JPH0218926A - Manufacture of compound semiconductor film - Google Patents
Manufacture of compound semiconductor filmInfo
- Publication number
- JPH0218926A JPH0218926A JP16775288A JP16775288A JPH0218926A JP H0218926 A JPH0218926 A JP H0218926A JP 16775288 A JP16775288 A JP 16775288A JP 16775288 A JP16775288 A JP 16775288A JP H0218926 A JPH0218926 A JP H0218926A
- Authority
- JP
- Japan
- Prior art keywords
- group
- acac
- compound
- compound semiconductor
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野〕
本発明は■−Y族化合物半導体薄膜の製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a -Y group compound semiconductor thin film.
■−■族化合物半導体薄膜、特に■族元素としてGa
を用いるものは高速トランジスタ、発光素子、受光素
子などへ極めて広い応用分野を持って込る。 GaMは
その広いバンドギャップエネルギー(14eV)から青
色発光素子としての検討が進められている。Gap、
GaAsPは緑から赤の広い可視領域での発光素子とし
て応用されている。またGaAsはその高移動度を利用
したマイクロ波増幅用トランジスタや近赤外領域での発
光/受光素子として利用されている。■-■ Group compound semiconductor thin film, especially Ga as a group ■ element
Those using this technology have a wide range of applications, including high-speed transistors, light-emitting devices, and light-receiving devices. GaM is being studied as a blue light emitting device because of its wide bandgap energy (14 eV). Gap,
GaAsP is applied as a light emitting element in a wide visible range from green to red. Further, GaAs is used as a microwave amplification transistor and a light emitting/light receiving element in the near infrared region by utilizing its high mobility.
こうした化合物半導体薄膜の製造方法として近年Mov
pg (有機金属気相エピタキシャル法)やMOMBg
(有機金属利用分子線エビタキVヤル法)が、従来の
液相エビタキVヤ〃法やハライドVPE法に変わって注
目されている。この理由はこれらの方法が度広の制御性
、量産性が良く、また利用できる原料が広いことによる
。Recently, as a manufacturing method for such compound semiconductor thin films, Mov
pg (organometallic vapor phase epitaxial method) and MOMBg
(Organic metal-based molecular beam fertilization method) is attracting attention as an alternative to the conventional liquid-phase fertilization method and halide VPE method. The reason for this is that these methods have good controllability and mass production, and can be used with a wide range of raw materials.
従来利用されて騒るGa原子を含む有機金属化合物はト
リメチルガリウム(TMG)、)リエチルガリウム(T
RG)であるが、主に炭素と考えられる不純物の混入の
問題がおp、よシー層のN膜の結晶性の向上、電気的特
性の向上、伝導性の制御性向上が望まれてAる。Conventionally used organometallic compounds containing Ga atoms that are controversial include trimethyl gallium (TMG) and ethyl gallium (T).
RG), but there is a problem with the contamination of impurities, which are thought to be mainly carbon, and it is desirable to improve the crystallinity of the N film in the sheath layer, improve the electrical characteristics, and improve the controllability of conductivity. Ru.
一方こうし九m−v族化合物半導体のより一層の適用領
域を拡大するためには、露光操作を併用するいわゆる光
選択エビ成長技術が極めて有用である。すなわち、薄膜
成長時に基板に対して紫外光又は可視光を照射すること
によシ、成長温度の低温化、薄膜品質の向上、ダイレク
トバターニング、伝導性の制御などの効果が期待されて
いる。最近青柳らはGaAs OMOVPB!成長にお
いてArレーザ照射によシ選択成長が可能なことを見出
した〔ジャーナル オプ アプライド フイジクス(J
、Appl、Phye、 )第60巻、第5131頁(
1986))。On the other hand, in order to further expand the range of application of these 9m-v group compound semiconductors, a so-called photo-selective growth technique that uses exposure operations is extremely useful. That is, by irradiating the substrate with ultraviolet light or visible light during thin film growth, effects such as lowering the growth temperature, improving thin film quality, direct buttering, and controlling conductivity are expected. Recently, Aoyagi et al. GaAs OMOVPB! We found that selective growth is possible by Ar laser irradiation [Journal Op Applied Physics (J
, Appl, Phye, ) Volume 60, Page 5131 (
1986)).
しかしながら現状では成長速度に限界があシ、また薄膜
の品質も不十分である問題がある。However, at present, there are problems in that there is a limit to the growth rate and the quality of the thin film is insufficient.
本発明の目的はより品質の優れたGa系化合物半導体薄
膜の製造方法を提供するととにあシ、また光選択エビ成
長において成長速度と薄膜品質の向上を図ることにある
。The purpose of the present invention is to provide a method for producing a Ga-based compound semiconductor thin film of higher quality, and also to improve the growth rate and thin film quality in photoselective shrimp growth.
本発明を概説すれば、本発明は化合物半導体薄膜の製造
方法に関する発明であって、反応容器中にガリウムを含
む化合物と元素周期表vtlJ族元素を含む化合物を気
相で導入し、これらを熱分解して、前記反応容器中に設
置した基板上に■−v族化合物半導体薄膜を製造する方
法において、前記ガリウムを含む化合物として下記一般
式〔A〕〜〔G〕:
CA) R3R4GaCp (B) RIGa(口p
)z(a) aa(op)s (D) GaR5R
6(acaa)(K) RIGa(acac)1 (
F) Ga(acac)1(G) R3R4Ga−Ga
R5R6
(式中、R1及びR2は同−又は異な)、アルキル基、
置換アルキル基、アルコキVM、置換アルコキシ基、ア
ルキルチオ基、置換アルキルチオ基又はハロゲン、Op
はシクロベンタジz=ル基、acacはaH(Rlao
)、基又は0F(R100)エバ、R3−R6は同−又
は異なシ、アルキル基又はハロゲンを示す〕
で表される化合物の少なくとも1種を使用することを特
徴とする。To summarize the present invention, the present invention relates to a method for manufacturing a compound semiconductor thin film, in which a compound containing gallium and a compound containing an element of group VTLJ of the periodic table of elements are introduced in a gas phase into a reaction vessel, and these are heated. In the method of manufacturing a ■-v group compound semiconductor thin film on a substrate placed in the reaction vessel by decomposition, the gallium-containing compound is represented by the following general formulas [A] to [G]: CA) R3R4GaCp (B) RIGa (mouth p
)z(a) aa(op)s (D) GaR5R
6(acaa)(K) RIGa(acac)1 (
F) Ga(acac)1(G) R3R4Ga-Ga
R5R6 (in the formula, R1 and R2 are the same or different), an alkyl group,
Substituted alkyl group, alkoxy VM, substituted alkoxy group, alkylthio group, substituted alkylthio group or halogen, Op
is a cyclobentazyl group, acac is aH (Rlao
), a group or 0F(R100), R3-R6 represent the same or different cy, alkyl group, or halogen].
従来技術とは使用する原料が異なっている。The raw materials used are different from the conventional technology.
製造方法として′FiMOVPI!f、MOMB、go
ほか、IeOR励起手法を併用したMOVPK法などが
あるが、これらに限定されるものではない。As a manufacturing method, 'FiMOVPI! f, MOMB, go
In addition, there is a MOVPK method that uses an IeOR excitation method in combination, but the method is not limited to these.
以下に化合物の具体名と物性値等を表にして示すが、本
発明はこれらに限定されるものではない。Specific names and physical property values of the compounds are shown below in a table, but the present invention is not limited thereto.
表1 化合物の具体名
これらの有機金属原料を使用してMOVPK4−M O
M B I法忙よシ化合物半導体薄膜を作成すると、従
来の原料使用時忙比較して薄膜品質が向上し、更に光照
射による成長の選択性が著しく向上することを見出した
ことによシ本発明を完成するに至ったものである。Table 1 Specific names of compounds MOVPK4-MO using these organometallic raw materials
This book was based on the discovery that when a compound semiconductor thin film is created using the MBI method, the quality of the thin film is improved compared to when using conventional raw materials, and the selectivity of growth by light irradiation is also significantly improved. This led to the completion of the invention.
なぜこうした効果が得られるかにつ込ては現状では必ず
しも明かではない。新しb置換基等の作用によ〕、基板
上での吸着性や熱分解性が異なること、及び光吸収特性
が一般に長波長側に移行してIl&9ため、光照射によ
る分解性が向上するととによると推定される。At present, it is not necessarily clear why this effect is obtained. Due to the effects of new b substituents, etc., the adsorption and thermal decomposition properties on the substrate differ, and the light absorption characteristics generally shift to the longer wavelength side and become Il & 9, so that the decomposition by light irradiation improves. It is estimated that
本発明で使用する原料化合物は室温で固体のものが多く
、蒸気田本低込ものが多い。したがって実際の使用時に
おいては原料格納ボンベや配管系を加熱するなどの方策
が必要となる。室温で液体の原料については従来と同様
バグリングによシ反応容器中に導入できる。Many of the raw material compounds used in the present invention are solid at room temperature, and many of them are vapor-containing. Therefore, during actual use, measures such as heating the raw material storage cylinder and piping system are required. Raw materials that are liquid at room temperature can be introduced into the reaction vessel by bag ring as in the conventional method.
一方、本発明で使用する元素周期表vb族元素を含む化
合物におけるvb族元素の例としてFi窒素、リン、ヒ
素及びアンチモンが挙げられ、それを含む化合物の例と
しては、アンモニア、ホスフィン、アルシン、スチビン
、三塩化アンチモンなどが挙げられる。On the other hand, examples of group VB elements in compounds containing group VB elements of the periodic table of elements used in the present invention include Fi nitrogen, phosphorus, arsenic, and antimony, and examples of compounds containing them include ammonia, phosphine, arsine, Examples include stibine and antimony trichloride.
以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.
実施例1
第1図は本発明をGaN化合物半導体の単結晶薄膜の製
造に適用した場合の装置の構成を示す系統図である。第
1図にお−て、符号1は有機金属化合物、2はバブラー
容器、5及び8はガス流量コントローラー 4は窒素ガ
スボンベ、5は加熱装置、6は反応容器、7はアンモニ
アボンベ、9は基板、10はサセプタ、11は熱電対、
12は高周波加熱コイル、13は排気口を意味する。同
図にお込てGaN化合物半導体を構成するGa元素を含
む有機金属化合物(ジエチIWVクロベンタジエニ〃ガ
リウム)1が封入されて−るバブラー容器2内に、ガス
流量コントローラー3により流量調整された窒素ガスを
流すことによシ気体状の有機金属化合物を反応容器6中
に導入する。この時バブラー容器は化合物の蒸気圧を高
めるために融点以上の温度である70℃に加熱されてい
る。他方GaN化合物半導体を構成する窒素元素を含む
原料であるアンモニアは、これが充てんされているボン
ベ7からllL量コントローラー8を介して所要量が反
応容器中に供給される0反応容器中には、サファイア基
板9がサセプタ10の上に配置されて−て、高周波加熱
コイル12によシ所定の温度に加熱され、化学気相反応
によシGaN薄膜が形成される。サセプタ温度は900
から1000℃が適当である。こうして作成し九〇aN
薄膜のがj素不純物濃度は従来公知のTMG使用使用時
代比桁以上低減することができた。またX線回折によシ
評価した結晶性に関しても大幅に向上した。Example 1 FIG. 1 is a system diagram showing the configuration of an apparatus when the present invention is applied to the production of a single crystal thin film of a GaN compound semiconductor. In Fig. 1, reference numeral 1 is an organometallic compound, 2 is a bubbler container, 5 and 8 are gas flow controllers, 4 is a nitrogen gas cylinder, 5 is a heating device, 6 is a reaction vessel, 7 is an ammonia cylinder, and 9 is a substrate. , 10 is a susceptor, 11 is a thermocouple,
12 is a high frequency heating coil, and 13 is an exhaust port. In the same figure, a nitrogen gas whose flow rate is adjusted by a gas flow controller 3 is placed in a bubbler container 2 in which an organometallic compound containing Ga element (diethyiWV chlorobentadiene gallium) 1 constituting a GaN compound semiconductor is sealed. A gaseous organometallic compound is introduced into the reaction vessel 6 by flowing . At this time, the bubbler container is heated to 70° C., which is above the melting point, in order to increase the vapor pressure of the compound. On the other hand, ammonia, which is a raw material containing the nitrogen element constituting the GaN compound semiconductor, is supplied in the required amount from a cylinder 7 filled with the ammonia into the reaction container via a llL amount controller 8. A substrate 9 is placed on a susceptor 10, heated to a predetermined temperature by a high frequency heating coil 12, and a GaN thin film is formed by a chemical vapor phase reaction. Susceptor temperature is 900
to 1000°C is suitable. Created in this way, 90aN
The concentration of impurities in the thin film could be reduced by more than an order of magnitude compared to the time when conventionally known TMG was used. Furthermore, the crystallinity evaluated by X-ray diffraction was also significantly improved.
実施例2〜14
実施例1において、ジエチルシクロペンタジェルガリウ
ムの代わりに、下記表2に示した化合物を使用する以外
は同様にしてGa薄膜の作成を行った。このときバブラ
ー容器2は化合物の融点以上に加熱されている。同様の
評価忙より、いずれの場合も実施例1と同様高品質な薄
μyが得られることが確認された。Examples 2 to 14 Ga thin films were prepared in the same manner as in Example 1, except that the compounds shown in Table 2 below were used instead of diethylcyclopentagel gallium. At this time, the bubbler container 2 is heated above the melting point of the compound. From similar evaluations, it was confirmed that high-quality thin μy could be obtained in all cases as in Example 1.
表2 実施例2から14で使用した化合物実施例15
第2図は本発明の第15の実施例を説明する装置の構成
図であって、符号21は反応容器、22け基板、23は
サセプタ、24はArレーザ、25及び26はガス導入
管、27は赤外線温度計、28は排気口を意味する。反
応容器21中に設置されたGaAs基板22上にGSL
AIIのエピタキシャル成長を行う例である。この時A
rレーザ(波長514.5nm)24を基板に照射する
ことによシ、照射領域と非照射領域の成長のコントラス
トをつけることができる。Ga系の有機金属化合物(ジ
メチルシクロベンタジエニルカIJウム)及びAe系の
原料(アルシン)はそれぞれ25.26から実施例1か
ら14と同様にして導入される。基板温度500℃、レ
ーザーパワー2Wにおいて膜厚の一コントラスト300
が得られることが確認された。これは従来の’1’1l
iGを使用したときに比較して5倍以上のコントラスト
の増加であった。Table 2 Compounds used in Examples 2 to 14 Example 15 FIG. 2 is a block diagram of an apparatus for explaining the 15th example of the present invention, in which reference numeral 21 is a reaction vessel, 22 is a substrate, and 23 is a susceptor. , 24 is an Ar laser, 25 and 26 are gas introduction pipes, 27 is an infrared thermometer, and 28 is an exhaust port. GSL is placed on the GaAs substrate 22 installed in the reaction vessel 21.
This is an example of epitaxial growth of AII. At this time A
By irradiating the substrate with the r laser (wavelength: 514.5 nm) 24, it is possible to create a contrast between the growth of the irradiated area and the non-irradiated area. A Ga-based organometallic compound (dimethylcyclobentadienyl potassium) and an Ae-based raw material (arsine) are introduced from 25.26 in the same manner as in Examples 1 to 14, respectively. Film thickness contrast 300 at substrate temperature 500℃ and laser power 2W
It was confirmed that this was obtained. This is the conventional '1'1l
The contrast was increased by more than 5 times compared to when using iG.
また炭素不純物濃度も1桁以上低減できた。Furthermore, the carbon impurity concentration was also reduced by more than an order of magnitude.
光源としてArレーザ(波長35S、Onm)及びKr
lエキシマレーザ(波長248 nm)を使用したとき
本同様にして大幅な特性向上が確認できた。また実施例
1〜14で使用した有機金属化合物を使用した場合も同
様にして優れた特性の薄膜が得られ、また成長のコント
ラストも大きく取ることができた。Ar laser (wavelength 35S, Onm) and Kr laser were used as light sources.
When an excimer laser (wavelength: 248 nm) was used, a significant improvement in characteristics was confirmed in the same manner as in the present invention. Furthermore, when the organometallic compounds used in Examples 1 to 14 were used, thin films with excellent characteristics were similarly obtained, and the growth contrast was also large.
以上説明したように、本発明に係る化合物半導体薄膜の
製造方法によれば、Gaを含む有機金属化合物原料とし
て、少なくとも1個の新しい置換基等を含むものを使用
する。このため薄膜品質の大幅な向上が達成され、また
光選択エビ成長技術においては光吸収特性が長波長側に
移動するため光吸収特性が向上し、成長の選択性が著し
く向上する利点がある。As explained above, according to the method for manufacturing a compound semiconductor thin film according to the present invention, a material containing at least one new substituent or the like is used as an organometallic compound raw material containing Ga. For this reason, a significant improvement in thin film quality has been achieved, and in the photo-selective shrimp growth technology, the light absorption properties are shifted to the longer wavelength side, which has the advantage of improving the light absorption properties and significantly improving the selectivity of growth.
第1図は本発明の実施例1〜14におりて用いたGaN
単結晶薄膜の製造装置の構成を示す系統図、第2図は本
発明の実施例15において使用したGaAs薄膜の製造
装置を示す構成図である。
1:有機金属化合物、2:バブラー容器、3及び8:ガ
ス流量コントローラー 4=窒素ガスボンベ、5:加熱
装置、6及び21:反応容器、7:アンモニアボンベ%
9及び22:基板、10及び23:サセプタ、11:熱
電対、12:高周波加熱コイル、13及び28:排気口
、24:Arレーザ%25及び26:ガス導入管、27
:赤外線温度計Figure 1 shows GaN used in Examples 1 to 14 of the present invention.
FIG. 2 is a system diagram showing the configuration of a single crystal thin film manufacturing apparatus. FIG. 2 is a configuration diagram showing the GaAs thin film manufacturing apparatus used in Example 15 of the present invention. 1: Organometallic compound, 2: Bubbler container, 3 and 8: Gas flow controller 4 = Nitrogen gas cylinder, 5: Heating device, 6 and 21: Reaction container, 7: Ammonia cylinder %
9 and 22: Substrate, 10 and 23: Susceptor, 11: Thermocouple, 12: High frequency heating coil, 13 and 28: Exhaust port, 24: Ar laser% 25 and 26: Gas introduction pipe, 27
:Infrared thermometer
Claims (1)
b族元素を含む化合物を気相で導入し、これらを熱分解
して、前記反応容器中に設置した基板上にIII−V族化
合物半導体薄膜を製造する方法において、前記ガリウム
を含む化合物として下記一般式〔A〕〜〔G〕:〔A〕
R1R2GaCp〔B〕R1Ga(Cp)_2〔C〕G
a(Cp)_3〔D〕GaR1R2(acac)〔E〕
R1Ga(acac)_2〔F〕Ga(acac)_3
〔G〕R3R4Ga−GaR5R6 〔式中、R1及びR2は同一又は異なり、アルキル基、
置換アルキル基、アルコキシ基、置換アルコキシ基、ア
ルキルチオ基、置換 アルキルチオ基又はハロゲン、Cpはシクロペンタジエ
ニル基、acacはCH(R1CO)_2基又はCF(
R1CO)_2基、R3〜R6は同一又は異なり、アル
キル基又はハロゲンを示す〕で表される化合物の少なく
とも1種を使用することを特徴とする化合物半導体薄膜
の製造方法。 2、請求項1記載の化合物半導体薄膜の製造方法におい
て、該基板に紫外光又は可視光を照射する化合物半導体
薄膜の製造方法。 3、請求項2記載の化合物半導体薄膜の製造方法におい
て、紫外光又は可視光の光源がレーザである化合物半導
体薄膜の製造方法。[Claims] 1. Compound containing gallium in reaction vessel and element V of the periodic table
In a method for producing a III-V compound semiconductor thin film on a substrate placed in the reaction vessel by introducing a compound containing a group B element in a gas phase and thermally decomposing the compound, the compound containing gallium is as follows: General formula [A] ~ [G]: [A]
R1R2GaCp[B]R1Ga(Cp)_2[C]G
a(Cp)_3[D]GaR1R2(acac)[E]
R1Ga(acac)_2[F]Ga(acac)_3
[G] R3R4Ga-GaR5R6 [wherein R1 and R2 are the same or different, an alkyl group,
Substituted alkyl group, alkoxy group, substituted alkoxy group, alkylthio group, substituted alkylthio group or halogen, Cp is cyclopentadienyl group, acac is CH(R1CO)_2 group or CF(
R1CO)_2 group, R3 to R6 are the same or different and represent an alkyl group or a halogen. 2. The method for manufacturing a compound semiconductor thin film according to claim 1, wherein the substrate is irradiated with ultraviolet light or visible light. 3. The method of manufacturing a compound semiconductor thin film according to claim 2, wherein the light source of ultraviolet light or visible light is a laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16775288A JPH0218926A (en) | 1988-07-07 | 1988-07-07 | Manufacture of compound semiconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16775288A JPH0218926A (en) | 1988-07-07 | 1988-07-07 | Manufacture of compound semiconductor film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0218926A true JPH0218926A (en) | 1990-01-23 |
Family
ID=15855443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16775288A Pending JPH0218926A (en) | 1988-07-07 | 1988-07-07 | Manufacture of compound semiconductor film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0218926A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016516287A (en) * | 2012-12-18 | 2016-06-02 | シースター ケミカルズ インク. | Thin film deposition reactor and process and method for dry cleaning thin film layers in situ |
WO2024190744A1 (en) * | 2023-03-13 | 2024-09-19 | Jsr株式会社 | Composition, method for storing composition, and compound |
-
1988
- 1988-07-07 JP JP16775288A patent/JPH0218926A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016516287A (en) * | 2012-12-18 | 2016-06-02 | シースター ケミカルズ インク. | Thin film deposition reactor and process and method for dry cleaning thin film layers in situ |
US10240230B2 (en) | 2012-12-18 | 2019-03-26 | Seastar Chemicals Inc. | Process and method for in-situ dry cleaning of thin film deposition reactors and thin film layers |
WO2024190744A1 (en) * | 2023-03-13 | 2024-09-19 | Jsr株式会社 | Composition, method for storing composition, and compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250148A (en) | Process for growing GaAs monocrystal film | |
US4404265A (en) | Epitaxial composite and method of making | |
US4368098A (en) | Epitaxial composite and method of making | |
JPS6134929A (en) | Growing device of semiconductor device | |
JPH0350834B2 (en) | ||
JPH04175299A (en) | Compound semiconductor crystal growth and compound semiconductor device | |
JPH0218926A (en) | Manufacture of compound semiconductor film | |
JPH01319928A (en) | Manufacture of compound semiconductor thin film | |
JPH01319927A (en) | Manufacture of compound semiconductor thin film | |
JPS61260622A (en) | Growth method of GaAs single crystal thin film | |
JPH0212814A (en) | Crystal growth method of compound semiconductor | |
JPS6081092A (en) | Vapor growth method for thin film of compound semiconductor | |
JPH06275542A (en) | Method and apparatus for producing nitrogen-doped II-VI compound semiconductor thin film | |
JPH04170397A (en) | Production of gallium nitride thin film | |
JPH02102200A (en) | Method for producing compound semiconductor crystal film | |
JPH0532360B2 (en) | ||
JPS61166972A (en) | Production of thin zinc selenide film | |
JP2620546B2 (en) | Method for producing compound semiconductor epitaxy layer | |
JPS61124122A (en) | Growing method of compound semiconductor single crystal thin film | |
JPH04170398A (en) | Production of gallium nitride thin film | |
JPH0322519A (en) | Manufacture of compound semiconductor mixed crystal | |
JPH0292891A (en) | Molecular beam epitaxial growth method and its growth apparatus | |
JPS63100736A (en) | Method for manufacturing impurity-doped ZnSe-based compound semiconductor | |
JPS61176111A (en) | Manufacture of compound semiconductor thin film | |
JPS62214626A (en) | Vapor phase epitaxial growth process |