go: up one dir, main page]

JPH04304290A - Phosphor and its manufacture - Google Patents

Phosphor and its manufacture

Info

Publication number
JPH04304290A
JPH04304290A JP9316191A JP9316191A JPH04304290A JP H04304290 A JPH04304290 A JP H04304290A JP 9316191 A JP9316191 A JP 9316191A JP 9316191 A JP9316191 A JP 9316191A JP H04304290 A JPH04304290 A JP H04304290A
Authority
JP
Japan
Prior art keywords
phosphor
microwave plasma
phosphor particles
diamond
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9316191A
Other languages
Japanese (ja)
Other versions
JP2967559B2 (en
Inventor
Kanji Bando
板東 完治
Katsunori Uchimura
内村 勝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP9316191A priority Critical patent/JP2967559B2/en
Publication of JPH04304290A publication Critical patent/JPH04304290A/en
Application granted granted Critical
Publication of JP2967559B2 publication Critical patent/JP2967559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a new phosphor improved in thermal quenching, chemical stability and service life and a method of manufacture thereof by utilizing the excellent thermal conductivity, light transmittance, and chemical stability of diamond. CONSTITUTION:A phosphor which has a thin diamond layer deposited on the surface of phosphor particles by the microwave plasma method. A method of manufacture of the phosphor comprises generating microwave plasma in a part of the interior of a rotating reactor 4 isolated from the air and kept under a reduced pressure inside, and continuously supplying phosphor particles 12 by the rotation and gradient of the reactor 4 to the region 36 where microwave plasma is generated while blowing a hydrogenmethane gas mixture 10 into the region 36, thus forming a thin diamond layer on the surfaces of the phosphor particles 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、マイクロ波プラズマ法
により蛍光体粒子表面上にダイヤモンド薄膜層を形成さ
せ、ダイヤモンドの優れた熱伝導性、光透過特性及び化
学的安定性を利用することによって温度消光、化学的安
定性及び寿命の改善をした新規な蛍光体及びその製造方
法に関する。
[Industrial Application Field] The present invention forms a diamond thin film layer on the surface of phosphor particles by microwave plasma method, and utilizes diamond's excellent thermal conductivity, light transmission characteristics, and chemical stability. This invention relates to a new phosphor with improved temperature quenching, chemical stability and lifetime, and a method for producing the same.

【0002】0002

【従来の技術】近年、基板表面に膜状ダイヤモンドを安
定して合成する方法として、マイクロ波プラズマ法が注
目されている。このマイクロ波プラズマ法では、例えば
、特開昭58−110494号公報に示されるように、
マイクロ波プラズマ中を透過させた水素−メタン混合ガ
スを、300℃〜1300℃に加熱した基板表面に導入
し、炭化水素の熱分解によりダイヤモンドを基板表面に
析出させることができる。
2. Description of the Related Art In recent years, a microwave plasma method has been attracting attention as a method for stably synthesizing diamond film on the surface of a substrate. In this microwave plasma method, for example, as shown in Japanese Patent Application Laid-Open No. 58-110494,
Hydrogen-methane mixed gas transmitted through microwave plasma is introduced onto the substrate surface heated to 300° C. to 1300° C., and diamond can be deposited on the substrate surface by thermal decomposition of hydrocarbons.

【0003】0003

【発明が解決しようとする課題】しかしながら、上述の
マイクロ波プラズマ法では、モリブデン、シリコンウエ
ハー等の基板表面にダイヤモンドを析出するものであり
、基板と異なる粉体粒子に直接に適用するには特別な工
夫が必要であり、例えば、特開昭59−137311号
公報、特開昭63−270394号公報等のように流動
層を形成し粉体表面にダイヤモンドを析出させる方法が
提案されているけれども、これらの方法は本質的にバッ
チ処理であって、工業的に量産化を図る場合の連続的な
処理には、装置が煩雑になるので、不向きである。また
、蛍光体粒子のように数μmの微粒子の流動化は極めて
困難であり、数μmの粉体粒子表面にダイヤモンドを析
出する新規な方法の開発が望まれている。
[Problem to be Solved by the Invention] However, in the above-mentioned microwave plasma method, diamond is deposited on the surface of a substrate such as molybdenum or silicon wafer, and it is difficult to apply it directly to powder particles different from the substrate. For example, methods have been proposed in which a fluidized bed is formed and diamond is precipitated on the powder surface, as in JP-A-59-137311 and JP-A-63-270394. These methods are essentially batch processes, and are not suitable for continuous processing in the case of industrial mass production because the equipment becomes complicated. Furthermore, it is extremely difficult to fluidize fine particles of several micrometers such as phosphor particles, and it is desired to develop a new method for depositing diamond on the surface of powder particles of several micrometers.

【0004】一方、蛍光体においては、近年、テレビや
ディスプレイの画面の高精細化及び大型化に伴って発光
面の高輝度化が望まれているにもかかわらず、励起する
電子線における高負荷、高電流によって蛍光面の蛍光体
粒子における輝度飽和特性、温度特性、寿命等の問題が
発生し、蛍光面の輝度向上が停滞している。特に、蛍光
体を励起する電流、電圧の高い投写管において、蛍光体
の輝度飽和特性、温度特性及び寿命を改善することが顕
著に望まれている。
On the other hand, with regard to phosphors, although in recent years there has been a desire for higher brightness of the light-emitting surface due to the higher definition and larger size of television and display screens, the high load of the excited electron beam has increased. The high current causes problems such as the brightness saturation characteristics, temperature characteristics, and life span of the phosphor particles in the phosphor screen, and the improvement in the brightness of the phosphor screen is stagnant. In particular, in projection tubes in which the current and voltage for exciting the phosphors are high, it is strongly desired to improve the brightness saturation characteristics, temperature characteristics, and lifespan of the phosphors.

【0005】従って、本発明の目的は、ダイヤモンドの
持つ優れた熱伝導性、光透過特性及び化学的安定性を利
用することによって温度消光、化学的安定性及び寿命の
改善をした新規な蛍光体及びその製造方法を提供するこ
とにある。
[0005] Therefore, the object of the present invention is to provide a new phosphor that has improved temperature quenching, chemical stability, and lifetime by utilizing the excellent thermal conductivity, light transmission characteristics, and chemical stability of diamond. An object of the present invention is to provide a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、マイクロ
波プラズマ法によって蛍光体粒子表面に良質のダイヤモ
ンド薄膜層を形成させるべく、まず、数μmの蛍光体粒
子に適合し、しかも、工業的に有用な粉体粒子の連続運
転可能な装置を新たに開発し、蛍光体粒子の表面に所望
の厚みのダイヤモンド薄膜層を形成させることに新たに
成功した。
[Means for Solving the Problems] In order to form a high-quality diamond thin film layer on the surface of phosphor particles by a microwave plasma method, the present inventors have first developed a method that is suitable for phosphor particles of several μm and that is suitable for industrial use. We have developed a new device capable of continuous operation of powder particles, which is useful in terms of productivity, and have succeeded in forming a diamond thin film layer of a desired thickness on the surface of phosphor particles.

【0007】即ち、本発明の蛍光体は、マイクロ波プラ
ズマ法により付着されたダイヤモンド薄膜層を蛍光体粒
子表面に有してなることを特徴とする。
That is, the phosphor of the present invention is characterized in that it has a diamond thin film layer deposited by a microwave plasma method on the surface of the phosphor particles.

【0008】また、本発明の蛍光体の製造方法は、外気
から気密に遮断され内部が減圧に保持された回転反応容
器内の一部にマイクロ波プラズマを発生させ、このマイ
クロ波プラズマ発生領域に水素−メタン混合ガスを導入
すると同時に、回転反応容器の回転と勾配により蛍光体
粒子をマイクロ波プラズマ発生領域に連続的に供給し、
これにより、蛍光体粒子表面にダイヤモンド薄膜層を形
成することを特徴とする。
[0008] Furthermore, in the method for producing a phosphor of the present invention, microwave plasma is generated in a part of a rotating reaction vessel that is airtightly isolated from the outside air and maintained at a reduced pressure inside, and the microwave plasma is generated in the microwave plasma generation region. At the same time as hydrogen-methane mixed gas is introduced, phosphor particles are continuously supplied to the microwave plasma generation region by rotating and tilting the rotating reaction vessel.
This method is characterized in that a diamond thin film layer is formed on the surface of the phosphor particles.

【0009】[0009]

【作用】マイクロ波プラズマ法により蛍光体粒子表面上
に均一なダイヤモンド薄膜層を形成させることにより、
ダイヤモンドの優れた熱伝導性、光透過特性及び化学的
安定性を利用することができ、温度消光、化学的安定性
及び寿命を改善することができる。このことを以下に箇
条書きする。■特に、蛍光膜の昇温が大きい場合に使用
する蛍光体、例えば、投写管用蛍光体にダイヤモンド薄
膜層を被覆することにより、熱発散性ができ、温度消光
による輝度劣化が改善できる。■均一なダイヤモンド薄
膜層により、イオン焼けや粒子表面の組成変化がない。 ■外部からの不純物の拡散によるカラーセンタの形成が
ない。■従来、加水分解により劣化が著しい蛍光体、例
えば、アルカリ土類金属塩蛍光体、ランタン酸硫化物蛍
光体等の改善が図れる。■蛍光体表面が同種のダイヤモ
ンド薄膜層であるので、蛍光体の母体組成が異なっても
、塗布特性の均一化が図れる。■蛍光体表面が均一なダ
イヤモンド薄膜層であるので、塗膜するガラス表面との
密着性を図ることができる。
[Operation] By forming a uniform diamond thin film layer on the surface of the phosphor particles using the microwave plasma method,
Diamond's excellent thermal conductivity, light transmission properties and chemical stability can be utilized to improve temperature quenching, chemical stability and lifetime. This is itemized below. (2) In particular, by coating a phosphor used when the temperature of the phosphor film is large, such as a phosphor for a projection tube, with a diamond thin film layer, heat dissipation is achieved, and brightness deterioration due to temperature quenching can be improved. ■ Uniform diamond thin film layer prevents ion burning and compositional changes on particle surfaces. ■No color center is formed due to diffusion of impurities from the outside. (2) It is possible to improve phosphors that conventionally deteriorate significantly due to hydrolysis, such as alkaline earth metal salt phosphors and lanthanum oxysulfide phosphors. (2) Since the surface of the phosphor is a diamond thin film layer of the same type, uniform coating characteristics can be achieved even if the phosphor matrix composition differs. ■Since the surface of the phosphor is a uniform diamond thin film layer, it is possible to improve adhesion to the glass surface to be coated.

【0010】また、本発明の蛍光体の製造方法により、
簡単にしかも工業的に連続的に、蛍光体粒子表面上に所
望の厚さのダイヤモンド薄膜層を形成させることができ
、温度消光、化学的安定性及び寿命の改善をした蛍光体
を得ることができる。
[0010] Furthermore, according to the method for producing a phosphor of the present invention,
A diamond thin film layer of a desired thickness can be easily and industrially and continuously formed on the surface of phosphor particles, and a phosphor with improved temperature quenching, chemical stability, and lifetime can be obtained. can.

【0011】[0011]

【実施例】以下、図面を参照しながら、本発明の実施例
について詳述するが、実施例の説明に先立ち、本発明の
実施に際して、本発明者等が新規に開発したダイヤモン
ド被覆装置について説明する。
[Example] Hereinafter, examples of the present invention will be described in detail with reference to the drawings.Prior to the description of the examples, a diamond coating device newly developed by the present inventors will be explained for carrying out the present invention. do.

【0012】図1には、粉体粒子表面上に所望のダイヤ
モンド薄膜層を被覆することのできるダイヤモンド被覆
装置の概略断面図が示されている。この装置は、基台に
好適なローラ手段2を介して両端部を回転可能に支持さ
れると共に任意の傾斜角度を保持可能である管状の回転
反応容器4を有している。
FIG. 1 shows a schematic cross-sectional view of a diamond coating apparatus capable of coating a desired diamond thin film layer on the surface of powder particles. This apparatus has a tubular rotating reaction vessel 4 which is rotatably supported at both ends by a base via suitable roller means 2 and is capable of holding any inclination angle.

【0013】回転反応容器4の傾斜上部側の一端部(図
1左側)には、ロータージョイント6を介して、粉体供
給のためのスクリューフィーダ8に気密に接続されてい
る。このスクリューフィーダ8の一端部は、ダイヤモン
ドを析出するため、原料ガス供給口を介して少なくとも
メタン−水素混合ガスを含む原料ガス源10に気密に接
続されており、また、スクリューフィーダ8の一端部の
上部には、粉体供給器12が設けられており、この粉体
供給器12は背圧ガス口を介して水素ガスの背圧ガス源
14に接続されている。
One end of the rotating reaction vessel 4 on the inclined upper side (left side in FIG. 1) is airtightly connected via a rotor joint 6 to a screw feeder 8 for supplying powder. One end of the screw feeder 8 is airtightly connected to a source gas source 10 containing at least methane-hydrogen mixed gas via a source gas supply port in order to deposit diamond. A powder supply device 12 is provided at the top of the device, and this powder supply device 12 is connected to a back pressure gas source 14 of hydrogen gas via a back pressure gas port.

【0014】一方、回転反応容器4の傾斜下部側の一端
部(図1右側)には、ロータージョイント16を介して
、粉体を補集するための補集器18が気密に設けられて
おり、この補集器18の下部には粉体補集部20が設け
られている。そして、この補集器18の上部にはガス輸
送管22が接続され、このガス輸送管22はバグフィル
タ24を介してさらに別な輸送管26に接続されている
。粉体の粒径によっては、即ち、微粒子の粉体の場合に
は、バグフィルタ24の下部に粉体が補集される。
On the other hand, a collector 18 for collecting powder is airtightly provided at one end of the lower inclined side of the rotating reaction vessel 4 (on the right side in FIG. 1) via a rotor joint 16. A powder collecting section 20 is provided at the lower part of the collector 18. A gas transport pipe 22 is connected to the upper part of the collector 18, and this gas transport pipe 22 is further connected to another transport pipe 26 via a bag filter 24. Depending on the particle size of the powder, that is, in the case of fine powder, the powder is collected at the lower part of the bag filter 24.

【0015】ところで、回転反応器4はマイクロ波キャ
ビティ28の中を通過するように設置されており、この
マイクロ波キャビティ28は導波管30を通じてマイク
ロ波発振器32に連結されている。このマイクロ波発振
器32と回転反応器4を挟んで対向した導波管30の他
方には、マイクロ波を反射さすためのプランジャ34が
配置されている。運転時、回転反応器4内の中央部には
、マイクロ波発振器32からのマイクロ波が回転反応容
器4を通過し、マイクロ波キャビティ28及びプランジ
ャ34の働きによってマイクロ波プラズマ反応領域36
が形成される。
By the way, the rotary reactor 4 is installed so as to pass through a microwave cavity 28, and this microwave cavity 28 is connected to a microwave oscillator 32 through a waveguide 30. A plunger 34 for reflecting microwaves is disposed on the other side of the waveguide 30 that faces the microwave oscillator 32 with the rotating reactor 4 in between. During operation, microwaves from a microwave oscillator 32 pass through the rotating reaction vessel 4 and a microwave plasma reaction area 36 is generated in the center of the rotating reactor 4 by the action of the microwave cavity 28 and the plunger 34.
is formed.

【0016】また、図2を参照すれば、明きらかなよう
に、回転反応器4の内部には、粉体粒子を安定供給する
と共にマイクロ波プラズマ反応領域26への送りにおい
て各粒子上にダイヤモンドを析出させるため、撹拌羽3
8が形成されており、回転反応器4の回転に伴い、粉体
が回転反応器4における傾斜方向に沿って漸次粒子分散
状態で安定して供給される。
Referring to FIG. 2, as is clear, powder particles are stably supplied into the rotary reactor 4, and diamond is coated on each particle during feeding to the microwave plasma reaction region 26. In order to precipitate the
8 is formed, and as the rotary reactor 4 rotates, the powder is stably supplied in a gradually dispersed state along the inclination direction of the rotary reactor 4.

【0017】次に、このように構成されたダイヤモンド
被覆装置の作動について述べる。
Next, the operation of the diamond coating apparatus constructed as described above will be described.

【0018】まず、図示しない真空ポンプによって輸送
管26、バグフィルタ24、輸送管22及び補集器18
を介して、回転反応容器4内、導波管30及びスクリュ
ーフィーダ8内が所定圧力まで減圧される。同時に、原
料ガス源10から原料ガスがスクリューフィーダを介し
て回転反応容器4内及び導波管30内に供給され、同時
にマイクロ波発振器32の稼働により、導波管30及び
プランジャ34によってマイクロ波プラズマが開口26
を介して回転反応容器4内に導入され、原料ガスから励
起状態の炭化水素、励起状態又は原子状態の水素が生成
され、これにより、マイクロ波プラズマ反応領域36が
形成される。
First, the transport pipe 26, bag filter 24, transport pipe 22 and collector 18 are removed by a vacuum pump (not shown).
The pressure inside the rotating reaction vessel 4, the waveguide 30, and the screw feeder 8 is reduced to a predetermined pressure via the . At the same time, raw material gas is supplied from the raw material gas source 10 through the screw feeder into the rotating reaction vessel 4 and into the waveguide 30, and at the same time, by operating the microwave oscillator 32, the waveguide 30 and the plunger 34 generate microwave plasma. is opening 26
Hydrocarbons in an excited state, hydrogen in an excited state or an atomic state are generated from the raw material gas, and thereby a microwave plasma reaction region 36 is formed.

【0019】一方、粉体粒子が粉体供給器12及びスク
リューフィーダ8を介して回転反応容器4内に供給され
、回転反応容器4内に供給された粉体は、原料ガス源1
0からの原料ガスの供給により流動性を増して、撹拌羽
38によりマイクロ波プラズマ反応領域26に漸次供給
される。尚、粒子はマイクロ波とプラズマの作用により
、所定の温度に加熱されている。
On the other hand, powder particles are supplied into the rotating reaction vessel 4 via the powder supply device 12 and the screw feeder 8, and the powder supplied into the rotating reaction vessel 4 is supplied to the raw material gas source 1.
The fluidity is increased by supplying the raw material gas from 0, and the raw material gas is gradually supplied to the microwave plasma reaction region 26 by the stirring blade 38. Note that the particles are heated to a predetermined temperature by the action of microwaves and plasma.

【0020】そして、マイクロ波プラズマ反応領域36
で励起した水素及び炭化水素が搬送して、複数の種類の
炭化水素ラジカルが生じ、これらが素になって、マイク
ロ波プラズマ反応領域内での粉体表面にダイヤモンド薄
膜層が被覆される。その後、再び、回転反応容器4の回
転により、漸次、回転反応容器4内を移動し、粉体は粉
体補集部20に補集される。他方、残余の微粒子及びガ
ス成分は、輸送管22を介してバグフィルタ24に導入
され、残余の微粒子はバグフィルタ24の下部に分離さ
れ、ガス成分は、輸送管26及び、図示しない真空ポン
プを経て排気される。
[0020] Then, the microwave plasma reaction region 36
The excited hydrogen and hydrocarbons are transported to generate a plurality of types of hydrocarbon radicals, which become elementary and coat the powder surface in the microwave plasma reaction region with a diamond thin film layer. Thereafter, the powder is gradually moved within the rotating reaction container 4 by the rotation of the rotating reaction container 4 again, and the powder is collected in the powder collecting section 20 . On the other hand, the remaining particulates and gas components are introduced into the bag filter 24 via the transport pipe 22, the remaining particulates are separated in the lower part of the bag filter 24, and the gas components are introduced into the bag filter 24 through the transport pipe 26 and a vacuum pump (not shown). It is then exhausted.

【0021】以下、マイクロ波プラズマ反応領域26で
のダイヤモンド析出条件について、特に数μmないし十
数μmの蛍光体粒子に適用する場合に限定して述べる。 ガス供給量の総量  100sccm。原料ガス源10
からのガス供給量  50sccm。背圧ガス源14か
らのガス供給量  50sccm。
The conditions for diamond precipitation in the microwave plasma reaction region 26 will be described below, particularly when applied to phosphor particles of several μm to more than ten μm. Total amount of gas supply: 100sccm. Raw material gas source 10
Gas supply amount from 50sccm. Gas supply amount from back pressure gas source 14: 50 sccm.

【0022】原料ガス源10のガス成分には、メタン−
水素混合ガスに添加ガスとして、プラズマとの溶融によ
って蛍光体の母体組成が変化するのを防いで良質のダイ
ヤモンドを析出させるため、水蒸気及び硫化水素ガスが
混合されてもよく、一方、背圧ガス源14からのガスは
水素ガスであり、この水素ガスを加味して、ガスの混合
比率は以下の通りである。 CH4濃度(CH4/H2比 )  O.1〜10%。 好ましくは、0.1〜1.0%。 H2O濃度(H2O/CH4比 )  O〜500%。 好ましくは、30〜100%。 H2S濃度(H2S/CH4比 )  O〜500%。 好ましくは、50〜150%。
The gas components of the source gas source 10 include methane-
Water vapor and hydrogen sulfide gas may be mixed as an additive gas to the hydrogen mixed gas in order to prevent the matrix composition of the phosphor from changing due to melting with the plasma and deposit high quality diamonds, while back pressure gas The gas from the source 14 is hydrogen gas, and taking this hydrogen gas into account, the gas mixture ratio is as follows. CH4 concentration (CH4/H2 ratio) O. 1-10%. Preferably 0.1 to 1.0%. H2O concentration (H2O/CH4 ratio) O~500%. Preferably 30-100%. H2S concentration (H2S/CH4 ratio) O~500%. Preferably 50-150%.

【0023】マイクロ波プラズマ反応領域36での圧力
、処理温度及び処理時間は以下の通りである。 圧力  10〜100トル(torr)。 好ましくは  20〜40トル(torr)。 処理温度  90〜900℃。 好ましくは、300〜500℃。 処理時間  0.2〜20時間(hrs)。 好ましくは、0.5〜5時間(hrs)。
The pressure, processing temperature and processing time in the microwave plasma reaction region 36 are as follows. Pressure 10-100 torr. Preferably 20-40 torr. Processing temperature: 90-900°C. Preferably 300-500°C. Treatment time: 0.2-20 hours (hrs). Preferably 0.5 to 5 hours (hrs).

【0024】また、マイクロ波出力は、2.45ギロヘ
ルツ(Ghz)で、50〜500Wであり、好適には、
100〜300Wである。
[0024] Furthermore, the microwave output is 2.45 gigahertz (Ghz) and 50 to 500 W, and preferably,
It is 100-300W.

【0025】蛍光体粒子表面に形成されるダイヤモンド
薄膜層の厚みは、マイクロ波プラズマ反応領域36での
滞留時間、処理時間、ガス濃度或いはガス成分を変える
ことによって自由に調製することができる。
The thickness of the diamond thin film layer formed on the surface of the phosphor particles can be freely adjusted by changing the residence time in the microwave plasma reaction region 36, processing time, gas concentration, or gas composition.

【0026】このダイヤモンド被覆装置の場合、蛍光体
粒子のプラズマ中での滞留時間τ(時間)は、以下の式
で与えられる。 τ=0.0004θL/ΔnD ここで、θは粉体安息角(度)、Lはプラズマ全長(m
m)、Δは回転反応容器勾配、nは回転反応容器の回転
数(rpm)、Dは回転反応容器の径(mm)である。
In the case of this diamond coating device, the residence time τ (time) of the phosphor particles in the plasma is given by the following equation. τ=0.0004θL/ΔnD Here, θ is the powder repose angle (degrees), and L is the plasma total length (m
m), Δ is the rotating reaction vessel gradient, n is the rotation speed (rpm) of the rotating reaction vessel, and D is the diameter (mm) of the rotating reaction vessel.

【0027】(実施例1)以下、具体的な実施例につい
て説明する。
(Example 1) A specific example will be described below.

【0028】内径40mmの石英製回転反応容器4を勾
配1/400で設定し、回転数を10rpmとした。ま
た、プラズマ波発振器32を2.45ギガヘルツのマイ
クロ波を発生させた。粉体供給器12には、平均粒子4
μmのY2O2S:Eu蛍光体粒子を充填した。背圧ガ
ス源14と原料ガス源10とを調製することにより、マ
イクロ波プラズマ反応領域36での原料ガスの組成をメ
タン0.5%(水素比)、水蒸気20%(メタン比)、
硫化水素20%(メタン比)とし、処理温度は500℃
、圧力は20トル(torr)、マイクロ波出力は30
0Wとし、この条件下で、上述の式から決定される滞留
時間は0.7時間であった。
A rotating reaction vessel 4 made of quartz having an inner diameter of 40 mm was set at a gradient of 1/400, and the rotation speed was 10 rpm. Further, the plasma wave oscillator 32 was used to generate microwaves of 2.45 gigahertz. The powder feeder 12 contains average particles 4
Filled with μm Y2O2S:Eu phosphor particles. By preparing the back pressure gas source 14 and the raw material gas source 10, the composition of the raw material gas in the microwave plasma reaction region 36 is set to 0.5% methane (hydrogen ratio), 20% water vapor (methane ratio),
Hydrogen sulfide 20% (methane ratio), treatment temperature 500℃
, pressure is 20 torr, microwave power is 30
0W, and under these conditions, the residence time determined from the above equation was 0.7 hours.

【0029】このようにして、蛍光体表面にダイヤモン
ドを析出させた結果、約0.01μmのダイヤモンド薄
膜層が形成された。電顕写真で確認したところ、図3に
示されるように、蛍光体粒子40の表面にはダイヤモン
ド薄膜層42がほぼ均一に被覆されていた。また、ダイ
ヤモンド薄膜層42をラマン分析することにより、ダイ
ヤモンド薄膜層42は良質のダイヤモンドであることが
確かめられた。
As a result of depositing diamond on the surface of the phosphor in this manner, a diamond thin film layer of about 0.01 μm was formed. When confirmed using an electron microscope photograph, as shown in FIG. 3, the surface of the phosphor particles 40 was coated with a diamond thin film layer 42 almost uniformly. Further, by conducting Raman analysis on the diamond thin film layer 42, it was confirmed that the diamond thin film layer 42 was made of high quality diamond.

【0030】得られた蛍光体粒子、即ち、ダイヤモンド
被覆Y2O2S:Eu蛍光体粒子を用いて陰極線管用の
蛍光膜を作製したところ、本実施例のY2O2S:Eu
蛍光体粒子は、気相反応により、各粒子表面に均一にダ
イヤモンドを被覆しているため、塗布するガラスプレー
トと蛍光体粒子との密着性が極めて均一に図れ、塗布特
性としての分散性も優れていた。
When a phosphor film for a cathode ray tube was prepared using the obtained phosphor particles, that is, the diamond-coated Y2O2S:Eu phosphor particles, it was found that the Y2O2S:Eu of this example
The phosphor particles are uniformly coated with diamond on the surface of each particle through a gas phase reaction, so the adhesion between the phosphor particles and the glass plate to which they are applied is extremely uniform, and the dispersibility of the coating is also excellent. was.

【0031】そして、蛍光膜の特性を調べたところ、ダ
イヤモンドを被覆しない従来のY2O2S:Eu 蛍光
体粒子に比べて、熱発散性が極めて良好であり、電子線
の照射による蛍光膜の温度上昇が極めて低く抑えられる
ので、蛍光体の温度消光による劣化が抑制することがで
きる。図4に示されるように、蛍光膜の昇温につれて、
ダイヤモンドを被覆しない従来のY2O2S:Eu蛍光
体粒子を用いた蛍光膜では、図4中波線で示すように、
輝度が100℃で50%以下になるのに対し、本実施例
のY2O2S:Eu蛍光体粒子を用いた蛍光膜では、図
4中実線で示すように、輝度が約5%前後しか落ちず、
極めて改善された。また、寿命の点においても、イオン
焼けや粒子表面の組成変化がなく、特に、外部からの不
純物の拡散によるカラーセンタの形成がなく、優れたも
のであった。
[0031] When the characteristics of the fluorescent film were investigated, it was found that the heat dissipation property was extremely good compared to conventional Y2O2S:Eu phosphor particles that are not coated with diamond, and the temperature of the fluorescent film did not rise due to electron beam irradiation. Since it can be kept extremely low, deterioration of the phosphor due to temperature quenching can be suppressed. As shown in FIG. 4, as the temperature of the fluorescent film increases,
In the conventional phosphor film using Y2O2S:Eu phosphor particles that are not coated with diamond, as shown by the dotted line in FIG.
While the brightness drops to 50% or less at 100°C, in the phosphor film using the Y2O2S:Eu phosphor particles of this example, the brightness only drops by about 5%, as shown by the solid line in FIG.
Much improved. In addition, in terms of life, there was no ion burnout or composition change on the particle surface, and in particular, there was no formation of color centers due to diffusion of impurities from the outside, and the product was excellent.

【0032】次に、ダイヤモンド被覆装置の回転反応容
器4の勾配及び回転数を変更することにより、ダイヤモ
ンド薄膜層42の膜厚を種々に設定し、得られた蛍光体
粒子を用いることによってダイヤモンド薄膜層の膜厚と
50℃での蛍光膜の相対輝度との関係を調べた。その結
果を図5に示す。
Next, by changing the slope and rotation speed of the rotating reaction vessel 4 of the diamond coating apparatus, the thickness of the diamond thin film layer 42 is set to various values, and the obtained phosphor particles are used to form a diamond thin film. The relationship between the layer thickness and the relative brightness of the fluorescent film at 50°C was investigated. The results are shown in FIG.

【0033】図5中、ダイヤモンドを被覆しない蛍光体
粒子を用いた蛍光膜の輝度を100%とした。図5から
明きらかなように、蛍光膜の熱発散特性のみでなく発光
輝度の点から、ダイヤモンド薄膜層の膜厚が0.1μm
以下であることが、発光輝度の点から好ましい。好適に
は、0.01μmである。
In FIG. 5, the brightness of the phosphor film using phosphor particles not coated with diamond was set to 100%. As is clear from Fig. 5, the thickness of the diamond thin film layer is 0.1 μm from the viewpoint of luminance as well as heat dissipation characteristics of the fluorescent film.
The following is preferable from the viewpoint of luminance. Preferably, it is 0.01 μm.

【0034】(実施例2及び3)蛍光体として、平均粒
子径4.2μmのZnS:Ag、Al蛍光体と、平均粒
子径4.5μmのY3Al5O12:Tb蛍光体とにそ
れぞれ厚さ0.01μmのダイヤモンド薄膜層42を被
覆した。
(Examples 2 and 3) As the phosphors, a ZnS:Ag,Al phosphor with an average particle diameter of 4.2 μm and a Y3Al5O12:Tb phosphor with an average particle diameter of 4.5 μm were each used with a thickness of 0.01 μm. was coated with a diamond thin film layer 42 of .

【0035】いずれも、ガラスと蛍光体粒子との接着性
が著しく改善でき、また、蛍光膜の熱発散性に優れてお
り、さらに、寿命の点においても、イオン焼けや粒子表
面の組成変化がなく、特に、外部からの不純物の拡散に
よるカラーセンタの形成がなく、優れたものであった。
In both cases, the adhesion between the glass and the phosphor particles can be significantly improved, and the phosphor film has excellent heat dissipation properties.In addition, in terms of life, there is no ion burnout or compositional changes on the particle surface. In particular, there was no formation of color centers due to the diffusion of impurities from the outside, which was excellent.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
マイクロ波プラズマ法により蛍光体粒子表面上にダイヤ
モンド薄膜層を形成させることにより、ダイヤモンドの
優れた熱伝導性、光透過特性及び化学的安定性を利用す
ることができ、温度消光、化学的安定性及び寿命を改善
した蛍光体粒子を提供することができ、また、本発明の
製造方法によれば、簡単でしかも工業的に連続して、マ
イクロ波プラズマ法により蛍光体粒子表面上にダイヤモ
ンド薄膜層を形成させることができる。
[Effects of the Invention] As explained above, according to the present invention,
By forming a diamond thin film layer on the surface of the phosphor particles using the microwave plasma method, diamond's excellent thermal conductivity, light transmission properties, and chemical stability can be utilized, resulting in improved temperature quenching and chemical stability. Furthermore, according to the production method of the present invention, a diamond thin film layer can be formed on the surface of the phosphor particles by a microwave plasma method in a simple and industrially continuous manner. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係るダイヤモンド被覆装置を一部断面
にして示す概略図である。
FIG. 1 is a schematic diagram showing a diamond coating device according to the present invention, partially in section.

【図2】図1の線Aでの断面を拡大して示す断面図であ
る。
FIG. 2 is an enlarged cross-sectional view of the cross section taken along line A in FIG. 1;

【図3】本発明の一実施例に係るダイヤモンド被覆蛍光
体を示す模式断面図である。
FIG. 3 is a schematic cross-sectional view showing a diamond-coated phosphor according to an example of the present invention.

【図4】図3の蛍光体を塗膜した蛍光膜における膜温度
と相対輝度との関係を示すグラフ図である。
4 is a graph diagram showing the relationship between film temperature and relative brightness in a phosphor film coated with the phosphor of FIG. 3; FIG.

【図5】本発明の一実施例に係るダイヤモンド薄膜層の
膜厚と相対輝度との関係を示すグラフ図である。
FIG. 5 is a graph diagram showing the relationship between the thickness and relative brightness of a diamond thin film layer according to an example of the present invention.

【符号の説明】[Explanation of symbols]

4        回転反応容器 10      原料ガス源 12      蛍光体原料 14      背圧ガス源 18      補集器 24      バグフィルタ 28      マイクロ波キャビティ30     
 導波管 32      マイクロ波発振器 36      マイクロ波プラズマ反応領域40  
    蛍光体 42      ダイヤモンド薄膜層
4 Rotating reaction vessel 10 Raw material gas source 12 Phosphor raw material 14 Back pressure gas source 18 Collector 24 Bag filter 28 Microwave cavity 30
Waveguide 32 Microwave oscillator 36 Microwave plasma reaction region 40
Phosphor 42 Diamond thin film layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  マイクロ波プラズマ法により付着され
たダイヤモンド薄膜層を蛍光体粒子表面に有してなるこ
とを特徴とする蛍光体。
1. A phosphor comprising a diamond thin film layer deposited by a microwave plasma method on the surface of phosphor particles.
【請求項2】  外気から気密に遮断され内部が減圧に
保持された回転反応容器内の一部にマイクロ波プラズマ
を発生させ、このマイクロ波プラズマ発生領域に水素−
メタン混合ガスを導入すると同時に、前記回転反応容器
の回転と勾配によりにより蛍光体粒子をマイクロ波プラ
ズマ発生領域に連続的に供給し、これにより、蛍光体粒
子表面にダイヤモンド薄膜層を形成することを特徴とす
る蛍光体の製造方法。
2. Microwave plasma is generated in a part of a rotating reaction vessel that is airtightly isolated from the outside air and maintained at a reduced pressure inside, and hydrogen-
At the same time as introducing the methane mixed gas, phosphor particles are continuously supplied to the microwave plasma generation region by rotating and tilting the rotating reaction vessel, thereby forming a diamond thin film layer on the surface of the phosphor particles. Characteristic manufacturing method of phosphor.
JP9316191A 1991-03-29 1991-03-29 Phosphor and manufacturing method thereof Expired - Lifetime JP2967559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9316191A JP2967559B2 (en) 1991-03-29 1991-03-29 Phosphor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9316191A JP2967559B2 (en) 1991-03-29 1991-03-29 Phosphor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04304290A true JPH04304290A (en) 1992-10-27
JP2967559B2 JP2967559B2 (en) 1999-10-25

Family

ID=14074840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9316191A Expired - Lifetime JP2967559B2 (en) 1991-03-29 1991-03-29 Phosphor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2967559B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760755A1 (en) * 1997-03-17 1998-09-18 Futaba Denshi Kogyo Kk Diamond-like carbon coated phosphor used as anode coating in display device
WO1999027033A1 (en) * 1997-11-26 1999-06-03 Minnesota Mining And Manufacturing Company Diamond-like carbon coatings on inorganic phosphors
US6015597A (en) * 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
JP2009263399A (en) * 2008-04-21 2009-11-12 Covalent Materials Corp Fluorescent material and white led
DE102008060680A1 (en) 2008-12-08 2010-06-10 Merck Patent Gmbh Surface modified silicate phosphors
WO2014008970A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Process for production of phosphors
DE102012021223A1 (en) 2012-10-27 2014-04-30 Merck Patent Gmbh Method for optimizing the color quality of light sources
WO2014187530A1 (en) 2013-05-23 2014-11-27 Merck Patent Gmbh Phosphors
WO2015104036A1 (en) 2014-01-09 2015-07-16 Merck Patent Gmbh Phosphors based on europium-doped alkaline earth metal silicon oxynitrides
DE102014003848A1 (en) 2014-03-18 2015-09-24 Merck Patent Gmbh phosphors
DE102014006003A1 (en) 2014-04-28 2015-10-29 Merck Patent Gmbh phosphors
WO2016150547A1 (en) 2015-03-24 2016-09-29 Merck Patent Gmbh Phosphors and phosphor-converted leds
WO2017041875A1 (en) 2015-09-10 2017-03-16 Merck Patent Gmbh Light-converting material
DE102015015355A1 (en) 2015-12-01 2017-06-01 Merck Patent Gmbh Mn-activated phosphors
EP3178904A1 (en) 2015-12-09 2017-06-14 Merck Patent GmbH Phosphor
WO2018069195A1 (en) 2016-10-12 2018-04-19 Merck Patent Gmbh Mn4+-activated luminescence material as conversion luminescent material for led solid state light sources
WO2018114744A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh A white light emitting solid state light source
WO2018162375A2 (en) 2017-03-08 2018-09-13 Merck Patent Gmbh Luminophore mixtures for use in dynamic lighting systems
WO2018185116A2 (en) 2017-04-07 2018-10-11 Merck Patent Gmbh Uranyl-sensitized europium luminophores
WO2019121455A1 (en) 2017-12-18 2019-06-27 Merck Patent Gmbh Light-converting material
WO2019179907A1 (en) 2018-03-20 2019-09-26 Merck Patent Gmbh Mn-activated oxidohalides as conversion luminescent materials for led-based solid state light sources
WO2020053381A1 (en) 2018-09-14 2020-03-19 Merck Patent Gmbh Blue-emitting phosphor compounds

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760755A1 (en) * 1997-03-17 1998-09-18 Futaba Denshi Kogyo Kk Diamond-like carbon coated phosphor used as anode coating in display device
WO1999027033A1 (en) * 1997-11-26 1999-06-03 Minnesota Mining And Manufacturing Company Diamond-like carbon coatings on inorganic phosphors
US6015597A (en) * 1997-11-26 2000-01-18 3M Innovative Properties Company Method for coating diamond-like networks onto particles
US6197120B1 (en) 1997-11-26 2001-03-06 3M Innovative Properties Company Apparatus for coating diamond-like networks onto particles
US6265068B1 (en) 1997-11-26 2001-07-24 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
JP2001524575A (en) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー Diamond-like carbon coating on inorganic phosphor
US6548172B2 (en) 1997-11-26 2003-04-15 3M Innovative Properties Company Diamond-like carbon coatings on inorganic phosphors
JP2009263399A (en) * 2008-04-21 2009-11-12 Covalent Materials Corp Fluorescent material and white led
DE102008060680A1 (en) 2008-12-08 2010-06-10 Merck Patent Gmbh Surface modified silicate phosphors
WO2010075908A1 (en) * 2008-12-08 2010-07-08 Merck Patent Gmbh Surface-modified silicate fluorescent substances
JP2009256804A (en) * 2009-08-03 2009-11-05 Utec:Kk Fine particle
WO2014008970A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Process for production of phosphors
DE102012021223A1 (en) 2012-10-27 2014-04-30 Merck Patent Gmbh Method for optimizing the color quality of light sources
US9920246B2 (en) 2013-05-23 2018-03-20 Merck Patent Gmbh Phosphors
WO2014187530A1 (en) 2013-05-23 2014-11-27 Merck Patent Gmbh Phosphors
WO2015104036A1 (en) 2014-01-09 2015-07-16 Merck Patent Gmbh Phosphors based on europium-doped alkaline earth metal silicon oxynitrides
DE102014003848A1 (en) 2014-03-18 2015-09-24 Merck Patent Gmbh phosphors
DE102014006003A1 (en) 2014-04-28 2015-10-29 Merck Patent Gmbh phosphors
WO2015165567A1 (en) 2014-04-28 2015-11-05 Merck Patent Gmbh Phosphors
WO2016150547A1 (en) 2015-03-24 2016-09-29 Merck Patent Gmbh Phosphors and phosphor-converted leds
EP3653686A1 (en) 2015-09-10 2020-05-20 Merck Patent GmbH Light converting material
WO2017041875A1 (en) 2015-09-10 2017-03-16 Merck Patent Gmbh Light-converting material
DE102015015355A1 (en) 2015-12-01 2017-06-01 Merck Patent Gmbh Mn-activated phosphors
WO2017092849A1 (en) 2015-12-01 2017-06-08 Merck Patent Gmbh Mn-activated phosphors
EP3178904A1 (en) 2015-12-09 2017-06-14 Merck Patent GmbH Phosphor
WO2018069195A1 (en) 2016-10-12 2018-04-19 Merck Patent Gmbh Mn4+-activated luminescence material as conversion luminescent material for led solid state light sources
WO2018114744A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh A white light emitting solid state light source
WO2018162375A2 (en) 2017-03-08 2018-09-13 Merck Patent Gmbh Luminophore mixtures for use in dynamic lighting systems
WO2018185116A2 (en) 2017-04-07 2018-10-11 Merck Patent Gmbh Uranyl-sensitized europium luminophores
WO2019121455A1 (en) 2017-12-18 2019-06-27 Merck Patent Gmbh Light-converting material
WO2019179907A1 (en) 2018-03-20 2019-09-26 Merck Patent Gmbh Mn-activated oxidohalides as conversion luminescent materials for led-based solid state light sources
EP4047072A1 (en) 2018-03-20 2022-08-24 LITEC-Vermögensverwaltungsgesellschaft mbH Light source with luminescent material
WO2020053381A1 (en) 2018-09-14 2020-03-19 Merck Patent Gmbh Blue-emitting phosphor compounds

Also Published As

Publication number Publication date
JP2967559B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP2967559B2 (en) Phosphor and manufacturing method thereof
US6447908B2 (en) Method for manufacturing phosphor-coated particles and method for forming cathodoluminescent screen using the same for field emission display
JP2001524603A (en) Method and apparatus for coating diamond-like carbon on particles
JPS5927753B2 (en) Diamond synthesis method
JPS58135117A (en) Diamond manufacturing method
US6577045B1 (en) Cold-emission film-type cathode and method for producing the same
JPH075884B2 (en) Method for coating fluorescent material particles, fluorescent material particles, fluorescent lamp, and manufacturing method
US5750188A (en) Method for forming a thin film of a non-stoichiometric metal oxide
JPH04958B2 (en)
US5624719A (en) Process for synthesizing diamond in a vapor phase
RU2158037C2 (en) Process of manufacture of diamond films by method of gas- phase synthesis
RU2312175C2 (en) Method of forming diamond-structured particles
JPS60127293A (en) Production of diamond
JPS62162366A (en) Composite having carbon coat
US6593683B1 (en) Cold cathode and methods for producing the same
JPS60145995A (en) Preparation of diamond-shaped carbon
JP2689269B2 (en) Diamond and its vapor phase synthesis method
JPH0518798B2 (en)
JP3728469B2 (en) Method for forming single crystal diamond film
JPH0419197B2 (en)
JPS6261109B2 (en)
JPH0667797B2 (en) Diamond synthesis method
JPS63176399A (en) Production of diamond film
JPS593098A (en) Synthesizing method of diamond
JP2002501469A (en) Method for obtaining diamond layer by gas phase synthesis