[go: up one dir, main page]

JPS59136418A - Manufacturing method of high toughness and high strength steel - Google Patents

Manufacturing method of high toughness and high strength steel

Info

Publication number
JPS59136418A
JPS59136418A JP58009906A JP990683A JPS59136418A JP S59136418 A JPS59136418 A JP S59136418A JP 58009906 A JP58009906 A JP 58009906A JP 990683 A JP990683 A JP 990683A JP S59136418 A JPS59136418 A JP S59136418A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009906A
Other languages
Japanese (ja)
Inventor
Ryota Yamaba
山場 良太
Kentaro Okamoto
健太郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58009906A priority Critical patent/JPS59136418A/en
Publication of JPS59136418A publication Critical patent/JPS59136418A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高靭性高強度鋼の製造方法に関するもので、特
に高い強度と良好な溶接性が必要なタンク、圧力容器か
ら一般橋梁等の溶接構造用材料として好適な鋼に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-toughness, high-strength steel, particularly steel suitable as a material for welded structures such as tanks, pressure vessels, and general bridges that require high strength and good weldability. Pertains to.

本発明はこのような用途に必要な高度の靭性と良好な溶
接性を有し、しかも引張強さ80 kg/rrrm2以
上の高強度を有する鋼を安価に製造する方法を提供する
ものである。
The present invention provides a method for inexpensively manufacturing steel that has a high degree of toughness and good weldability necessary for such uses, and also has a high tensile strength of 80 kg/rrrm2 or more.

従来のオフライン焼入れ一焼戻し熱処理法によって製造
された80キロ級鋼が各種用途に使用はれている。しか
しながらこれらの鋼には高強度を得るため多種多量の合
金元素が添加はれる。それ故製造コストが高いと共に、
溶接時には厳しい配慮がなされるのが通常である。そこ
でこの種の鋼の製造コストの低減と溶接性の改善が強く
望まれていた。
80 kg class steel produced by the conventional off-line quench-temper heat treatment process is used in a variety of applications. However, many types of alloying elements are added to these steels in order to obtain high strength. Therefore, manufacturing costs are high, and
Strict considerations are normally taken during welding. Therefore, it has been strongly desired to reduce the manufacturing cost and improve weldability of this type of steel.

本発明者らは炭素当量を低くして且つ80 kii’/
mm2以上の高強度および高靭性を得るための鋼の製造
方法について、種々検討した結果、低炭素当量でもNb
 −Ti −Mo −Hの複合添加を行ない、オンライ
ン焼入れしその後焼戻すことにより、きわめてすぐれた
特性を持つ高靭性、高強度鋼が得られることを知見した
。すなわち本発明の要旨とするところはC: Q、04
〜0.10%、 SS : 1.0%以下、B:O,0
1%以下を基本成分とし、必要に応じて、v : o、
is以下、Cu : 1%以下、Cr : 1%以下、
Ca:O,01%以下の一種又は二種以上を含有し、残
部Feおよび不可避不純物よシなる鋼を、加熱温度1i
so℃以上、圧延終了温度850℃以上の条件で加熱圧
延し圧延後直ちに200℃以下まで急冷した後、Ac1
点以下で焼戻す熱処理を施すことを特徴とする高靭性高
強度鋼の製造方法にある。
The present inventors lowered the carbon equivalent and 80 kii'/
As a result of various studies on the manufacturing method of steel to obtain high strength and toughness of mm2 or more, we found that even with a low carbon equivalent, Nb
It has been found that a high-toughness, high-strength steel with extremely excellent properties can be obtained by carrying out a composite addition of -Ti-Mo-H, on-line quenching, and then tempering. That is, the gist of the present invention is C: Q, 04
~0.10%, SS: 1.0% or less, B: O, 0
The basic component is 1% or less, and if necessary, v: o,
IS or less, Cu: 1% or less, Cr: 1% or less,
A steel containing one or more of Ca:O, 0.01% or less, the balance being Fe and unavoidable impurities, was heated at a heating temperature of 1i.
Ac1
The present invention provides a method for producing high-toughness, high-strength steel characterized by subjecting it to heat treatment for tempering at a temperature below 100%.

従来Nbが含有される調質鋼がオフライン焼入れおよび
焼戻しで製造されている。この場合焼入れ温度は900
℃前後とするのが通常であシ、Nbの固溶はあまシ期待
できない故焼戻し時の析出硬化も大きくなく、その分合
全元素低減も限られていた。なた、従来のNb含有鋼の
直接焼入れ一焼戻しの検討結果では低温加熱でないと焼
入れ性確保はむずかしいのが常識であった。
Conventionally, tempered steel containing Nb has been produced by off-line quenching and tempering. In this case, the quenching temperature is 900
Usually, the temperature is around 0.degree. C., and the solid solution of Nb cannot be expected to be strong.Therefore, precipitation hardening during tempering is not large, and the reduction of total elements by that amount is also limited. In addition, according to the results of conventional studies on direct quenching and tempering of Nb-containing steel, it is common knowledge that it is difficult to ensure hardenability unless the steel is heated at a low temperature.

ここにおいて本発明者らは種々の実験・検討を重ねた結
果、Nb−Ti−Mo−Bの複合添加を行なうと、常識
と異なシ高温加熱でもBによる焼入性の飛躍的向上が可
能であり、これより焼戻し後の強度、低温靭性の著しい
向上をはかることができることを確めた。
As a result of various experiments and studies, the present inventors have found that by adding Nb-Ti-Mo-B in combination, it is possible to dramatically improve the hardenability due to B even at high temperature heating, which is contrary to common knowledge. It was confirmed that the strength and low-temperature toughness after tempering can be significantly improved.

また、本発明は単にNb含有鋼を高温加熱してNbの固
溶を十分はかることにより、急冷後の焼戻し時に析出硬
化を生せしめる方法で得られる以上の強度上昇が可能で
あシ、そのため合金元素量を一層低減することができる
In addition, the present invention makes it possible to increase the strength of the alloy by simply heating the Nb-containing steel at high temperature to sufficiently dissolve Nb in the solid solution, which exceeds that obtained by the method of causing precipitation hardening during tempering after rapid cooling. The amount of elements can be further reduced.

この方法によって、比較的少ない化学成分で良好な低温
靭性・溶接性を有する8 0 kf/1ran以上のク
ラスの鋼の製造を可能としたものである。
This method makes it possible to produce steel of 80 kf/1 ran or higher class that has good low-temperature toughness and weldability with relatively few chemical components.

次に本発明における対象鋼の化学成分の限定理由につい
て述べる。
Next, the reason for limiting the chemical composition of the target steel in the present invention will be described.

Cは高強に銅を得るために0.04%以上は必要で多く
なる程強度が上昇するが、低温靭性が低下すると共に、
耐溶接割れ性が劣化するのでその含有量を0.04〜0
,10%としだ。
C is necessary in an amount of 0.04% or more to obtain high-strength copper, and as the amount increases, the strength increases, but low-temperature toughness decreases and
Since the weld cracking resistance deteriorates, the content should be reduced to 0.04 to 0.
, 10%.

Siは通常脱酸元素として多少存在するほか強度向上に
も有用である。しかし1.0%を超えると低温靭性の低
下が著しいため1.0%以下とした。
Si usually exists to some extent as a deoxidizing element and is also useful for improving strength. However, if it exceeds 1.0%, the low-temperature toughness deteriorates significantly, so it is set at 1.0% or less.

Mnは高強度を得るために0.50%以上は必要である
が、2.0%に超えると低温靭性・溶接性を損うのでそ
の含有量fi−0,50〜2.0係とした。
Mn is required at 0.50% or more to obtain high strength, but if it exceeds 2.0%, low temperature toughness and weldability will be impaired, so the content was set at fi-0.50 to 2.0. .

Moは強度・靭性の向上に有用であるが、0.1%未満
では効果がない、一方1%を超えると強度が上がシすぎ
、低温靭性の低下を招くため0.1〜1.0チとする。
Mo is useful for improving strength and toughness, but if it is less than 0.1%, it is ineffective, while if it exceeds 1%, the strength is too high, leading to a decrease in low-temperature toughness. Let's do it.

望ましくは0.25〜0.6%である。It is preferably 0.25 to 0.6%.

Nbは細粒化および析出硬化に有用であるが0.005
%未満では効果がない。また0、05%を超えるとコス
トも高くなシ溶接性を損うため0.005〜0.05係
とした。望ましくは0.01〜0.025係が良い。
Nb is useful for grain refining and precipitation hardening, but 0.005
Less than % has no effect. Moreover, if it exceeds 0.05%, the cost will be high and weldability will be impaired, so the ratio was set at 0.005 to 0.05. The ratio is preferably 0.01 to 0.025.

T1は細粒化およびNを固定し且つNb −TI −M
T1 is fine grained and N is fixed and Nb -TI -M
.

との複合効果てよfiBの焼入性向上効果を飛躍的に高
めるのに有用であるが0.005%未満では効果がない
。しかしあまシ多量に添加されると低温靭性を阻害する
ので、上限−io、05%とする。
The combined effect with carbon is useful for dramatically increasing the hardenability improvement effect of fiB, but if it is less than 0.005%, it is ineffective. However, if added in a large amount, the low temperature toughness will be impaired, so the upper limit -io is set at 05%.

A7は銅の脱酸のために添加されるが、0.1チを超え
ると鋼の清浄性を阻害するため0.1%を上限とする。
A7 is added to deoxidize copper, but if it exceeds 0.1%, it impedes the cleanliness of the steel, so the upper limit is 0.1%.

Bは焼入性を高めるのに有用であるが、多量に添加され
ると低温靭性を阻害するので0.01%を上限とする。
B is useful for improving hardenability, but if added in a large amount, it inhibits low temperature toughness, so the upper limit is set at 0.01%.

Crは焼入性向上に有用であるが、多量に添加すると溶
接性を阻害するので上限fJ 1.0%とする。
Cr is useful for improving hardenability, but if added in large amounts it impairs weldability, so the upper limit fJ is set at 1.0%.

■は析出硬化によって鋼の強度を上げるのに有用である
が多くなると低温靭性を損うので0.1チ以下とする。
(2) is useful for increasing the strength of steel through precipitation hardening, but if too large it impairs low-temperature toughness, so it should be 0.1 inch or less.

Cuは鋼の焼入れ性を高め強度を上昇するのに有用であ
るが多くなると高価になるので1%以下とする。
Cu is useful for improving the hardenability of steel and increasing its strength, but the more it becomes the more expensive it becomes, so it should be kept at 1% or less.

Caは製鋼時に添加して鋼の脱酸を良好にし、介在物を
減少して低温靭性全向上はせるのに有用であるが、鋼中
に多量に存在すると有害な非金属介在物を生成し、逆に
低温靭性を阻害するため0.1多以下とする。
Ca is useful when added during steelmaking to improve the deoxidation of steel, reduce inclusions, and completely improve low-temperature toughness, but when present in large amounts in steel, it can generate harmful nonmetallic inclusions. On the other hand, since it inhibits low-temperature toughness, it is set to 0.1 or less.

次に不純物として不可避的に含有するP、Sについては
特に限定するものではないが、鋼の清浄性を通じて材質
を安定化するため少い程よく、このような観点からPは
0.020%以下、Sは0.010%以下とすることが
望ましい。
Next, P and S, which are unavoidably contained as impurities, are not particularly limited, but in order to stabilize the material through the cleanliness of the steel, the less the better, and from this point of view, P should be 0.020% or less It is desirable that S be 0.010% or less.

次に前記組成を有する鋼の加熱−圧延−熱処理条件の限
定理由について述べる。
Next, the reasons for limiting the heating-rolling-heat treatment conditions for steel having the above composition will be described.

加熱温度はNbの固溶を十分可能ならしめるため115
0℃以上とする。圧延終了温度は低くなると焼入れ性が
低下し、焼戻し後の低温靭性が低下するので850℃以
上とする。
The heating temperature was set at 115 to enable solid solution of Nb.
The temperature shall be 0°C or higher. The rolling end temperature is set to 850° C. or higher, since the lower the temperature, the lower the hardenability and the lower the low-temperature toughness after tempering.

次いで圧延後ただちに急冷を行うが冷却開始温度が低く
なると焼入れ性が低下するので850℃ン上マン上ミス
ト等の冷却媒体を鋼板の表裏面に供給して行うものであ
る。そして急冷後の温度が高いと完全な焼入れ組織とす
ることがむずかしいため200℃を上限とする。
Next, immediately after rolling, quenching is performed, but since hardenability decreases when the cooling start temperature is low, the steel sheet is cooled at 850° C. by supplying a cooling medium such as man-over mist to the front and back surfaces of the steel sheet. If the temperature after quenching is high, it is difficult to obtain a completely hardened structure, so the upper limit is set at 200°C.

前記処理を経た後、焼戻し熱処理を施すものであるがフ
ェライト域で焼戻すことが良好な低温靭性を得るのに不
可欠であるため上限温度をA。1温度とする。
After the above-mentioned treatment, a tempering heat treatment is performed, and since tempering in the ferrite region is essential to obtain good low-temperature toughness, the upper limit temperature is set to A. 1 temperature.

次に実施例を比較例と共に挙げる。Next, examples will be listed together with comparative examples.

第1表に示す化学成分を有する鋼を用いて第2表に示す
加熱−圧延−熱処理を施した。得られた鋼板の機械的性
質と溶接割れ性を併せて第2表に示すO しかして例A、Bは第1発明の実施例を示し例C,D、
Eは第2発明の実施例を示す。
Steel having the chemical composition shown in Table 1 was subjected to heating-rolling-heat treatment shown in Table 2. The mechanical properties and weld cracking resistance of the obtained steel plate are shown in Table 2.However, Examples A and B are examples of the first invention, and Examples C and D are shown in Table 2.
E shows an embodiment of the second invention.

第2表から明らかなように、本発明実施例の場合にはい
ずれも80kg/ran2以上の高強度に加え、−60
℃以上の高靭性を示しかつ溶接割れ性の一つの判定基準
であるY割れ停止温度が室温という極めて良好な耐溶接
割れ性を備えた厚鋼板を製造できた。就中、例C,D、
Eは第2発明に相当するものでCr、V、Cu 、Ca
のうち1種又は2種以上の合金元素を含んでおシ、例A
、Hに比して高強度かつ高靭性を示しかつ耐溶接割れ性
も良好である。
As is clear from Table 2, in the case of the examples of the present invention, in addition to high strength of 80 kg/ran2 or more, -60
It was possible to produce a thick steel plate with extremely good weld cracking resistance, which exhibits high toughness of at least .degree. Among others, Examples C, D,
E corresponds to the second invention and is Cr, V, Cu, Ca
Containing one or more alloying elements, Example A
, H exhibits higher strength and toughness, and also has better weld cracking resistance.

例F、Gは比較例を示し、例FはTi、Bを含まずDQ
T処理したものであるが、80キロ鋼としては強度が低
くかつ靭性も悪い。
Examples F and G show comparative examples, and Example F does not contain Ti or B and is DQ.
Although it is T-treated, it has low strength and poor toughness for 80kg steel.

例GはC含有量が高(Tiを含有しない鋼を用いて従来
のオフライン焼入れ一焼戻しの熱処理を施したものであ
シ、80キロ級鋼として強度は申し分ないが低温靭性が
劣シ、Y割れ停止温度が100℃であシ溶接割れ性が劣
る材質となっている。
Example G is a steel that has a high C content (no Ti) and has been subjected to the conventional offline quenching and tempering heat treatment, and has satisfactory strength as an 80kg steel, but has poor low-temperature toughness. The crack stop temperature is 100°C, making it a material with poor weld cracking resistance.

以上の通シ、本発明は低C−Nb −Mo −Ti−B
鋼を用い、高温加熱−高温圧延−オンライン焼入れ−焼
戻しのプロセスとし、特に高温加熱から焼戻しまでの加
熱−圧延−オンライン熱処理によって、Nbの析出硬化
を最大に発揮させるようにしたので、成分的に従来の8
0キロ級鋼に必須であったNiを全く省略し、かつ低N
bとともにわずかな合金添加でよく、熱処理についても
オフライン焼入れ熱処理が省略できるため高靭性、高強
度鋼を極めて安価に製造できるという効果が奏せられる
In summary, the present invention provides low C-Nb-Mo-Ti-B
Using steel, the process of high-temperature heating, high-temperature rolling, online quenching, and tempering was used, and in particular, the heating-rolling-online heat treatment from high-temperature heating to tempering maximized the precipitation hardening of Nb. Conventional 8
Ni, which was essential for 0 kg class steel, is completely omitted and the N
In addition to b, only a small amount of alloying is required, and as for heat treatment, offline quenching heat treatment can be omitted, resulting in the effect that high-toughness, high-strength steel can be produced at an extremely low cost.

Claims (2)

【特許請求の範囲】[Claims] (1) C: 0.04〜0.10チ+  Si: 1
.0%以下。 Mn: 0.50〜2. O0%、 Mo: O,1〜
1.0%。 T I : O−005〜0.05%、 Nb: 0.
005〜0.05%。 B:0.01%以下、   AL:0.1%以下。 残部Feおよび不可避不純物よシなる鋼と、加熱温度1
150℃以上、圧延終了温度850℃以上の条件で加熱
圧延し、圧延後直ちに200℃以下まで急冷した後AC
1点以下で焼戻す熱処理を施すことを特徴とする高靭性
高強度鋼の製造方法。
(1) C: 0.04~0.10chi + Si: 1
.. Less than 0%. Mn: 0.50-2. O0%, Mo: O,1~
1.0%. T I: O-005~0.05%, Nb: 0.
005-0.05%. B: 0.01% or less, AL: 0.1% or less. Steel with balance Fe and unavoidable impurities and heating temperature 1
AC
A method for producing high-toughness, high-strength steel, characterized by subjecting it to heat treatment for tempering at one point or less.
(2) C: 0.04〜0.10%、Si:1.0%
以下。 Mn: 0.50〜2.00 % 、 Mo: 0.1
〜1.0%。 Ti:0.005〜0.05チ、 Nb: 0.005
〜0.05%。 B:0.01%以下、   Az:o、i%以下。 かつCr: i %以下、      V:O,1%以
下。 Cu: 1%以下、      Ca:0.01%以下
。 の一種または二種以上を含有し、残部Feおよび不可避
不純物よりなる鋼を、加熱温度1150℃以上、圧延終
了温度850℃以上の条件で加熱圧延し、圧延後直ちに
200℃以下まで急冷した後、Ae1点以下で焼戻す熱
処理を施すことを特徴とする高靭性高強度鋼の製造方法
(2) C: 0.04-0.10%, Si: 1.0%
below. Mn: 0.50-2.00%, Mo: 0.1
~1.0%. Ti: 0.005 to 0.05 Ti, Nb: 0.005
~0.05%. B: 0.01% or less, Az: o, i% or less. and Cr: i% or less, V: O, 1% or less. Cu: 1% or less, Ca: 0.01% or less. A steel containing one or more of the following, with the remainder being Fe and unavoidable impurities, is heated and rolled at a heating temperature of 1150°C or higher and a rolling end temperature of 850°C or higher, and immediately after rolling is rapidly cooled to 200°C or lower. A method for producing high-toughness, high-strength steel, characterized by performing heat treatment for tempering at an Ae of 1 point or less.
JP58009906A 1983-01-26 1983-01-26 Manufacturing method of high toughness and high strength steel Pending JPS59136418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009906A JPS59136418A (en) 1983-01-26 1983-01-26 Manufacturing method of high toughness and high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009906A JPS59136418A (en) 1983-01-26 1983-01-26 Manufacturing method of high toughness and high strength steel

Publications (1)

Publication Number Publication Date
JPS59136418A true JPS59136418A (en) 1984-08-06

Family

ID=11733150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009906A Pending JPS59136418A (en) 1983-01-26 1983-01-26 Manufacturing method of high toughness and high strength steel

Country Status (1)

Country Link
JP (1) JPS59136418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159932A (en) * 1983-03-02 1984-09-10 Sumitomo Metal Ind Ltd Production of high tensile steel plate having excellent strength and toughness
EP0165774A2 (en) * 1984-06-19 1985-12-27 Nippon Steel Corporation Method for producing high-strength steel having improved weldability
JPS6286122A (en) * 1985-09-28 1987-04-20 Kobe Steel Ltd Production of structural steel having high strength and high weldability
JPS62158817A (en) * 1985-12-28 1987-07-14 Nippon Steel Corp Manufacturing method for high-strength, high-toughness thick steel plates
KR100480000B1 (en) * 1999-12-27 2005-03-30 주식회사 포스코 A method for manufacturing abrasion resistant steel with high toughness
CN105603322A (en) * 2016-01-29 2016-05-25 宝山钢铁股份有限公司 Steel plate with super-low cost, 800MPa-grade high toughness and excellent weldability and manufacture method thereof
WO2018110488A1 (en) * 2016-12-15 2018-06-21 東洋製罐グループホールディングス株式会社 Paper container and barrel member blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188615A (en) * 1981-05-07 1982-11-19 Nippon Steel Corp Toughness increasing method for steel
JPS5896817A (en) * 1981-12-07 1983-06-09 Sumitomo Metal Ind Ltd Production of high tensile hot rolled steel material having high toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188615A (en) * 1981-05-07 1982-11-19 Nippon Steel Corp Toughness increasing method for steel
JPS5896817A (en) * 1981-12-07 1983-06-09 Sumitomo Metal Ind Ltd Production of high tensile hot rolled steel material having high toughness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159932A (en) * 1983-03-02 1984-09-10 Sumitomo Metal Ind Ltd Production of high tensile steel plate having excellent strength and toughness
JPS6366368B2 (en) * 1983-03-02 1988-12-20 Sumitomo Metal Ind
EP0165774A2 (en) * 1984-06-19 1985-12-27 Nippon Steel Corporation Method for producing high-strength steel having improved weldability
JPS6286122A (en) * 1985-09-28 1987-04-20 Kobe Steel Ltd Production of structural steel having high strength and high weldability
JPS62158817A (en) * 1985-12-28 1987-07-14 Nippon Steel Corp Manufacturing method for high-strength, high-toughness thick steel plates
KR100480000B1 (en) * 1999-12-27 2005-03-30 주식회사 포스코 A method for manufacturing abrasion resistant steel with high toughness
CN105603322A (en) * 2016-01-29 2016-05-25 宝山钢铁股份有限公司 Steel plate with super-low cost, 800MPa-grade high toughness and excellent weldability and manufacture method thereof
CN105603322B (en) * 2016-01-29 2017-10-31 宝山钢铁股份有限公司 Ultra Low Cost 800MPa grade high ductilities, the steel plate of superior weldability and its manufacture method
WO2018110488A1 (en) * 2016-12-15 2018-06-21 東洋製罐グループホールディングス株式会社 Paper container and barrel member blank

Similar Documents

Publication Publication Date Title
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JPS5877528A (en) Manufacturing method for high-strength steel with excellent low-temperature toughness
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
US4988393A (en) Method for producing high-strength steel having improved weldability
JPS59136418A (en) Manufacturing method of high toughness and high strength steel
JPS6141968B2 (en)
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP5526685B2 (en) High heat input welding steel
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JPH06128631A (en) Method for producing high manganese ultra high strength steel with excellent low temperature toughness
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP7533408B2 (en) Steel plate and its manufacturing method
JP2688312B2 (en) High strength and high toughness steel plate
JP4539100B2 (en) Super high heat input welded heat affected zone
JPS613833A (en) Manufacture of high strength steel with superior weldability
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP7207199B2 (en) Steel material and its manufacturing method
RU2135622C1 (en) Steel featuring high impact strength in heat-affected zone in welding
US3373015A (en) Stainless steel and product
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
WO2020115594A1 (en) Railroad tank cars formed of low-carbon, high toughness, steel plates