[go: up one dir, main page]

JPH0234917B2 - - Google Patents

Info

Publication number
JPH0234917B2
JPH0234917B2 JP59220000A JP22000084A JPH0234917B2 JP H0234917 B2 JPH0234917 B2 JP H0234917B2 JP 59220000 A JP59220000 A JP 59220000A JP 22000084 A JP22000084 A JP 22000084A JP H0234917 B2 JPH0234917 B2 JP H0234917B2
Authority
JP
Japan
Prior art keywords
substrate
reaction
diamond film
artificial diamond
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59220000A
Other languages
Japanese (ja)
Other versions
JPS6197194A (en
Inventor
Noribumi Kikuchi
Yasuo Suzuki
Hiroaki Yamashita
Akio Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Mitsubishi Metal Corp
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Shingijutsu Kaihatsu Jigyodan filed Critical Mitsubishi Metal Corp
Priority to JP59220000A priority Critical patent/JPS6197194A/en
Publication of JPS6197194A publication Critical patent/JPS6197194A/en
Publication of JPH0234917B2 publication Critical patent/JPH0234917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、基体表面に人工ダイヤモンド皮膜
を析出形成する方法に関するものである。 〔従来の技術〕 従来、基体表面に人工ダイヤモンド皮膜を析出
形成する方法としては多数の方法が提案され、こ
の中で反応混合ガスを加熱し、活性化する手段と
して、 (a) 熱電子放射材、 (b) 高周波によるプラズマ放電、 (c) マイクロ波によるプラズマ放電、 以上(a)〜(c)のいずれかを採用する方法が代表的
方法として注目されている。 上記従来(a)方法は、第1図に概略断面図で示さ
れるように、石英製縦型反応容器1内の上方位置
に開口する反応混合ガス導入管2によつて流入さ
れた、主として炭化水素と水素で構成された反応
混合ガスを、その下方位置に配置された、熱電子
放射材としての例えば金属タングステン製フイラ
メント3および台板4上に支持された基体5に向
けて流し、この間、反応容器1内の雰囲気圧力を
0.1〜300torrに保持すると共に、フイラメント3
を1500〜2500℃に加熱して、反応混合ガスの加熱
活性化と、所定間隔をおいて下方配置された基体
表面の300〜1300℃の範囲内の温度への加熱をは
かり、この状態で所定時間の反応を行なわしめる
ことにより前記基体5の表面にダイヤモンド皮膜
を析出形成せしめる方法であり、例えば特開昭58
―91100号公報に記載される方法がこの方法に相
当する方法である。 また、上記従来(b)方法は、同じく第2図に概略
断面図で示されるように、石英製横型反応容器1
内の中央部に基体5を置き、この反応容器1の一
方側に設けた反応混合ガス導入管2から主として
炭化水素と水素で構成された反応混合ガスを流入
させ、一方反応容器1の他方側から排気し、この
間、反応容器1内の雰囲気圧力を数torr〜数
10torrに保持すると共に、反応容器1の中央部外
周に設けた高周波コイル6に、例えば周波数:
13.56MHz、出力:500Wの条件を付加して反応容
器1内の基体5の周囲にプラズマ放電を誘起さ
せ、このプラズマ放電によつて反応混合ガスの加
熱活性化と基体表面温度の上昇をはかり、この状
態で所定時間の反応を行なわしめることにより基
体表面にダイヤモンド皮膜を析出形成せしめる方
法であり、例えば特開昭58―135117号公報に記載
されている方法がこれに相当するものである。 さらに、上記従来(c)方法は、同様に第3図に概
略断面図で示されるように、石英製縦型反応容器
1内の中央位置に基体5を置き、この反応容器1
の上部に設けた反応混合ガス導入管2から、主と
して炭化水素と水素で構成された反応混合ガスを
流入させ、一方反応容器1の下部から排気し、こ
の間、反応容器内の雰囲気圧力を0.1〜300torrに
保持しながら、反応容器1の中央部外周に設けた
導波管7を通して供給された、例えば2450MHzの
マイクロ波をプラズマ調整用プランジヤ8によつ
て調整して、反応容器1内の基体5の周囲にプラ
ズマ放電を発生させ、このプラズマ放電によつて
反応混合ガスの加熱活性化と基体表面温度の上昇
をはかり、この状態で所定時間の反応を行なわし
めることにより基体表面にダイヤモンド皮膜を析
出形成せしめる方法であり、例えば特開昭58―
110494号公報に記載されている方法がこれに相当
する方法である。 〔発明が解決しようとする問題点〕 しかし、これらの従来方法においては、いずれ
も共通して反応初期に基体表面に析出するダイヤ
モンド結晶核の数が少なく、一方ダイヤモンドは
この結晶核を中心に成長し、膜状を呈するように
なるものであるため、所定の膜厚を有する人工ダ
イヤモンド皮膜を析出形成するには、かなりの反
応時間を必要とするものであつた。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、基体表面に人工ダイヤモンド皮膜を析出形成
するに際して、反応初期における基体表面へのダ
イヤモンド結晶核の析出増大をはかるべく研究を
行なつた結果、基体表面に酸素拡散処理を前処理
として施した状態で、これを人工ダイヤモンド皮
膜の析出形成に供すると、前記酸素拡散処理によ
つて基体表面に拡散した酸素の少なくとも一部が
加熱反応混合ガスと反応して除去され、この結果
として基体表面が著しく活性化するようになるこ
とから、反応初期におけるダイヤモンド結晶核の
析出が一段と促進されるようになり、速い析出形
成速度での人工ダイヤモンド皮膜の形成が可能に
なるという知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、主成分が炭化水素と水
素からなり、かつ熱電子放射材、高周波によるプ
ラズマ放電、あるいはマイクロ波によるプラズマ
放電などにより活性化された加熱反応混合ガスの
流れの中に加熱基体を置くことによつて前記基体
の表面に人工ダイヤモンド皮膜を析出形成するに
際して、前記基体の表面に、前処理として酸素拡
散処理を施し、この状態で人工ダイヤモンド皮膜
の析出形成に供することによつて、反応初期にお
けるダイヤモンド結晶核の析出増大をはかり、も
つて速い速度での人工ダイヤモンド皮膜の析出形
成を可能ならしめた点に特徴を有するものであ
る。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 1 基体として、平面:10mm口×厚さ:1mmの寸法
をもつた金属タングステン製チツプを用意し、こ
の基体に対して、前処理として大気雰囲気中、温
度:400℃に1時間保持の条件で酸素拡散処理を
施し、ついで、この結果の前記酸素拡散処理を施
した基体と、これを施さない基体の表面に、第1
図に示される装置を用い、 反応容器1:外径50mmφを有する石英製、 反応混合ガス組成:容量割合で、H2/CH4
100/1.5、 金属タングステン製フイラメント3と基体5の
表面間の距離:20mm、 フイラメント3の加熱温度:2000℃、 フイラメント3による基体5の表面加熱温度:
900℃、 反応容器1内の雰囲気圧力:15torr、 反応時間:1時間および6時間、 の条件で人工ダイヤモンド皮膜を形成した。 実施例 2 基体として、平面:12.7mm口×厚さ:4.8mmの
寸法をもつた炭化タングステン基超硬合金
(Co:6重量%、WC:残り)製チツプを用意し、
この基体の表面に実施例1におけると同一の条件
で酸素拡散処理を施し、ついで、この酸素拡散処
理を施した基体と、これを施さない基体の表面
に、第2図に示される装置を用い、 反応容器1:外径50mmφの石英製、 反応混合ガス組成:容量割合で、H2/CH4
100/1、 高周波コイル6への印加条件(周波数:
13.56MHz、出力:500W)、 反応容器1内の雰囲気圧力:20torr、 反応時間:1時間および6時間、 の条件で人工ダイヤモンド皮膜を形成した。 実施例 3 基体として、いずれも平面:15mm口×厚さ:3
mmの寸法をもつた、純Ni板材およびNi合金
(Cu:20重量%含有)板材を用意し、これら基体
の表面に、大気雰囲気中、温度:500℃に3時間
保持の条件で酸素拡散処理を施し、ついで、この
結果の酸素拡散処理を施した基体と、これを施さ
ない基体の表面に、第3図に示される装置を用
い、 反応容器1:外径30mmφを有する石英製、 反応混合ガス組成:容量割合で、H2/CH4
100/3 マイクロ波:2450MHz(出力:500W)、 反応容器1内の雰囲気圧力:30torr、 反応時間:1時間および6時間、 の条件で人工ダイヤモンド皮膜を形成した。 実施例 4 基体として、平面:15mm口×厚さ:3mmの寸法
をもつた純銅製チツプを用い、この純銅製チツプ
の表面に、大気雰囲気中、温度:200℃に1時間
保持の条件で酸素拡散処理を施し、ついで、この
結果の酸素拡散処理を施した基体と、これを施さ
ない基体の表面に、実施例1におけると同一の条
件で人工ダイヤモンド皮膜を形成した。 実施例 5 基体として、いずれも平面:15mm口×厚さ:3
mmの寸法をもつた、純Ti板材およびTi合金
(Al:6重量%、V:4重量%含有)板材を用意
し、さらにこれら基体の表面に施される酸素拡散
処理の条件を、大気雰囲気中、温度:400℃に20
分間保持とする以外は、実施例2におけると同一
の条件で基体表面に人工ダイヤモンド皮膜を形成
した。 なお、上記実施例1〜5において、反応時間が
1時間の基体については、その表面を、1700倍の
走査電子顕微鏡で観察し、写真にとり、その単位
面積当りの結晶核を測定することによつて反応初
期におけるダイヤモンド結晶核の析出生成を評価
し、また、反応時間が6時間の基体については、
その表面に析出形成された人工ダイヤモンド皮膜
の平均膜厚を測定することによつて人工ダイヤモ
ンド皮膜の析出形成速度を評価した。これら
[Industrial Application Field] The present invention relates to a method for depositing and forming an artificial diamond film on the surface of a substrate. [Prior Art] Many methods have been proposed to deposit and form an artificial diamond film on the surface of a substrate, and among them, (a) thermionic emissive material as a means of heating and activating the reaction mixture gas; , (b) Plasma discharge by high frequency, (c) Plasma discharge by microwave, methods that employ any of the above (a) to (c) are attracting attention as representative methods. In the conventional method (a), as shown in a schematic cross-sectional view in FIG. A reactive mixed gas composed of hydrogen and hydrogen is flowed toward a filament 3 made of, for example, metal tungsten as a thermionic emitting material and a base 5 supported on a base plate 4, which is disposed below the base body 5, and during this time, Atmospheric pressure inside reaction vessel 1
While holding at 0.1 to 300 torr, filament 3
is heated to 1,500 to 2,500°C to activate the reaction mixture gas and heat the surface of the substrate placed below at a predetermined interval to a temperature within the range of 300 to 1,300°C. This is a method of precipitating and forming a diamond film on the surface of the substrate 5 by performing a reaction over time.
- The method described in Publication No. 91100 is a method equivalent to this method. Further, in the conventional method (b), as shown in a schematic cross-sectional view in FIG.
A base body 5 is placed in the center of the reaction vessel 1, and a reaction mixture gas consisting mainly of hydrocarbons and hydrogen is introduced from a reaction mixture gas inlet pipe 2 provided on one side of the reaction vessel 1, while a reaction mixture gas mainly composed of hydrocarbons and hydrogen is introduced into the reaction mixture gas on the other side of the reaction vessel 1. During this time, the atmospheric pressure in the reaction vessel 1 is reduced to several torr to several torr.
10 torr, and a high frequency coil 6 provided on the outer periphery of the central part of the reaction vessel 1, for example, at a frequency of:
Adding the conditions of 13.56 MHz and output: 500 W to induce a plasma discharge around the substrate 5 in the reaction vessel 1, and use this plasma discharge to heat and activate the reaction mixture gas and increase the substrate surface temperature. This is a method in which a diamond film is precipitated and formed on the surface of a substrate by carrying out a reaction for a predetermined period of time in this state, and for example, the method described in Japanese Patent Application Laid-Open No. 135117/1983 corresponds to this method. Furthermore, in the conventional method (c), as similarly shown in the schematic cross-sectional view in FIG.
A reaction mixture gas mainly composed of hydrocarbons and hydrogen is introduced from the reaction mixture gas inlet pipe 2 provided at the upper part of the reaction vessel 1, while being exhausted from the lower part of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel is kept at 0.1~ While maintaining the pressure at 300 torr, a microwave of, for example, 2450 MHz, which is supplied through a waveguide 7 provided on the outer periphery of the center of the reaction vessel 1, is adjusted by a plasma adjustment plunger 8, and the substrate 5 in the reaction vessel 1 is heated. A plasma discharge is generated around the substrate, and this plasma discharge heats and activates the reaction mixture gas and raises the substrate surface temperature. By allowing the reaction to occur in this state for a predetermined period of time, a diamond film is deposited on the substrate surface. This is a method of forming
The method described in Publication No. 110494 is a method corresponding to this. [Problems to be solved by the invention] However, in all of these conventional methods, the number of diamond crystal nuclei that precipitate on the substrate surface at the initial stage of the reaction is small, and on the other hand, diamond grows around these crystal nuclei. However, since it takes on the form of a film, a considerable amount of reaction time is required to deposit and form an artificial diamond film having a predetermined thickness. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors decided to increase the precipitation of diamond crystal nuclei on the surface of the substrate at the initial stage of the reaction when depositing and forming an artificial diamond film on the surface of the substrate. As a result of our research, we found that when the surface of a substrate is subjected to oxygen diffusion treatment as a pretreatment and then subjected to the precipitation formation of an artificial diamond film, the oxygen diffused onto the surface of the substrate by the oxygen diffusion treatment is At least a portion of the diamond is removed by reacting with the heated reaction mixture gas, and as a result, the substrate surface becomes significantly activated, which further promotes the precipitation of diamond crystal nuclei in the early stage of the reaction, resulting in a rapid reaction rate. We obtained the knowledge that it is possible to form an artificial diamond film at the same rate of precipitation formation. Therefore, the present invention has been made based on the above knowledge, and consists of hydrocarbons and hydrogen as main components, and is activated by a thermionic emitting material, plasma discharge by high frequency, plasma discharge by microwave, etc. When depositing and forming an artificial diamond film on the surface of the substrate by placing the heated substrate in a flow of heated reaction mixture gas, the surface of the substrate is subjected to oxygen diffusion treatment as a pretreatment, and this The method is characterized in that it increases the precipitation of diamond crystal nuclei at the initial stage of the reaction by subjecting it to the precipitation formation of an artificial diamond film in a state where the artificial diamond film is precipitated and formed at a high speed. It is. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Example 1 A metal tungsten chip with dimensions of 10 mm (flat surface) x 1 mm (thickness) was prepared as a substrate, and this substrate was subjected to pretreatment at a temperature of 400°C for 1 hour in an air atmosphere. Oxygen diffusion treatment is performed under the following conditions, and then a first
Using the apparatus shown in the figure, reaction vessel 1: made of quartz with an outer diameter of 50 mmφ, reaction mixture gas composition: volume ratio, H 2 /CH 4 =
100/1.5, Distance between the surface of the metal tungsten filament 3 and the substrate 5: 20 mm, Heating temperature of the filament 3: 2000℃, Surface heating temperature of the substrate 5 by the filament 3:
An artificial diamond film was formed under the following conditions: 900°C, atmospheric pressure in reaction vessel 1: 15 torr, reaction time: 1 hour and 6 hours. Example 2 A chip made of tungsten carbide-based cemented carbide (Co: 6% by weight, WC: remainder) having dimensions of 12.7 mm (flat surface) x 4.8 mm (thickness) was prepared as a base,
The surface of this substrate was subjected to oxygen diffusion treatment under the same conditions as in Example 1, and then the apparatus shown in FIG. , Reaction container 1: Made of quartz with an outer diameter of 50 mmφ, Reaction mixture gas composition: Volume ratio, H 2 /CH 4 =
100/1, application conditions to high frequency coil 6 (frequency:
13.56 MHz, output: 500 W), atmospheric pressure in reaction vessel 1: 20 torr, reaction time: 1 hour and 6 hours. Example 3 As a base, both flat surfaces: 15 mm opening x thickness: 3
A pure Ni plate material and a Ni alloy (Cu: 20% by weight content) plate material with dimensions of Then, using the apparatus shown in Fig. 3, the surfaces of the substrate subjected to the oxygen diffusion treatment and the surface of the substrate not subjected to the oxygen diffusion treatment were subjected to reaction mixing. Gas composition: H 2 /CH 4 = volumetric ratio
An artificial diamond film was formed under the following conditions: 100/3 microwave: 2450 MHz (output: 500 W), atmospheric pressure in reaction vessel 1: 30 torr, reaction time: 1 hour and 6 hours. Example 4 A pure copper chip with dimensions of 15 mm (flat surface) x 3 mm (thickness) was used as the substrate. Oxygen was applied to the surface of this pure copper chip at a temperature of 200°C for 1 hour in an air atmosphere. A diffusion treatment was performed, and then an artificial diamond film was formed under the same conditions as in Example 1 on the surfaces of the resulting substrate subjected to the oxygen diffusion treatment and the substrate not subjected to the oxygen diffusion treatment. Example 5 As a base, both flat surfaces: 15 mm opening x thickness: 3
A pure Ti plate and a Ti alloy (containing Al: 6% by weight, V: 4% by weight) plate with dimensions of Medium temperature: 20 to 400℃
An artificial diamond film was formed on the surface of the substrate under the same conditions as in Example 2 except that the test was held for a minute. In Examples 1 to 5 above, for the substrates for which the reaction time was 1 hour, the surface was observed with a scanning electron microscope at 1700x magnification, photographed, and the number of crystal nuclei per unit area was measured. The precipitation and formation of diamond crystal nuclei at the initial stage of the reaction was evaluated, and for the substrate with a reaction time of 6 hours,
The precipitation formation rate of the artificial diamond film was evaluated by measuring the average thickness of the artificial diamond film deposited on the surface. these

【表】【table】

〔発明の効果〕〔Effect of the invention〕

別表に示される結果から、基体表面に、前処理
として酸素拡散処理を施すと、これを施さない場
合に比して、反応初期におけるダイヤモンド結晶
核の生成数が著しく増加し、これによつて人工ダ
イヤモンド皮膜の析出形成が著しく促進されるよ
うになることが明らかである。 上記のように、この発明の方法によれば、基体
表面に、前処理として酸素拡散処理を施すことに
よつて、緻密な人工ダイヤモンド皮膜を著しく速
い析出速度で形成することができるのである。
From the results shown in the attached table, when oxygen diffusion treatment is applied to the substrate surface as a pretreatment, the number of diamond crystal nuclei generated at the initial stage of the reaction increases significantly compared to when no oxygen diffusion treatment is applied to the substrate surface, and this causes artificial It is clear that the formation of diamond film precipitates becomes significantly accelerated. As described above, according to the method of the present invention, by subjecting the substrate surface to oxygen diffusion treatment as a pretreatment, a dense artificial diamond film can be formed at a significantly high deposition rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、および第3図はいずれも人工
ダイヤモンド皮膜の析出形成装置を示す概略断面
図である。 1…反応容器、2…反応混合ガス導入管、3…
熱電子放射材としてのフイラメント、4…台板、
5…基体、6…高周波コイル、7…導波管。
FIG. 1, FIG. 2, and FIG. 3 are all schematic cross-sectional views showing an apparatus for depositing an artificial diamond film. 1... Reaction container, 2... Reaction mixed gas introduction pipe, 3...
Filament as thermionic emitting material, 4...base plate,
5...Base body, 6...High frequency coil, 7... Waveguide.

Claims (1)

【特許請求の範囲】[Claims] 1 主成分が炭化水素と水素からなり、かつ熱電
子放射材、高周波によるプラズマ放電、あるいは
マイクロ波によるプラズマ放電などにより活性化
された加熱反応混合ガスの流れの中に加熱基体を
置くことによつて前記基体の表面に人工ダイヤモ
ンド皮膜を析出形成する方法において、前処理と
して、前記基体表面に酸素拡散処理を施すことに
よつて、反応初期に析出するダイヤモンド結晶核
の増大をはかることを特徴とする人工ダイヤモン
ド皮膜の析出形成方法。
1 By placing a heated substrate in the flow of a heated reaction mixture whose main components are hydrocarbon and hydrogen and which have been activated by a thermionic radiation material, plasma discharge by high frequency, plasma discharge by microwave, etc. The method for depositing and forming an artificial diamond film on the surface of the substrate is characterized in that, as a pretreatment, the surface of the substrate is subjected to oxygen diffusion treatment to increase the number of diamond crystal nuclei that are precipitated at the initial stage of the reaction. A method for depositing and forming an artificial diamond film.
JP59220000A 1984-10-19 1984-10-19 Precipitation formation method of artificial diamond film Granted JPS6197194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220000A JPS6197194A (en) 1984-10-19 1984-10-19 Precipitation formation method of artificial diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220000A JPS6197194A (en) 1984-10-19 1984-10-19 Precipitation formation method of artificial diamond film

Publications (2)

Publication Number Publication Date
JPS6197194A JPS6197194A (en) 1986-05-15
JPH0234917B2 true JPH0234917B2 (en) 1990-08-07

Family

ID=16744358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220000A Granted JPS6197194A (en) 1984-10-19 1984-10-19 Precipitation formation method of artificial diamond film

Country Status (1)

Country Link
JP (1) JPS6197194A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071708A (en) * 1987-10-20 1991-12-10 Showa Denko K.K. Composite diamond grain

Also Published As

Publication number Publication date
JPS6197194A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
JPS6327319B2 (en)
JPS63182297A (en) Aggregate diamond
JPS6320911B2 (en)
US5071708A (en) Composite diamond grain
EP0320657A1 (en) Improved diamond growth process
CN1157641A (en) Diamond-phase carbon tubes and CVD process for their production
JPH0234917B2 (en)
US5268201A (en) Composite diamond grain and method for production thereof
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
JPS6286161A (en) Method for forming artificial diamond film with fast precipitation formation rate
JP2002523331A (en) Method for producing an improved boron coating on graphite and articles obtained therefrom
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPS6358798B2 (en)
JPS6261109B2 (en)
JP2534080Y2 (en) Artificial diamond deposition equipment
JPS644586B2 (en)
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JPS60200897A (en) Process for depositing and forming artificial diamond film
JPS60200898A (en) Artificial diamond precipitation generator
JPS60200896A (en) Synthesis method of fibrous diamond
JPH0116624B2 (en)
JP2773442B2 (en) Diamond production method
JPS6261108B2 (en)
JP2534079Y2 (en) Artificial diamond deposition equipment
JPS62167884A (en) Composite body having carbon film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term