[go: up one dir, main page]

JPH0227407B2 - YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO - Google Patents

YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO

Info

Publication number
JPH0227407B2
JPH0227407B2 JP12444284A JP12444284A JPH0227407B2 JP H0227407 B2 JPH0227407 B2 JP H0227407B2 JP 12444284 A JP12444284 A JP 12444284A JP 12444284 A JP12444284 A JP 12444284A JP H0227407 B2 JPH0227407 B2 JP H0227407B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12444284A
Other languages
Japanese (ja)
Other versions
JPS613833A (en
Inventor
Ryota Yamaba
Yukio Tsuda
Atsuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12444284A priority Critical patent/JPH0227407B2/en
Priority to EP85304223A priority patent/EP0165774B2/en
Priority to DE8585304223T priority patent/DE3579376D1/en
Priority to CA000484073A priority patent/CA1246969A/en
Priority to AU43772/85A priority patent/AU558845B2/en
Publication of JPS613833A publication Critical patent/JPS613833A/en
Priority to US07/453,141 priority patent/US4988393A/en
Publication of JPH0227407B2 publication Critical patent/JPH0227407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度鋼の製造方法に関するもので、
高い強度と良好な溶接性が必要な圧力容器、橋梁
および建設機械等の溶接構造用材料として有用な
鋼に関するものである。 (従来の技術) 従来、上記用途の高強度鋼はオフライン焼入
れ、焼戻し熱処理法により製造されている。しか
しながら、これらの鋼には高強度を得るため多種
多量の合金元素が添加されるため製造コストが高
いと共に溶接割れ防止のため溶接時には高い温度
の予熱が必要である。 従来提案されたものとして特公昭41−2763号公
報記載の方法が公知である。これはMoとNbを共
存させることによりMo―Nb系の析出物により、
析出硬化を利用し高強度を付与するものである。
そして、これはすべてオフラインで通常の焼入
れ、焼戻し熱処理によつて製造することが前提と
なつている。この場合焼入れ温度は900℃前後で
あるので、十分な析出硬化をはかるために多くの
NbおよびMoの添加が必要となり、コスト高にな
ると共に、溶接性、特に溶接割れ性に問題があり
溶接時に高い温度の予熱が必要でその改善が強く
望まれていた。 (発明が解決しようとする問題点) 本発明はこのような用途に必要な高度の靭性と
良好な溶接性、なかんずく溶接割れ性を有し、し
かも引張強さ80Kgf/mm2以上の高強度を有する鋼
を50mmを越える厚い板厚まで安価に製造する方法
を提供するものである。 (問題点を解決するための手段) 本発明者らはこのような目的を有利に達成する
ために炭素当量を低くして且つ80Kgf/mm2以上の
高強度および高靭性を得るための鋼の製造方法に
ついて種々検討した結果、Nb,Mo,Bおよび低
Nを組み合わせた鋼をオンライン焼入れし、その
後焼戻すことにより、低炭素当量できわめてすぐ
れた特性を有する高靭性、高強度鋼が得られるこ
とを知見した。 本発明はこのような知見をもとに構成したもの
でその要旨とするところは、 重量%にてC:0.04〜0.11%、Si:0.1〜1.0%、
Mn:0.50〜2.00%、Mo:0.10〜1.0%、Nb:
0.005〜0.05%、B:0.0003〜0.01%、Al:0.005〜
0.1%、N:0.0060%以下、を含有し、さらに必
要に応じて、Cr:1%以下、Ni:1%以下、
Cu:1%以下、V:0.1%以下、からなる強度向
上元素群、並びに、Ca:0.01%以下、のうちの強
度向上元素群かCaのうちの1種または2種以上、
あるいは強度向上元素群から1種以上選び、これ
にCaを添加し、残部がFeおよび不可避不純物よ
りなる鋼を、加熱温度1000〜1270℃、圧延終了温
度800〜1100℃の条件で加熱圧延し、圧延後直ち
に200℃以下まで急冷した後Ac1以下で焼戻し熱
処理を施こすことを特徴とする溶接性にすぐれた
高強度鋼の製造方法にある。 (発明の作用) 本発明者らは種々の実験・検討を重ねた結果、
適切なNb―Mo―B―N成分系をオンライン焼入
れした後、焼戻すことによりMo―Nb系析出物の
析出硬化を飛躍的に活用することが可能であると
共に、BおよびMoの焼入性向上効果を著しく高
めることが可能であることを見出した。即ち本発
明はオンライン加熱時のNbおよびMoの固溶によ
り少量のNb量でオンライン急冷後の焼戻し時に
従来予想できないほどの著しい析出硬化を生じる
ことおよび低N化をはかることにより、この少量
のNbがBの焼入性を大きく高めると共に、Moの
焼入性向上効果と複合して著しい焼入性向上がは
かれることの2つの知見を得たことに基づいてい
る。 この方法によつて、比較的少ない化学成分で良
好な低温靭性・溶接性を有する80Kgf/mm2以上の
引張強さを有する鋼の製造を可能としたものであ
り、特に板厚50mmを越える厚肉材の製造も可能で
ある。 次に、本発明における対象鋼の化学成分の限定
理由について述べる。 Cは高強度鋼を得るために0.04%以上は必要で
あるが、含有量が多くなる程強度が上昇するが、
低温靭性が低下すると共に耐溶接割れ性が劣化す
るのでその含有量を0.04〜0.11%とする。 Siは通常脱酸元素として存在するが強度向上の
ため0.1%以上は必要である。しかし、1.0%を超
えると低温靭性の低下が著しいため上限は1.0%
とする。 Mnは高強度を得るために0.50%以上は必要で
あるが2.0%を超えると低温靭性・溶接性を損う
のでその含有量を0.50〜2.0%とする Moは強度・低温靭性の向上に有用であるが、
0.1%未満では効果が小さい。他方、1%を超え
ると強度が高くなりすぎ、低温靭性の低下を招く
と共に高価になるため0.1〜1.0%とする。望まし
くは0.25〜0.6%である。 NbはMoと共存して焼戻し時の析出硬化に有用
であると共に、低N化と併せてBの焼入性向上を
可能とするが0.005%未満では効果がない。また
0.05%を超えるとコストが高くなると共に溶接性
を損うため0.005〜0.05%とする。望ましくは0.01
〜0.025%が良い。 Alは鋼の脱酸のために0.005%以上必要である
が、0.1%を超えると鋼の清浄性を阻害するため
0.1%を上限とする。 Bは一般に焼入性を高めるのに有用であり、特
に本発明鋼ではNb添加、低N化およびMo添加の
複合効果により著しい焼入性の向上が可能である
が、この効果を奏するのに0.0003%以上が必要で
ある。しかし、多量に添加すると溶接性を阻害す
るので上限は0.01%とする。 Nは一般に不可避元素であると共に、Bの焼入
性を阻害する元素であるが、少量のNbで焼入性
向上をはかることが可能な上限は0.006%である。
望ましくは0.004%以下が良い。 本発明は上記の基本成分の他に要求される鋼の
特性に応じて以下の元素を1種または2種以上選
択的に含有させることができる。 Cr,Ni,CuおよびVは鋼の強度を向上させる
という均等的作用を持つもので、必要に応じて含
有させるが、それぞれCr:1.0%、Ni:1.0%、
Cu:1.0%およびV:0.1%の含有上限値を越えて
含有させても、高価になり過ぎ、かつ、溶接性を
阻害するといつた悪い効果が出、逆効果となるた
め、上記強度向上元素群のそれぞれの成分上限を
定める。 Caは製鋼時に添加して鋼の脱酸を良好にし、
介在物の減少、硫化物系介在物の形態制御を行な
つて低温靭性を向上させるのに有用であるが鋼中
に多量に存在すると有害な非金属介在物を生成
し、逆に低温靭性を阻害するため0.01%以下とす
る。 次に不純物として不可避的に含有するP,Sに
ついては特に限定するものではないが、鋼の清浄
性を通じて材質を安定化するため少い程よく、こ
のような観点からPは0.020%以下、Sは0.010%
以下とすることが望ましい。 次に前記組成を有する鋼の加熱―圧延―熱処理
条件の限定理由について述べる。 加熱温度はNbが固溶する温度として1000℃以
上必要であるが、1270℃を越えるとγ粒の粗大化
が著しくなるため、上限を1270℃とする。圧延は
スラブ加熱・抽出後速やかに行なう。従つて、圧
延開始温度は、スラブ加熱温度や板厚によりほぼ
決定されてしまう。そこで、圧延終了温度を1100
℃に超にしようとすると、温度低下を抑制する手
段を講ぜねばならず、コスト高となるため上限を
1100℃とする。また、圧延終了温度は低くなると
焼入れ性が低下し、その結果焼戻し後の低温靭性
が劣化するため800℃以上とする。 次いで圧延後直ちに急冷を行うが冷却開始温度
が低くなると焼入れ性が低下するので800℃以上
からの急冷が好ましい。この急冷はオンライン上
で水、ミスト等の冷却媒体を鋼板の表裏面に供給
して行うものである。急冷後の温度は高いと完全
な焼入れ組織とすることがむずかしいため200℃
を上限とする。 前記処理を経た後、焼戻し熱処理を施すもので
あるがフエライト域で焼戻すことが良好な低温靭
性を得るのに不可欠であるため上限温度をAc1
度とする。 (実施例) 次に実施例を比較例と共に挙げる。 第1表に示す化学成分を有する鋼を用いて第2
表に示す加熱―圧延―熱処理を施した。得られた
鋼板の機械的性質と溶接割れ性を併せて第2表に
示す。
(Industrial Application Field) The present invention relates to a method for manufacturing high-strength steel,
This invention relates to steel useful as a welded structural material for pressure vessels, bridges, construction machinery, etc., which require high strength and good weldability. (Prior Art) Conventionally, high-strength steel for the above-mentioned uses has been manufactured by off-line quenching and tempering heat treatment methods. However, in order to obtain high strength, many types of alloying elements are added to these steels, which results in high manufacturing costs and requires preheating to a high temperature during welding to prevent weld cracking. As a conventionally proposed method, a method described in Japanese Patent Publication No. 41-2763 is known. This is due to Mo-Nb system precipitates due to the coexistence of Mo and Nb.
It uses precipitation hardening to impart high strength.
All of these are based on the premise that they are manufactured off-line through normal quenching and tempering heat treatment. In this case, the quenching temperature is around 900℃, so in order to achieve sufficient precipitation hardening, many
The addition of Nb and Mo is required, which increases costs, and there is a problem with weldability, particularly weld cracking, which requires preheating at a high temperature during welding, and there is a strong desire for improvement. (Problems to be Solved by the Invention) The present invention has a high degree of toughness and good weldability necessary for such uses, especially weld cracking resistance, and has a high tensile strength of 80 Kgf/mm 2 or more. The objective is to provide a method for inexpensively manufacturing steel having a thickness of over 50 mm. (Means for Solving the Problems) In order to advantageously achieve the above object, the present inventors have developed a steel with a low carbon equivalent and high strength and toughness of 80 Kgf/mm 2 or more. As a result of various studies on manufacturing methods, we found that by on-line quenching a steel that combines Nb, Mo, B, and low N, and then tempering it, a high-toughness, high-strength steel with a low carbon equivalent and extremely excellent properties can be obtained. I found out that. The present invention was constructed based on such knowledge, and its gist is that C: 0.04 to 0.11%, Si: 0.1 to 1.0%,
Mn: 0.50-2.00%, Mo: 0.10-1.0%, Nb:
0.005~0.05%, B: 0.0003~0.01%, Al: 0.005~
0.1%, N: 0.0060% or less, and if necessary, Cr: 1% or less, Ni: 1% or less,
A strength-improving element group consisting of Cu: 1% or less, V: 0.1% or less, and one or more of the strength-improving element group of Ca: 0.01% or less,
Alternatively, one or more elements are selected from the group of strength-improving elements, Ca is added thereto, and the remainder is Fe and unavoidable impurities, and the steel is heated and rolled at a heating temperature of 1000 to 1270°C and a rolling end temperature of 800 to 1100°C, A method for producing high-strength steel with excellent weldability, characterized in that immediately after rolling, the steel is rapidly cooled to 200°C or less and then subjected to tempering heat treatment at Ac 1 or less. (Action of the invention) As a result of various experiments and studies, the present inventors found that
By online quenching and then tempering a suitable Nb-Mo-B-N component system, it is possible to dramatically utilize the precipitation hardening of Mo-Nb precipitates, and improve the hardenability of B and Mo. We have found that it is possible to significantly enhance the improvement effect. In other words, the present invention is capable of producing significant precipitation hardening that could not previously be expected during tempering after on-line quenching with a small amount of Nb due to solid solution of Nb and Mo during online heating, and by aiming to reduce the amount of Nb. This is based on two findings: that B greatly improves the hardenability of B, and that combined with the hardenability improving effect of Mo, the hardenability is significantly improved. This method makes it possible to manufacture steel with a tensile strength of 80 Kgf/mm 2 or more, which has good low-temperature toughness and weldability with relatively few chemical components, and is especially suitable for use with plate thicknesses exceeding 50 mm. It is also possible to produce meat materials. Next, the reason for limiting the chemical composition of the target steel in the present invention will be described. 0.04% or more of C is required to obtain high-strength steel, and the strength increases as the content increases.
Since low-temperature toughness and weld cracking resistance deteriorate, the content is set to 0.04 to 0.11%. Si usually exists as a deoxidizing element, but 0.1% or more is required to improve strength. However, if it exceeds 1.0%, the low-temperature toughness decreases significantly, so the upper limit is 1.0%.
shall be. Mn is required at 0.50% or more to obtain high strength, but if it exceeds 2.0%, low-temperature toughness and weldability will be impaired, so the content should be 0.50-2.0%. Mo is useful for improving strength and low-temperature toughness. In Although,
If it is less than 0.1%, the effect is small. On the other hand, if it exceeds 1%, the strength becomes too high, leading to a decrease in low-temperature toughness and making it expensive, so it is set at 0.1 to 1.0%. It is preferably 0.25 to 0.6%. Nb coexists with Mo and is useful for precipitation hardening during tempering, and also makes it possible to improve the hardenability of B in combination with a low N content, but if it is less than 0.005%, it is ineffective. Also
If it exceeds 0.05%, the cost will increase and weldability will be impaired, so the content should be 0.005 to 0.05%. Preferably 0.01
~0.025% is good. 0.005% or more of Al is necessary for deoxidizing steel, but if it exceeds 0.1%, it will inhibit the cleanliness of steel.
The upper limit is 0.1%. B is generally useful for increasing hardenability, and in particular in the steel of the present invention, the combined effects of Nb addition, low N content, and Mo addition can significantly improve hardenability. 0.0003% or more is required. However, if added in large amounts, weldability will be impaired, so the upper limit is set at 0.01%. Although N is generally an unavoidable element and an element that inhibits the hardenability of B, the upper limit at which a small amount of Nb can improve hardenability is 0.006%.
The content is preferably 0.004% or less. In the present invention, in addition to the above-mentioned basic components, one or more of the following elements can be selectively included depending on the required characteristics of the steel. Cr, Ni, Cu, and V have the uniform effect of improving the strength of steel, and are included as necessary, but Cr: 1.0%, Ni: 1.0%,
Even if the content exceeds the upper limits of Cu: 1.0% and V: 0.1%, the above strength-improving elements will be too expensive and have a negative effect of inhibiting weldability, which will have the opposite effect. Define upper limits for each component of the group. Ca is added during steelmaking to improve the deoxidation of steel.
This is useful for reducing inclusions and controlling the morphology of sulfide-based inclusions to improve low-temperature toughness, but if present in large quantities in steel, harmful non-metallic inclusions will be produced, and conversely, they will reduce low-temperature toughness. To prevent this, the content should be 0.01% or less. Next, P and S, which are unavoidably contained as impurities, are not particularly limited, but in order to stabilize the material quality through the cleanliness of the steel, the less the better.From this perspective, P should be 0.020% or less, and S should be 0.010%
The following is desirable. Next, the reasons for limiting the heating-rolling-heat treatment conditions for steel having the above composition will be described. The heating temperature needs to be 1000°C or higher to form a solid solution of Nb, but if it exceeds 1270°C, the coarsening of γ grains becomes significant, so the upper limit is set at 1270°C. Rolling is carried out immediately after heating and extraction of the slab. Therefore, the rolling start temperature is almost determined by the slab heating temperature and plate thickness. Therefore, the rolling end temperature was set to 1100.
If you try to exceed ℃, you will have to take measures to suppress the temperature drop, which will increase the cost, so the upper limit should be set.
The temperature shall be 1100℃. Further, the rolling end temperature is set to 800° C. or higher because the lower the temperature, the lower the hardenability, and the lower the low-temperature toughness after tempering. Next, immediately after rolling, quenching is performed, but if the cooling start temperature becomes low, hardenability decreases, so quenching from 800° C. or higher is preferable. This rapid cooling is performed online by supplying a cooling medium such as water or mist to the front and back surfaces of the steel plate. The temperature after quenching is 200℃ because it is difficult to obtain a completely hardened structure if the temperature is high.
is the upper limit. After the above treatment, a tempering heat treatment is performed, and since tempering in the ferrite region is essential for obtaining good low-temperature toughness, the upper limit temperature is set to Ac 1 temperature. (Example) Next, Examples will be given together with Comparative Examples. Using steel having the chemical composition shown in Table 1,
The heating-rolling-heat treatment shown in the table was performed. The mechanical properties and weld cracking resistance of the obtained steel plate are shown in Table 2.

【表】【table】

【表】【table】

【表】 注1:急冷開始温度は圧延終了温度と大差なし
注1:DQT:直接焼入れ−焼戻し、QT:オフライン焼
入れ−焼戻し
第2表から明らかなように、本発明実施例の場
合にはいずれも80Kgf/mm2以上の高強度に加え、
25mm板厚では−60℃以下の、また、板厚55mmでは
−50℃以下の高靭性を示し、かつ溶接割れ性の一
つの判定基準であるY割れ停止温度が室温と極め
て良好な溶接割れ性を備えた使用者にとつて使い
やすい厚鋼板を製造できた。就中、例AとBは基
本成分のみの例、例C,D,E,FはCu,Cr,
Ni,Vの強度向上元素の1種または2種以上の
合金元素を含む例である。例Gは基本成分の他に
Caを含む例である。例H,IはCu,Cr,Ni,V
の強度向上元素の他にCaを含む例である。 例B2は比較例で加熱温度が高め外れのため、
低温靭性が低下した。 例J,K,Lは比較例である。例JはBを含ま
ずDQT処理をしたものであるが、80キロ鋼の強
度としてやや不足し且つ低温靭性も低い。 例KはN量が高い例であるが、やはり強度が低
く且つ、低温靭性も低い。 例LはC含有量が高い例で、これを従来のオフ
ライン焼入れ焼戻しした例である。強度・靭性と
もほぼ良好であるがY割れ性停止温度が125℃と
なつて溶接割れ性が劣る。 (発明の効果) 以上のとおり、本発明はNb―Mo―B―低N鋼
を用い加熱―圧延―オンライン焼入れ―焼戻しの
プロセスとし、特に加熱時の固溶Nb,Moの有効
析出を最大限に活用すると共に、低NとMo,Nb
の複合添加によりBの焼入性改善を徹底し、すぐ
れた焼入性を付与したもので、成分的に従来の80
キロ級鋼に多く添加されていたNiを大幅に省略
しかつわずかなNb,Mo等の合金添加を行ない熱
処理についてもオフライン焼入れ熱処理が省略で
きるため高靭性、高強度鋼を極めて安価に製造で
きるという効果がある。
[Table] Note 1: Rapid cooling start temperature is not much different from rolling end temperature Note 1: DQT: Direct quenching-tempering, QT: Off-line quenching-tempering As is clear from Table 2, in the case of the examples of the present invention, In addition to high strength of over 80Kgf/ mm2 ,
It exhibits high toughness of -60℃ or less for a 25mm plate thickness, and -50℃ or less for a 55mm plate thickness, and has extremely good weld cracking resistance with a Y crack stop temperature of room temperature, which is one criterion for weld crackability. We were able to manufacture a thick steel plate that is easy to use for users with In particular, Examples A and B contain only the basic components, and Examples C, D, E, and F contain Cu, Cr,
This is an example containing one or more alloying elements of Ni and V, which are strength improving elements. Example G has in addition to the basic components
This is an example containing Ca. Examples H and I are Cu, Cr, Ni, V
This is an example in which Ca is included in addition to the strength-enhancing element. Example B 2 is a comparative example and the heating temperature was too high, so
Low temperature toughness decreased. Examples J, K, and L are comparative examples. Example J does not contain B and has been subjected to DQT treatment, but it is somewhat lacking in the strength of 80kg steel and has low low temperature toughness. Example K is an example in which the amount of N is high, but the strength is still low and the low temperature toughness is also low. Example L is an example with a high C content, and is an example of conventional off-line quenching and tempering. Although the strength and toughness are almost good, the Y cracking stop temperature is 125°C, and the welding cracking property is poor. (Effects of the invention) As described above, the present invention uses Nb-Mo-B-low N steel and uses a heating-rolling-online quenching-tempering process to maximize the effective precipitation of solid solution Nb and Mo during heating. In addition to being used for low N and Mo, Nb
The hardenability of B has been thoroughly improved through the combined addition of B, giving it excellent hardenability.
It is said that it is possible to produce high-toughness, high-strength steel at an extremely low cost because the Ni, which was added in large amounts in kilo-grade steel, is largely omitted, and a small amount of alloying elements such as Nb and Mo are added, and offline quenching heat treatment can be omitted. effective.

Claims (1)

【特許請求の範囲】 1 重量%にてC:0.04〜0.11%、Si:0.1〜1.0
%、Mn:0.50〜2.00%、Mo:0.10〜1.0%、
Nb:0.005〜0.05%、B:0.0003〜0.01%、Al:
0.005〜0.1%、N:0.0060%以下、を基本成分と
し、残部Feおよび不可避不純物よりなる鋼を、
加熱温度1000〜1270℃、圧延終了温度800〜1100
℃の条件で加熱圧延し、圧延後直ちに200℃以下
まで急冷した後、Ac1点以下で焼戻し熱処理を施
すことを特徴とする溶接性にすぐれた高強度鋼の
製造方法。 2 重量%にてC:0.04〜0.11%、Si:0.1〜1.0
%、Mn:0.50〜2.00%、Mo:0.10〜1.0%、
Nb:0.005〜0.05%、B:0.0003〜0.01%、Al:
0.005〜0.1%、N:0.0060%以下、を基本成分と
し、さらに、Cr:1%以下、Ni:1%以下、
Cu:1%以下、V:0.1%以下からなる強度向上
元素群のうちの1種または2種以上を含有させ、
残部Feおよび不可避不純物よりなる鋼を、加熱
温度1000〜1270℃、圧延終了温度800〜1100℃の
条件で加熱圧延し、圧延後直ちに200℃以下まで
急冷した後、Ac1点以下で焼戻し熱処理を施すこ
とを特徴とする溶接性にすぐれた高強度鋼の製造
方法。 3 重量%にてC:0.04〜0.11%、Si:0.1〜1.0
%、Mn:0.50〜2.00%、Mo:0.10〜1.0%、
Nb:0.005〜0.05%、B:0.0003〜0.01%、Al:
0.005〜0.1%、N:0.0060%以下、を基本成分と
し、さらに、Ca:0.01%以下を含有させ、残部
Feおよび不可避不純物よりなる鋼を、加熱温度
1000〜1270℃、圧延終了温度800〜1100℃の条件
で加熱圧延し、圧延後直ちに200℃以下まで急冷
した後、Ac1点以下で焼戻し熱処理を施すことを
特徴とする溶接性にすぐれた高強度鋼の製造方
法。 4 重量%にてC:0.04〜0.11%、Si:0.1〜1.0
%、Mn:0.50〜2.00%、Mo:0.10〜1.0%、
Nb:0.005〜0.05%、B:0.0003〜0.01%、Al:
0.005〜0.1%、N:0.0060%以下、を基本成分と
し、さらに、Cr:1%以下、Ni:1%以下、
Cu:1%以下、V:0.1%以下からなる強度向上
元素群のうちの1種または2種以上と、Ca:0.01
%以下を含有させ、残部Feおよび不可避不純物
よりなる鋼を、加熱温度1000〜1270℃、圧延終了
温度800〜1100℃の条件で加熱圧延し、圧延後直
ちに200℃以下まで急冷した後、Ac1点以下で焼
戻し熱処理を施すことを特徴とする溶接性にすぐ
れた高強度鋼の製造方法。
[Claims] 1 C: 0.04 to 0.11%, Si: 0.1 to 1.0 by weight
%, Mn: 0.50-2.00%, Mo: 0.10-1.0%,
Nb: 0.005-0.05%, B: 0.0003-0.01%, Al:
A steel whose basic components are 0.005 to 0.1%, N: 0.0060% or less, and the balance is Fe and unavoidable impurities.
Heating temperature 1000~1270℃, rolling end temperature 800~1100
1. A method for producing high-strength steel with excellent weldability, characterized by hot rolling at a temperature of 200°C, quenching immediately after rolling to 200°C or less, and then subjecting it to tempering heat treatment at an Ac of 1 point or less. 2 C: 0.04-0.11%, Si: 0.1-1.0 in weight%
%, Mn: 0.50-2.00%, Mo: 0.10-1.0%,
Nb: 0.005-0.05%, B: 0.0003-0.01%, Al:
The basic components are 0.005 to 0.1%, N: 0.0060% or less, and further Cr: 1% or less, Ni: 1% or less,
Containing one or more of the strength improving element group consisting of Cu: 1% or less and V: 0.1% or less,
Steel consisting of the balance Fe and unavoidable impurities is heated and rolled under the conditions of a heating temperature of 1000 to 1270℃ and a rolling finish temperature of 800 to 1100℃, and immediately after rolling, it is rapidly cooled to 200℃ or less, and then subjected to tempering heat treatment at Ac 1 point or less. A method for producing high-strength steel with excellent weldability. 3 C: 0.04-0.11%, Si: 0.1-1.0 in weight%
%, Mn: 0.50-2.00%, Mo: 0.10-1.0%,
Nb: 0.005-0.05%, B: 0.0003-0.01%, Al:
The basic components are 0.005 to 0.1%, N: 0.0060% or less, and Ca: 0.01% or less, and the balance
Steel consisting of Fe and unavoidable impurities is heated to
High weldability characterized by hot rolling at 1000-1270℃ and rolling end temperature 800-1100℃, rapid cooling to 200℃ or less immediately after rolling, and then tempering heat treatment at Ac 1 point or less. Method of manufacturing strength steel. 4 C: 0.04-0.11%, Si: 0.1-1.0 in weight%
%, Mn: 0.50-2.00%, Mo: 0.10-1.0%,
Nb: 0.005-0.05%, B: 0.0003-0.01%, Al:
The basic components are 0.005 to 0.1%, N: 0.0060% or less, and further Cr: 1% or less, Ni: 1% or less,
One or more of the strength improving element group consisting of Cu: 1% or less, V: 0.1% or less, and Ca: 0.01
% or less, with the remainder being Fe and unavoidable impurities, is heated and rolled at a heating temperature of 1000 to 1270°C and a rolling end temperature of 800 to 1100°C, and immediately after rolling, it is rapidly cooled to 200°C or less, and then Ac 1 A method for producing high-strength steel with excellent weldability, which is characterized by subjecting it to tempering heat treatment at a temperature below 100%.
JP12444284A 1984-06-19 1984-06-19 YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO Expired - Lifetime JPH0227407B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12444284A JPH0227407B2 (en) 1984-06-19 1984-06-19 YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO
EP85304223A EP0165774B2 (en) 1984-06-19 1985-06-13 Method for producing high-strength steel having improved weldability
DE8585304223T DE3579376D1 (en) 1984-06-19 1985-06-13 METHOD FOR PRODUCING HIGH-STRENGTH STEEL WITH WELDABILITY.
CA000484073A CA1246969A (en) 1984-06-19 1985-06-14 Method for producing high-strength steel having improved weldability
AU43772/85A AU558845B2 (en) 1984-06-19 1985-06-18 High strength, weldable, low alloy steel
US07/453,141 US4988393A (en) 1984-06-19 1989-12-12 Method for producing high-strength steel having improved weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12444284A JPH0227407B2 (en) 1984-06-19 1984-06-19 YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS613833A JPS613833A (en) 1986-01-09
JPH0227407B2 true JPH0227407B2 (en) 1990-06-18

Family

ID=14885602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12444284A Expired - Lifetime JPH0227407B2 (en) 1984-06-19 1984-06-19 YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227407B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166918A (en) * 1985-01-17 1986-07-28 Nippon Steel Corp Manufacture of steel with sulfide stress corrosion cracking resistance
JPS61186453A (en) * 1985-02-13 1986-08-20 Kobe Steel Ltd High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS61250152A (en) * 1985-04-26 1986-11-07 Kobe Steel Ltd Normalized low-carbon steel plate for boiler or pressure vessel having high strength and toughness
JPS62146247A (en) * 1985-12-20 1987-06-30 Kobe Steel Ltd Cr-mo steel plate for multilayer vessel
JPS63145711A (en) * 1986-12-08 1988-06-17 Kobe Steel Ltd Production of high tension steel plate having excellent low temperature toughness
JPH0726150B2 (en) * 1989-08-15 1995-03-22 株式会社神戸製鋼所 Manufacturing method of tempered high-strength steel sheet with excellent weldability and brittle fracture propagation stopping properties

Also Published As

Publication number Publication date
JPS613833A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JPH10130782A (en) Ultra-high strength cold rolled steel sheet and method for producing the same
JPS6216892A (en) Manufacture of high strength stainless steel clad steel plate excellent in corrosion resistance and weldability
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JPH0227407B2 (en) YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO
JP2510187B2 (en) Method for producing hot-rolled steel sheet for low-yield ratio high-strength line pipe with excellent low temperature toughness
EP0165774A2 (en) Method for producing high-strength steel having improved weldability
JPH06128631A (en) Method for producing high manganese ultra high strength steel with excellent low temperature toughness
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JPS625216B2 (en)
JPS59136418A (en) Manufacturing method of high toughness and high strength steel
JPS593537B2 (en) welded structural steel
JPS6134116A (en) Manufacture of high toughness hot rolled coil
JPS582570B2 (en) Manufacturing method of non-tempered tough high tensile strength steel
JPH0826395B2 (en) 80 kgf / mm with excellent weldability (2) High-strength steel manufacturing method
JPS6150125B2 (en)
JPH0559171B2 (en)
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JPH0215145A (en) Working and heating hardened hot rolled steel plate
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPS601927B2 (en) Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH0137454B2 (en)