JPH02102200A - Method for producing compound semiconductor crystal film - Google Patents
Method for producing compound semiconductor crystal filmInfo
- Publication number
- JPH02102200A JPH02102200A JP25203888A JP25203888A JPH02102200A JP H02102200 A JPH02102200 A JP H02102200A JP 25203888 A JP25203888 A JP 25203888A JP 25203888 A JP25203888 A JP 25203888A JP H02102200 A JPH02102200 A JP H02102200A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- compound semiconductor
- arsenic
- crystal film
- gaas substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 26
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 150000001875 compounds Chemical class 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 15
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 13
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 239000011574 phosphorus Substances 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 9
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 230000006698 induction Effects 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract description 2
- 101100002917 Caenorhabditis elegans ash-2 gene Proteins 0.000 abstract 1
- WLQSSCFYCXIQDZ-UHFFFAOYSA-N arsanyl Chemical compound [AsH2] WLQSSCFYCXIQDZ-UHFFFAOYSA-N 0.000 abstract 1
- 125000002524 organometallic group Chemical group 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 31
- 230000007547 defect Effects 0.000 description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 3
- 229910000070 arsenic hydride Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JMMJWXHSCXIWRF-UHFFFAOYSA-N ethyl(dimethyl)indigane Chemical compound CC[In](C)C JMMJWXHSCXIWRF-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Tl/IG Chemical compound 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- MGDOJPNDRJNJBK-UHFFFAOYSA-N ethylaluminum Chemical compound [Al].C[CH2] MGDOJPNDRJNJBK-UHFFFAOYSA-N 0.000 description 1
- KQTKYCXEDDECIZ-UHFFFAOYSA-N ethylarsenic Chemical compound CC[As] KQTKYCXEDDECIZ-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000002154 thermal energy analyser detection Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、可視光半導体レーず等の材料であるAlGa
InP k有機金属化学気相法(以下、MOCVD法と
いう)により、成長させて製造する方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the use of AlGa, which is a material for visible light semiconductor lasers, etc.
The present invention relates to a method of growing and manufacturing InPk by a metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method).
(従来の技術)
AIGaInpは、璽−■族化合物半導体の中でも、最
もバンドギャップが大きく短波長半導体レーずを得るた
めのN要な材料である。この材料は、従来の技術である
液相エピタキシャル法(LPE法)、気相エピタキシャ
ル法(vpE法)は、成長することが非常に難しい。L
PE法では、A1と()a 、 Inの偏析係数が違い
過ぎるので組成の制御がほとんど不可能である。また、
VPB法でも同様にA1の偏析問題と、石英−塩化物反
応問題等が存在する。(Prior Art) AIGaInp has the largest band gap among the A-III group compound semiconductors and is an essential material for obtaining short wavelength semiconductor lasers. It is very difficult to grow this material using conventional techniques such as liquid phase epitaxial method (LPE method) and vapor phase epitaxial method (VPE method). L
In the PE method, it is almost impossible to control the composition because the segregation coefficients of A1, ()a, and In are too different. Also,
Similarly, the VPB method also has problems such as segregation of A1 and quartz-chloride reaction.
そこで、最近では、分子線エピタキシャル法(MBE法
)やMOCVD法等によシ上記半導体結晶膜を成長する
方法が検討されている。MOCVD法とは有機金属化合
物を原料とする化合物結晶の気相成長法である(応用物
理、第48巻、第5号、P460−465.1979)
。しかしながら、現状では、MBE法やMOCVD法(
これらのうちでも特にMOCVD法)において成長した
AlGaInPは、次のような欠点を有する。Therefore, recently, methods of growing the above-mentioned semiconductor crystal film by molecular beam epitaxial method (MBE method), MOCVD method, etc. have been studied. The MOCVD method is a vapor phase growth method for compound crystals using organometallic compounds as raw materials (Applied Physics, Vol. 48, No. 5, P460-465.1979)
. However, at present, MBE method and MOCVD method (
Among these, AlGaInP grown by the MOCVD method has the following drawbacks.
第1に、結晶欠陥が多い。特にこれは、A1の組成比が
太きくなるに従い顕著となる。半導体レーサ゛′等のデ
バイスの劣化は、弱点破壊に因るものであり、このよう
な結晶欠陥に集中して起きる。First, there are many crystal defects. In particular, this becomes more noticeable as the composition ratio of A1 increases. Deterioration of devices such as semiconductor lasers is due to weak point fracture, and occurs concentrated at such crystal defects.
つまり、経晶欠陥が多いということは、前記デバイス化
を行なった場合、その素子の寿命が短いことに他ならな
い。ちなみに現在のところ、AlGaInP系の半導体
レーザ8の場合寿命は、数百時間程度である。In other words, the fact that there are many crystal defects means that the life of the element will be short when it is made into a device. Incidentally, at present, the lifetime of the AlGaInP semiconductor laser 8 is approximately several hundred hours.
第2に、組成より計算される値よりも実際に発光する波
長が長いことである。(バンドギャップでいうと50
meV程度狭い。)これは、l族原子の混合状態が充分
でなくl族副格子上にAI、C)a。Second, the actual wavelength of light emission is longer than the value calculated from the composition. (50 in terms of band gap)
It is about meV narrow. ) This is because the mixed state of group I atoms is not sufficient and AI, C) a is present on the group I sublattice.
Inそれぞれの原子が、規則的に配列しているためだと
考えられる。半導体レーサ゛等光デバイスはより短波長
が要求されているが、現状では、AlGaInP系を用
いても室温連続発振の波長は、680 nm程度であシ
、AIC)aAs系と大差ない。This is thought to be due to the fact that each In atom is regularly arranged. Optical devices such as semiconductor lasers are required to have shorter wavelengths, but at present, even if AlGaInP systems are used, the wavelength of continuous oscillation at room temperature is about 680 nm, which is not much different from AIC) aAs systems.
AlGaInP系を用いた半導体レーサ゛等光デバイス
に2いて長寿命短波長化は、太ぎな課題であった。In optical devices such as semiconductor lasers using AlGaInP, it has been a serious challenge to achieve longer lifetimes and shorter wavelengths.
(発明が解決し、ようとする課題)
このように従来、多数に存在する結晶欠陥(特にA1の
組成犬)や■族原子の混合不良に伴い、Al()aIn
P系の理論的なバンドギャップを有した長寿命−短波長
半導体レーずを作成することは、困難であった。(Problems to be Solved and Attempted by the Invention) Conventionally, Al()aIn
It has been difficult to create a long-life, short-wavelength semiconductor laser having the theoretical bandgap of the P system.
本発明は、上記課題を解決するためのものであり、理論
的なバンドギャップと優れた結晶性を有するAIC)a
InP結晶をGaAs基板上に成長し、長寿命−短波長
半導体レーず等優れた元デバイスの作成を可能とする化
合物半導体膜の製造方法を提供することを目的とする。The present invention is aimed at solving the above-mentioned problems, and is directed to AIC)a having a theoretical band gap and excellent crystallinity.
The object of the present invention is to provide a method for manufacturing a compound semiconductor film that enables the production of excellent original devices such as long-life and short-wavelength semiconductor lasers by growing InP crystals on GaAs substrates.
(課題を解決するための手段)
理論的なバンドギャップと優れた結晶性を有するAl(
)aInPを得るためには、成長中にンけるGaA、s
基板上の各原子のマイグレーションを速くすること、つ
まり反応温度を通常(750℃以下)より高くする必要
がある。(Means for solving the problem) Al (
) In order to obtain aInP, GaA,s
It is necessary to speed up the migration of each atom on the substrate, that is, to raise the reaction temperature higher than usual (750° C. or lower).
しかしながら、GaAs基板上にAlGaInPを成長
する際に、基板盆収容した反応管内に砒素の原料ガスを
流しながら(砒素圧を加えC)aAs基板からの砒素抜
けを抑制し成長前のGaAs基板を保心することを目的
)、前記反応温度まで加熱した後、砒素の原料ガスと燐
の原料ガスを交換し、その後■族原料ガスを導入し、A
lGaInPの成長を開始するという一般的なガス導入
方式では、750℃以上の温度において白濁化してしま
う。(砒素と燐の原料ガス交換−1族原料ガス導入間の
インターバルを色々変えても同様である。)これは、温
度が高くなるに従いGaAs基板から砒素抜けが起こり
易くなり、はんのわずかなインターバルの間にもGaA
s基板表面の劣化が生じるためと考えられる。However, when growing AlGaInP on a GaAs substrate, the arsenic source gas is flowed into the reaction tube housed in the substrate tray (by applying arsenic pressure) to suppress the escape of arsenic from the aAs substrate and preserve the GaAs substrate before growth. After heating to the above reaction temperature, the arsenic raw material gas and the phosphorus raw material gas are exchanged, and then the group III raw material gas is introduced.
In the general gas introduction method of starting the growth of lGaInP, the film becomes cloudy at temperatures of 750° C. or higher. (The same effect can be obtained even if the interval between arsenic and phosphorus raw material gas exchange and Group 1 raw material gas introduction is varied.) This is because as the temperature increases, arsenic is more easily removed from the GaAs substrate, and a small amount of solder is removed. GaA also during the interval
This is thought to be due to deterioration of the s-substrate surface.
本発明者等は、このような問題を解決する方法について
檀々研究した結果、ガス導入方法を改良することにより
従来より高い反応温度での成長が可能となυ、理論的な
バンドギャップと優れた結晶性を有するAlGaInP
を得ることができることがわかった。As a result of extensive research on methods to solve these problems, the present inventors have found that by improving the gas introduction method, it is possible to grow at a higher reaction temperature than before, υ, which is superior to the theoretical band gap. AlGaInP with crystallinity
It turns out that you can get .
すなわち本発明は、有機金属化学気相法(MOCVD法
)により、750℃以上の温度でC)aAs基板上に組
成AlyC)ayIrll −y−yP (D≦x≦
1.0≦y≦1.0≦x+’Y≦1)の化合物を成長す
る際に、前記GaAs基板を収容した器内に砒素ガスを
流しながら前記温度まで加熱した後、燐ガスを導入し次
に周期律衣第1族のガスを導入し、周期律表第1族のガ
スを導入後、3秒以内に砒素ガスの導入を停止し、Al
GaInPの成長を開始すること全特徴とする化合物半
導体結晶膜の製造方法である。That is, the present invention provides a method of forming a film with a composition AlyC)ayIrll -y-yP (D≦x≦
When growing a compound of 1.0≦y≦1.0≦x+'Y≦1), after heating to the above temperature while flowing arsenic gas into the vessel containing the GaAs substrate, phosphorus gas is introduced. Next, a gas belonging to Group 1 of the periodic table is introduced, and after introducing the gas belonging to Group 1 of the periodic table, the introduction of arsenic gas is stopped within 3 seconds, and the Al
This is a method for manufacturing a compound semiconductor crystal film, which is characterized by starting the growth of GaInP.
以下、本発明について説明する。本発明にj・て燐ガス
と周期律人第1族のガスの導入順序は前記の通りにしな
ければならない。この順序を逆にするとGaAs基板上
に、まずl族金属の堆積が生じ結晶性が劣化する。The present invention will be explained below. In the present invention, the order of introducing the phosphorous gas and the gases of Group 1 of the periodic law must be as described above. If this order is reversed, group I metals will first be deposited on the GaAs substrate, resulting in deterioration of crystallinity.
また、砒素、燐、周期律表第1族のそれぞれの原料ガス
が混合する時間が存在するが、この時間が6秒以内なら
ば、これは成長のタイムラグに相当し、界面にAIGa
InAsPなる中間層は存在しないことがTEM等の観
察により確認された。In addition, there is a time for arsenic, phosphorus, and each raw material gas of Group 1 of the periodic table to mix, but if this time is less than 6 seconds, this corresponds to a time lag of growth, and the AIGa
It was confirmed by observation using TEM etc. that there was no intermediate layer made of InAsP.
使用できるyjL科ガスとして仄のものが挙げられる。Gases of the YJL family that can be used include the following.
Al・・・ トリメチルアルミニウム(TMA) 、)
’)エチルアルミニウム(TEA)、トリブチルアル
ミニウム(TBAI)等。Al... trimethylaluminum (TMA),)
') Ethyl aluminum (TEA), tributyl aluminum (TBAI), etc.
C)a・・・ トリメチルガリウム(TMG )、トリ
エチルガリウム(TEG)等。C) a... Trimethyl gallium (TMG), triethyl gallium (TEG), etc.
In・・・ トリエチルインジウム(TMI)、トリエ
チルインジウム(TEI) 、エチルジメチルインジウ
ム(EDMI)等。In... triethylindium (TMI), triethylindium (TEI), ethyldimethylindium (EDMI), etc.
P・・・ホスフィン(PH3)等。P...phosphine (PH3), etc.
As・・・アルシン(AsH3) 、 ) リエチル
アルシン(TEAs)等。As...Arsine (AsH3), ) ethylarsine (TEAs), etc.
(実施例)
第1図は、使用したMOCVD法結晶成長装置の概念を
示す断面図である。図中1¥′i、石英製の反応管であ
り、ガス導入口2から原料混合ガスを導入し、ガス排気
口3よシ反応後のガスを排気した。(Example) FIG. 1 is a cross-sectional view showing the concept of the MOCVD crystal growth apparatus used. In the figure, 1\'i is a reaction tube made of quartz, into which the raw material mixed gas was introduced through the gas inlet 2, and the gas after the reaction was exhausted through the gas exhaust port 3.
反応管1内には、グラファイト裂のサセプター4が配置
されており、GaAs基板5は、 このサセプター4上
にセットされ、高周波コイル6によシ誘導加熱された。A graphite fissure susceptor 4 was disposed inside the reaction tube 1, and a GaAs substrate 5 was set on the susceptor 4 and heated by induction by a high frequency coil 6.
次に、上記装置を用いた結晶成長方法について説明する
。まず、化学エツチングによって界面清浄化したGaA
s基板5をロードロックシステム(反応室−前室の二室
から成り、基板の搬出入時に反応室が大気に触れないシ
ステム)を介してサセプター4上にセットした。ガス導
入口2から高純度水素を毎分8.5リツトル導入し、圧
力を760corrに保った。その後、ガス導入口2か
らAsH3を導入し、高周波コイル6によりサセプター
4及びGaAs基板5を加熱し、反応温度にて5分間保
持して基板の清浄化を行なった。Next, a crystal growth method using the above apparatus will be explained. First, GaA was interface-cleaned by chemical etching.
The s-substrate 5 was set on the susceptor 4 via a load lock system (a system consisting of two chambers, a reaction chamber and a front chamber, in which the reaction chamber is not exposed to the atmosphere when the substrate is carried in and out). High-purity hydrogen was introduced at a rate of 8.5 liters per minute through the gas inlet 2, and the pressure was maintained at 760 corr. Thereafter, AsH3 was introduced through the gas inlet 2, the susceptor 4 and the GaAs substrate 5 were heated by the high frequency coil 6, and the substrates were cleaned by holding the reaction temperature for 5 minutes.
次いで、PH3’i導入し、その1秒後に予め所定の混
合比に調整したTMA 、 TMG 、 TMI @同
時に導入し、さらにそのし1秒後(c1=Q〜3)にA
s H3の導入を停止し、AlGaInP結晶の成長を
行った。Next, PH3'i was introduced, and 1 second later, TMA, TMG, and TMI, which had been adjusted to a predetermined mixing ratio, were simultaneously introduced, and then 1 second later (c1=Q~3), A was introduced.
The introduction of s H3 was stopped, and AlGaInP crystal growth was performed.
この時、温度はサセプター中の熱電対7 (Pz−PL
・16%Rh)によシ測定した。At this time, the temperature is measured by thermocouple 7 (Pz-PL
・16% Rh).
衣1に各温度、各組成で成長したAlGaInPの二結
晶法X線回折、フォトルミネッセンス、表面欠陥測定の
結果を示す。組成はEPMAにて決定。二結晶法X線回
折は、()aAs単結晶を第一結晶として使用しく00
4)反射を測定。FWHM(半値幅)は結晶膜の結晶性
判断の一つの基準であり、一般に狭し・はうが優れてい
る。Figure 1 shows the results of two-crystal X-ray diffraction, photoluminescence, and surface defect measurements of AlGaInP grown at various temperatures and compositions. Composition determined by EPMA. Two-crystal method X-ray diffraction uses ()aAs single crystal as the first crystal.
4) Measure reflection. FWHM (half width at half maximum) is one of the criteria for determining the crystallinity of a crystal film, and narrowing and creeping are generally better.
フォトルミネッセンスは、Arシレー(波長:5145
X)励起により300Kにて測定。Eg(PL)は発光
波長より算出した値、Pg(th)は理論値、ΔEgは
両者の差をそれぞれ示す。ΔEgが0に近い程、その結
晶膜は理論的なバンドギャップを持つ。−一については
、二結晶法x#1回折の場合と同様。表面欠陥密度は微
分干渉顕微鏡を用い観察。この値が小ざい程結晶性が優
れている。Photoluminescence uses Ar silage (wavelength: 5145
X) Measured at 300K with excitation. Eg(PL) is a value calculated from the emission wavelength, Pg(th) is a theoretical value, and ΔEg is the difference between the two. The closer ΔEg is to 0, the more the crystal film has a theoretical band gap. -1 is the same as in the case of double-crystal method x#1 diffraction. Surface defect density was observed using a differential interference microscope. The smaller this value is, the better the crystallinity is.
なお、各AlGaInP結晶においてGaAs基板との
界面にAIGaInAsP等の中間層は存在しないこと
は、TEM観察等により確認した。It was confirmed by TEM observation that there was no intermediate layer such as AIGaInAsP at the interface with the GaAs substrate in each AlGaInP crystal.
(比較例) ガス導入方式のみが実施例と異なり以下の通り行った。(Comparative example) The only difference from the example was the gas introduction method, which was carried out as follows.
(一般的なガス導入方式)
ガス導入口からAsH3f導入し、高周波コイルにより
、サセプター及びGaAs基板を加熱し、反応温度にて
5分間保持して基板の清浄化を行った。(General gas introduction method) AsH3f was introduced from the gas introduction port, the susceptor and the GaAs substrate were heated by a high frequency coil, and the substrate was cleaned by holding the reaction temperature for 5 minutes.
次いで、AsH3の導入を停止し、PH3を導入全開始
した後、52秒後(t2=1〜10)に予め所定の混合
比に調整したTMA 、 Tl/IG 、 TMIを同
時に導入しAlGaInP結晶の成長を行なった。Next, after stopping the introduction of AsH3 and fully starting the introduction of PH3, 52 seconds later (t2 = 1 to 10), TMA, Tl/IG, and TMI, which had been adjusted to a predetermined mixing ratio, were simultaneously introduced to form the AlGaInP crystal. I grew up.
衣1に各温度、各組成で成長したAlGaInPの二結
晶法X線回折、フォトルミネッセンス、表面欠陥測定の
結果を示す。Figure 1 shows the results of two-crystal X-ray diffraction, photoluminescence, and surface defect measurements of AlGaInP grown at various temperatures and compositions.
(発明の効果)
以上のように、本発明のガス導入方式を採用すれば、7
50℃以上の温度においてAlGaInP IFj晶を
成長することが可能である。なお、この結晶は理論的な
バンドギャップと優れた結晶性を何してシシ長寿命−短
波長半導体レーデ等の作成に極めて有効である。(Effect of the invention) As described above, if the gas introduction method of the present invention is adopted, 7
It is possible to grow AlGaInP IFj crystals at temperatures above 50°C. This crystal has a theoretical band gap and excellent crystallinity, and is extremely effective in producing long-life, short-wavelength semiconductor radars.
第1図は、本発明の実施例に使用したMOCVD法結晶
成長装置の概念を示す断面図である。
1・・・反応管
2・・・ガス導入口
3・・・ガス排気口
4・・・サセプター
5・・・GaAs基板
6・・・高周波コイル
7・・・熱電対
特許出願人 電気化学工業株式会社
第1図
1 ・ ・
4 ・
6 ・ ・
7 ・ ・
反I、6管
・・ガス導入]ニド
ガスur気口
・・サセプタ
GaAsJ+t4反
高周波コイル
熱電対FIG. 1 is a cross-sectional view showing the concept of an MOCVD crystal growth apparatus used in an example of the present invention. 1...Reaction tube 2...Gas inlet 3...Gas exhaust port 4...Susceptor 5...GaAs substrate 6...High frequency coil 7...Thermocouple patent applicant Denki Kagaku Kogyo Co., Ltd. Company Figure 1 1 ・ ・ 4 ・ 6 ・ ・ 7 ・ ・ Anti-I, 6 pipes...Gas introduction] Nido gas ur air port... Susceptor GaAsJ+T4 anti-high frequency coil thermocouple
Claims (1)
50℃以上の温度でGaAs基板上に組成Al_xGa
_yIn_1_−_x_−_yP(0≦x≦1、0≦y
≦1、0≦x+y≦1)の化合物を成長する際に、前記
GaAs基板を収容した器内に砒素ガスを流しながら前
記温度まで加熱した後、燐ガスを導入し、次に周期律表
第II族のガスを導入し、周期律表第II族のガスを導入後
、3秒以内に砒素ガスの導入を停止し、AlGaInP
の成長を開始することを特徴とする化合物半導体結晶膜
の製造方法。(1) By metal organic chemical vapor deposition method (MOCVD method), 7
The composition Al_xGa is deposited on a GaAs substrate at a temperature of 50°C or higher.
_yIn_1_-_x_-_yP(0≦x≦1, 0≦y
≦1, 0≦x+y≦1), after heating the GaAs substrate to the above temperature while flowing arsenic gas into the chamber containing the GaAs substrate, phosphorus gas is introduced, and then After introducing the Group II gas of the periodic table, the introduction of arsenic gas was stopped within 3 seconds, and the AlGaInP
A method for producing a compound semiconductor crystal film, the method comprising starting the growth of a compound semiconductor crystal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25203888A JPH02102200A (en) | 1988-10-07 | 1988-10-07 | Method for producing compound semiconductor crystal film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25203888A JPH02102200A (en) | 1988-10-07 | 1988-10-07 | Method for producing compound semiconductor crystal film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02102200A true JPH02102200A (en) | 1990-04-13 |
Family
ID=17231712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25203888A Pending JPH02102200A (en) | 1988-10-07 | 1988-10-07 | Method for producing compound semiconductor crystal film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02102200A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5284519A (en) * | 1990-05-16 | 1994-02-08 | Simon Fraser University | Inverted diffuser stagnation point flow reactor for vapor deposition of thin films |
US5498568A (en) * | 1994-06-30 | 1996-03-12 | Sharp Kabushiki Kaisha | Method of producing a compound semiconductor crystal layer with a steep heterointerface |
-
1988
- 1988-10-07 JP JP25203888A patent/JPH02102200A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5284519A (en) * | 1990-05-16 | 1994-02-08 | Simon Fraser University | Inverted diffuser stagnation point flow reactor for vapor deposition of thin films |
US5498568A (en) * | 1994-06-30 | 1996-03-12 | Sharp Kabushiki Kaisha | Method of producing a compound semiconductor crystal layer with a steep heterointerface |
NL1000561C2 (en) * | 1994-06-30 | 1998-07-15 | Sharp Kk | A method of manufacturing a compound semiconductor crystal layer with a straight heterogeneous interface. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5637531A (en) | Method of making a crystalline multilayer structure at two pressures the second one lower than first | |
JP3239622B2 (en) | Method of forming semiconductor thin film | |
Manasevit | The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates | |
JPS63188938A (en) | Method for vapor growth of gallium nitride compound semiconductor | |
JPH02211620A (en) | Method of growing single crystal thin film of compound semiconductor | |
US3963539A (en) | Two stage heteroepitaxial deposition process for GaAsP/Si LED's | |
JPH04175299A (en) | Compound semiconductor crystal growth and compound semiconductor device | |
JPH0331678B2 (en) | ||
US5036022A (en) | Metal organic vapor phase epitaxial growth of group III-V semiconductor materials | |
JP3953548B2 (en) | Method for producing nitride compound semiconductor crystal | |
JPH02102200A (en) | Method for producing compound semiconductor crystal film | |
CA1313343C (en) | Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials | |
JP2519232B2 (en) | Method for producing compound semiconductor crystal layer | |
JP3424507B2 (en) | Method of manufacturing gallium nitride based compound semiconductor thin film | |
JPH01220432A (en) | Manufacture of compound semiconductor layer | |
JP3853942B2 (en) | Epitaxial wafer | |
JP2736417B2 (en) | Semiconductor element manufacturing method | |
JP2706337B2 (en) | Method for manufacturing compound semiconductor thin film | |
JPS61179527A (en) | Growth method of compound semiconductor single crystal film and equipment therefor | |
JPH09186091A (en) | Manufacture of iii-v compound semiconductor | |
JPH01173708A (en) | semiconductor element | |
JP3112285B2 (en) | Method for manufacturing compound semiconductor thin film | |
JPS63319296A (en) | Semiconductor manufacturing method | |
JPH02122521A (en) | Manufacture of compound semiconductor crystal layer | |
JPH0218926A (en) | Manufacture of compound semiconductor film |