[go: up one dir, main page]

JP2706337B2 - Method for manufacturing compound semiconductor thin film - Google Patents

Method for manufacturing compound semiconductor thin film

Info

Publication number
JP2706337B2
JP2706337B2 JP31067389A JP31067389A JP2706337B2 JP 2706337 B2 JP2706337 B2 JP 2706337B2 JP 31067389 A JP31067389 A JP 31067389A JP 31067389 A JP31067389 A JP 31067389A JP 2706337 B2 JP2706337 B2 JP 2706337B2
Authority
JP
Japan
Prior art keywords
group
thin film
compound semiconductor
semiconductor thin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31067389A
Other languages
Japanese (ja)
Other versions
JPH03173140A (en
Inventor
弘次 佐藤
駿吾 菅原
健 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31067389A priority Critical patent/JP2706337B2/en
Publication of JPH03173140A publication Critical patent/JPH03173140A/en
Application granted granted Critical
Publication of JP2706337B2 publication Critical patent/JP2706337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体薄膜の製造方法に係り,特に元
素の周期表II b−VI b族元素からなる高品質の化合物半
導体薄膜の製造方法に関する。
The present invention relates to a method for producing a compound semiconductor thin film, and more particularly to a method for producing a high-quality compound semiconductor thin film comprising a group IIb-VIb group element of the periodic table. .

〔従来の技術〕[Conventional technology]

近年,青色発光材料として注目されているZnS,ZnSeな
どの化合物半導体薄膜を製造する方法として,有機金属
気相エピタキシャル成長(MOVPE)法と呼ばれる方法が
多く採用されている。この従来のMOVPE法については,
ジャパニーズ ジャーナル オブ アプライド フィジ
ックス 第27巻(1988年)第909頁から912頁(Jap.J.Ap
ll.Phys.,27(1988)pp.909−912)あるいはジャーナル
オブ クリスタル グローウス 第86巻(1988年)第
372頁から第376頁(J.Cryst.Growth,86(1988)pp.372
−376)において論じられている。これらのMOVPE法にお
いては,例えばジエチル亜鉛〔(C2H52Zn〕などの元
素の周期表II b族元素を含む有機金属化合物を気相で熱
分解し,セレン化水素(H2Se)などの元素の周期表VI b
族元素を含む化合物と反応させることによって、ZnSeな
どのII b−VI b族化合物半導体薄膜を基板上に成長させ
ていた。しかしながら,現在に到るまで高い発光効率を
持つ高品質の青色発光材料は実現されていない。そのひ
とつの原因としては,II b−VI b族化合物半導体薄膜の
品質が,GaAs等のIII−V族化合物半導体薄膜に比較して
劣っていることが挙げられる。例えば,単結晶薄膜のX
線評価によって得られる半値幅(狭いほど良い)は,III
−V族化合物半導体薄膜の30秒程度に比較してII b−VI
b族の薄膜は数分程度と悪い値となっている。こうした
原因として,以下に示す問題点が指摘されている。
In recent years, as a method for producing a compound semiconductor thin film of ZnS, ZnSe or the like, which has attracted attention as a blue light emitting material, a method called a metal organic vapor phase epitaxy (MOVPE) method is often used. About this conventional MOVPE method,
Japanese Journal of Applied Physics Volume 27 (1988) 909-912 (Jap.J.Ap
Phys., 27 (1988) pp. 909-912) or Journal of Crystal Glowus 86 (1988),
372 to 376 (J. Cryst. Growth, 86 (1988) pp. 372)
−376). In these MOVPE methods, for example, an organometallic compound containing an element such as diethylzinc [(C 2 H 5 ) 2 Zn], which belongs to Group IIb of the Periodic Table, is thermally decomposed in the gas phase and hydrogen selenide (H 2 Se )) Periodic Table of Elements VI b
By reacting with a compound containing a group element, a IIb-VIb group compound semiconductor thin film such as ZnSe has been grown on a substrate. However, a high-quality blue light-emitting material having high luminous efficiency has not been realized until now. One of the causes is that the quality of the IIb-VIb group compound semiconductor thin film is inferior to that of the III-V group compound semiconductor thin film such as GaAs. For example, a single crystal thin film X
The half width obtained by the line evaluation (the narrower is better) is III
IIb-VI compared to about 30 seconds for Group V compound semiconductor thin films
The group b thin film has a bad value of about several minutes. The following problems have been pointed out as such causes.

(1)II b族の元素を含む原料化合物とVI b族の元素を
含む原料化合物とが本質的に反応性に富み,基板上で反
応する前に気相中で反応を起こし,この反応生成物が化
合物半導体薄膜中に取り込まれてしまい品質が低下す
る。
(1) A raw material compound containing an element of group IIb and a raw material compound containing an element of group VIb are intrinsically highly reactive, and react in a gas phase before reacting on a substrate, and this reaction is formed. The substance is taken into the compound semiconductor thin film and the quality is reduced.

(2)II b族系の有機金属原料化合物から生じた炭素が
薄膜中に混入し,薄膜の品質の低下を招く。
(2) Carbon generated from the IIb group organometallic raw material compound is mixed into the thin film, resulting in deterioration of the quality of the thin film.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述したごとく,従来のMOVPE法になどにより,元素
の周期表II b−VI b族化合物半導体薄膜を製造する方法
において,II b族の元素を含む原料化合物とIV b族の元
素を含む原料化合物とが本質的に反応性に富み,基板上
で分解反応する前に気相中で早期反応を起こしてしま
い,この反応生成物が薄膜中に取り込まれて薄膜の品質
を低下させたり,また特に,II b族系の元素を含む原料
化合物から生じた炭素などが形成される薄膜中に混入さ
れて品質が劣化するなどの問題があった。
As described above, in a method of manufacturing a compound semiconductor thin film of the periodic table IIb-VIb group by a conventional MOVPE method or the like, a raw material compound containing a group IIb element and a raw material compound containing a group IVb element Are inherently reactive, causing an early reaction in the gas phase before decomposing on the substrate, and this reaction product is incorporated into the thin film to reduce the quality of the thin film, However, there has been a problem that carbon or the like generated from a raw material compound containing a group IIb-based element is mixed into a formed thin film and the quality is deteriorated.

本発明の目的は,上記従来技術における問題点を解決
するものであって,化学気相成長法において,特定の一
般式で示される周期表II b族の元素およびVI b族の元素
を含む化合物を原料化合物として用いることにより,一
段と優れた高品質のII b−VI b族化合物半導体薄膜を製
造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art. In a chemical vapor deposition method, a compound containing an element of group IIb and an element of group VIb represented by a specific general formula. It is an object of the present invention to provide a method for producing a further excellent and high-quality IIb-VIb group compound semiconductor thin film by using as a raw material compound.

〔課題を解決するための手段〕[Means for solving the problem]

上記本発明の目的を達成するために,化学気相反応容
器内に,元素の周期表II b族元素であるZnを含む化合物
および元素の周期表VI b族元素であるS,SeおよびTeより
なる群から選ばれる少なくとも1種の元素を含む化合物
を気相で導入し,これらを熱分解して,上記化学気相反
応容器中に設置した基板上にII b−VI b族化合物半導体
薄膜を形成する方法において,上記Zn元素を含む化合物
として下記一般式(a)〜(d)で示される化合物のう
ちより選択される少なくとも1種の化合物を用いるもの
である。
In order to achieve the object of the present invention, in a chemical vapor reaction vessel, a compound containing Zn, which is a Group IIb element of the Periodic Table of Elements, and S, Se, and Te, which are Group VIb elements of the Periodic Table of Elements. A compound containing at least one element selected from the group consisting of a group IIb and a group IIb-VIb compound semiconductor thin film is formed on a substrate placed in the chemical vapor reactor by introducing the compound in the gas phase and thermally decomposing the compound. In the formation method, at least one compound selected from the compounds represented by the following general formulas (a) to (d) is used as the compound containing the Zn element.

Zn〔(CH2nXR〕 ……(a) (式中,nは2から5の整数,Xは酸素または硫黄原子,Rは
炭素数1から3のアルキル基を表す。) Zn〔(CH2nNR2 ……(b) (式中,nは2から5の整数,Rは炭素数1から3のアルキ
ル基を表す。) (式中,nは2から5の整数を表す。) Zn(R) ……(d) (式中,Rはシクロペンタジエニル基,置換シクロペンタ
ジエニル基,フェニル基,置換フェニル基,アリール
基,置換アリール基のうちのいずれかの基を表す。) 〔作用〕 上述した一般式(a)〜(d)で示される原料化合物
を使用することは従来知られていなかった。第1表およ
び第2表に具体的化合物の一例を示すが,本発明はこれ
らに限定されるものではない。本発明の薄膜成長法は,
従来技術における問題点であった早期反応による反応生
成物あるいは炭素などの薄膜内への混入取り込みの問題
を鋭意研究することによって解決したものである。一般
式(a)ないし(b)で示される化合物は,特に早期反
応を抑制することができるものであって,その理由は,
酸素,硫黄,窒素などの原子と亜鉛原子が分子内で配位
結合し,亜鉛原子が中位の電子軌道を持たなくなること
によるものと考えられる。また,一般式(c)ないし
(d)で示される化合物は,特に炭素の混入の抑制がは
かられる。これは,従来の直鎖型のアルキル置換基を含
む化合物ではなく,環状の置換基を有する化合物を用い
ることにより,薄膜内に炭素の混入が大幅に低減できる
ことを見い出したことによるものである。
Zn [(CH 2 ) n XR] 2 (a) (where n is an integer of 2 to 5, X is an oxygen or sulfur atom, and R is an alkyl group having 1 to 3 carbon atoms). (CH 2 ) n NR 2 ] 2 (b) (in the formula, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 3 carbon atoms.) (In the formula, n represents an integer of 2 to 5.) Zn (R) 2 (where R is a cyclopentadienyl group, a substituted cyclopentadienyl group, a phenyl group, a substituted phenyl group) , An aryl group, or a substituted aryl group.) [Action] The use of the raw material compounds represented by the aforementioned general formulas (a) to (d) has not been known. Examples of specific compounds are shown in Tables 1 and 2, but the present invention is not limited thereto. The thin film growth method of the present invention
This problem has been solved by earnestly studying the problem of incorporation of a reaction product or carbon, etc., due to an early reaction, into a thin film, which was a problem in the prior art. The compounds represented by the general formulas (a) and (b) are particularly capable of suppressing an early reaction.
This is probably because atoms such as oxygen, sulfur, and nitrogen coordinate with the zinc atom in the molecule, and the zinc atom has no middle electron orbital. The compounds represented by the general formulas (c) to (d) are particularly effective in suppressing carbon contamination. This is because it has been found that the use of a compound having a cyclic substituent, rather than a conventional compound having a linear alkyl substituent, can greatly reduce the incorporation of carbon into a thin film.

一方,本発明で使用する原料化合物のなかで室温で固
体のもの,あるいは蒸気圧が低い場合がある。この際,
実際の使用時においては原料化合物の格納ボンベや配管
系を加熱するなどの対策が必要となる。室温で液体の原
料化合物については,従来と同様にバブリングにより反
応容器中に導入することができる。
On the other hand, some of the raw material compounds used in the present invention may be solid at room temperature or have a low vapor pressure. On this occasion,
At the time of actual use, it is necessary to take measures such as heating a cylinder for storing raw material compounds and a piping system. The raw material compound which is liquid at room temperature can be introduced into the reaction vessel by bubbling as in the conventional case.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ,図面に基づいて,さ
らに詳細に説明する。
Hereinafter, an embodiment of the present invention will be described in more detail with reference to the drawings.

(実施例1) 第1図は本実施例において,ZnSe化合物半導体薄膜の
単結晶膜の製造に用いる化学気相反応装置の構成を示す
系統図である。図において,ZnSe化合物半導体を構成す
るZn元素を含む原料である液体のビス(3−メトキシプ
ロピル)亜鉛が封入されているバブラ容器5内に,ガス
流量コントローラ9により流量調節された水素ガス14を
バブリングさせることにより,Zn元素を所要量含むビス
(3−メトキシプロピル)亜鉛と水素ガス14との混合ガ
スを原料ガスとなし,他方,ZnSe化合物半導体を構成す
るSe元素を含む原料であるセレン化水素のガスボンベ6
により,流量コントローラ12を介してSe元素を所要量含
むセレン化水素を供給し,これに流量コントローラ11を
介して所定流量の水素ガスを加えて原料ガスとして,蒸
気のビス(3−メトキシプロピル)亜鉛を含む原料ガス
と共に,気相で反応容器1内に導入する。反応容器内に
はGaAs基板3が基板ホルダ2の上に配置されていて,高
周波加熱コイル4により所定の温度に加熱され,化学気
相反応により酸素を含むp型導電性のZnSe化合物半導体
の単結晶薄膜が基板上に形成される。このZnSe化合物半
導体薄膜は,GaAsとZnSeの格子常数の不正合は1%以下
であり,良好な単結晶薄膜が形成できる。この単結晶薄
膜の格子常数の不正合は〜5%まで許容されるものであ
って,InP,Si等が基板として使用可能である。なお,8,9
はガス流量コントローラ,13は排気口である。また,必
要に応じてドーパント用有機金属化合物の容器7,流量コ
ントローラ10,を用いてドーピングを行うこともでき
る。
Example 1 FIG. 1 is a system diagram showing a configuration of a chemical vapor reaction apparatus used for manufacturing a single crystal film of a ZnSe compound semiconductor thin film in this example. In the figure, a hydrogen gas 14 whose flow rate has been adjusted by a gas flow rate controller 9 is placed in a bubbler container 5 in which liquid bis (3-methoxypropyl) zinc as a raw material containing a Zn element constituting a ZnSe compound semiconductor is sealed. By bubbling, a mixed gas of bis (3-methoxypropyl) zinc containing a required amount of Zn element and hydrogen gas 14 is used as a source gas, while selenide, a source material containing the Se element constituting the ZnSe compound semiconductor, is used. Hydrogen gas cylinder 6
To supply hydrogen selenide containing a required amount of Se element through a flow rate controller 12, and to this a hydrogen gas at a predetermined flow rate through a flow rate controller 11 to obtain a vapor of bis (3-methoxypropyl) It is introduced into the reaction vessel 1 in a gas phase together with a raw material gas containing zinc. In the reaction vessel, a GaAs substrate 3 is disposed on a substrate holder 2 and is heated to a predetermined temperature by a high-frequency heating coil 4, and is formed of a p-type conductive ZnSe compound semiconductor containing oxygen by a chemical vapor reaction. A crystalline thin film is formed on a substrate. In this ZnSe compound semiconductor thin film, the mismatch between the lattice constants of GaAs and ZnSe is 1% or less, and a good single crystal thin film can be formed. The mismatch of the lattice constant of this single crystal thin film is allowed up to 5%, and InP, Si, etc. can be used as the substrate. Note that 8,9
Is a gas flow controller, and 13 is an exhaust port. Further, if necessary, doping can be performed using the container 7 and the flow rate controller 10 of the organometallic compound for dopant.

以上説明した化合物半導体の製造装置を用い,ZnSe化
合物半導体薄膜を次の手順で作製した。すなわち,25cc/
分の水素ガスと,温度40℃に加温したビス(3−メトキ
シプロピル)亜鉛のバブラ容器5を通過した25cc/分の
水素ガスとを,1/分の水素ガスに混合希釈して原料ガ
スとなし,反応容器1内に導入した。同時に,水素ガス
で希釈した5容器%の濃度のセレン化水素ガス100cc/分
の原料ガスを,さらに1/分の水素ガスに希釈混合し
た後,反応容器1内に導入し,400℃の温度に加熱された
GaAs基板3上に吹き付けながらZnSe単結晶薄膜を1時間
当り2μmの成膜速度で成長させた。得られたZnSe単結
晶薄膜の表面は,良好な鏡面が形成された薄膜の結晶性
にも問題がなく,高品質のZnSe単結晶薄膜が得られた。
また,ZnSe単結晶薄膜の抵抗値は,106Ω・cm以上の高抵
抗値を示し,さらにX線ロッキングカーブの半値幅は40
秒であり,従来の原料を使用した場合と比較して性能が
大幅に向上した。
Using the compound semiconductor manufacturing apparatus described above, a ZnSe compound semiconductor thin film was manufactured in the following procedure. That is, 25cc /
Of hydrogen gas passed through a bubbler container 5 of bis (3-methoxypropyl) zinc heated to a temperature of 40 ° C. and 25 cc / min. And introduced into the reaction vessel 1. At the same time, a raw material gas diluted with hydrogen gas and having a concentration of 5 containers% and a concentration of hydrogen selenide gas of 100 cc / min is further diluted and mixed with hydrogen gas of 1 / min. Heated to
While spraying on the GaAs substrate 3, a ZnSe single crystal thin film was grown at a deposition rate of 2 μm per hour. On the surface of the obtained ZnSe single crystal thin film, there was no problem in the crystallinity of the thin film on which a good mirror surface was formed, and a high quality ZnSe single crystal thin film was obtained.
In addition, the resistance value of the ZnSe single crystal thin film shows a high resistance value of 10 6 Ω · cm or more, and the half value width of the X-ray rocking curve is 40
Seconds, the performance has been greatly improved compared to the case of using conventional raw materials.

なお,不純物を添加する際に不純物メモリ効果(次回
の半導体薄膜成長へ及ぼす効果)が重要なファクタとな
るが,本実施例においては,ビス(3−メトキシプロピ
ル)亜鉛のステンレス配管への付着性が少なく,この点
に関しては何ら問題は生じなかった。
Note that the impurity memory effect (effect on the next growth of the semiconductor thin film) is an important factor when adding impurities, but in this embodiment, the adhesion of bis (3-methoxypropyl) zinc to the stainless steel pipe is considered. There was no problem in this regard.

(実施例2〜4) 実施例1において用いたビス(3−メトキシプロピ
ル)亜鉛の代わりに,第3表に示す原料化合物および反
応条件を用いた他は実施例1と同様にしてZnSe薄膜の成
長を行った。いずれの場合(実施例2〜14)において
も,実施例1と同様に優れた特性のZnSe単結晶薄膜が得
られた。
(Examples 2 to 4) A ZnSe thin film was prepared in the same manner as in Example 1 except that the raw material compounds and reaction conditions shown in Table 3 were used instead of bis (3-methoxypropyl) zinc used in Example 1. Grow. In each case (Examples 2 to 14), a ZnSe single crystal thin film having excellent characteristics was obtained as in Example 1.

〔発明の効果〕 以上詳細に説明したごとく,本発明の化合物半導体薄
膜の製造方法によれば,原料化合物として,早期反応や
炭素の取り込みを抑制することができる新規な亜鉛系有
機金属化合物を使用するため,高品質で特性に優れた半
導体薄膜を製造することができ,例えば元素の周期表II
b−VI b族化合物半導体薄膜の製造において,青色発光
を示す高品位の化合物半導体薄膜が得られる。
[Effects of the Invention] As described above in detail, according to the method for producing a compound semiconductor thin film of the present invention, a novel zinc-based organometallic compound capable of suppressing an early reaction and carbon incorporation is used as a raw material compound. As a result, semiconductor thin films with high quality and excellent characteristics can be manufactured.
In the production of a group b-VIb compound semiconductor thin film, a high-quality compound semiconductor thin film that emits blue light can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1〜6において用いたZnSe単結
晶薄膜の製造装置の構成を示す系統図,第2図は本発明
の実施例7〜14で使用した亜鉛系有機金属化合物の容器
を示す。 1……反応容器、2……基板ホルダ 3……GaAs基板、4……高周波加熱コイル 5……バブラ容器、6……セレン化水素のガスボンベ 7……ドーパント用有機金属化合物の容器 8,9,10,11,12……ガス流量コントローラ 13……排気口、14……水素ガス 15……亜鉛系有機金属化合物の容器
FIG. 1 is a system diagram showing a configuration of a ZnSe single crystal thin film manufacturing apparatus used in Examples 1 to 6 of the present invention, and FIG. 2 is a diagram showing a zinc-based organometallic compound used in Examples 7 to 14 of the present invention. Shows a container. DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Substrate holder 3 ... GaAs substrate 4 ... High frequency heating coil 5 ... Bubbler container 6 ... Hydrogen selenide gas cylinder 7 ... Organic metal compound container for dopant 8,9 , 10,11,12 ... Gas flow controller 13 ... Exhaust port, 14 ... Hydrogen gas 15 ... Zinc-based organometallic compound container

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化学気相反応容器内に基板を配置し,該基
板上に,元素の周期表II b族のZn元素を含む化合物およ
びVI b族のS,SeおよびTeのうちの少なくとも1種を含む
化合物を気相で導入し,化学気相成長法によって上記基
板上にII b−VI b族化合物半導体薄膜を形成する方法に
おいて,上記Zn元素を含む化合物として,下記の一般式
(a)ないし(d)で示される化合物のうちより選択さ
れる少なくとも1種の化合物を用いることを特徴とする
化合物半導体薄膜の製造方法。 Zn〔(CH2nXR〕 ……(a) (式中,nは2から5の整数,Xは酸素または硫黄原子,Rは
炭素数が1から3のアルキル基を表す。) Zn〔(CH2nNR2 ……(b) (式中,nは2から5の整数,Rは炭素数1から3のアルキ
ル基を表す。) (式中,nは2から5の整数を表す。) Zn(R) ……(d) (式中,Rはシクロペンタジエニル基,置換シクロペンタ
ジエニル基,フェニル基,置換フェニル基,アリール
基,置換アリール基のうちのいずれかの基を表す。)
1. A substrate is placed in a chemical vapor reactor, and at least one of a compound containing a Zn element of Group IIb and S, Se and Te of Group VIb is placed on the substrate. In a method of introducing a compound containing a seed in a gas phase and forming a IIb-VIb group compound semiconductor thin film on the substrate by a chemical vapor deposition method, the compound containing a Zn element is represented by the following general formula (a) A method for producing a compound semiconductor thin film, comprising using at least one compound selected from the compounds represented by (d) to (d). Zn [(CH 2 ) n XR] 2 (a) (where n is an integer of 2 to 5, X is an oxygen or sulfur atom, and R is an alkyl group having 1 to 3 carbon atoms) Zn [(CH 2 ) n NR 2 ] 2 (b) (in the formula, n represents an integer of 2 to 5, and R represents an alkyl group having 1 to 3 carbon atoms.) (In the formula, n represents an integer of 2 to 5.) Zn (R) 2 (where R is a cyclopentadienyl group, a substituted cyclopentadienyl group, a phenyl group, a substituted phenyl group) , An aryl group, or a substituted aryl group.)
JP31067389A 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film Expired - Fee Related JP2706337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31067389A JP2706337B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31067389A JP2706337B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH03173140A JPH03173140A (en) 1991-07-26
JP2706337B2 true JP2706337B2 (en) 1998-01-28

Family

ID=18008079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31067389A Expired - Fee Related JP2706337B2 (en) 1989-12-01 1989-12-01 Method for manufacturing compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2706337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122454A (en) * 2011-11-17 2013-05-29 三星康宁精密素材株式会社 Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122454A (en) * 2011-11-17 2013-05-29 三星康宁精密素材株式会社 Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
US20130171341A1 (en) * 2011-11-17 2013-07-04 Samsung Corning Precision Materials Co., Ltd. Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
US8932389B2 (en) * 2011-11-17 2015-01-13 Samsung Corning Precision Materials Co., Ltd. Zinc oxide precursor and method of depositing zinc oxide-based thin film using the same
CN103122454B (en) * 2011-11-17 2015-12-02 康宁精密素材株式会社 Zinc oxide precursor and the method utilizing this presoma depositing zinc oxide class film

Also Published As

Publication number Publication date
JPH03173140A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
Jones Developments in metalorganic precursors for semiconductor growth from the vapour phase
JP3395318B2 (en) Method for growing group 3-5 compound semiconductor crystal
Knauf et al. Comparison of ethyldimethylindium (EDMIn) and trimethylindium (TMIn) for GaInAs and InP growth by LP-MOVPE
US5300185A (en) Method of manufacturing III-V group compound semiconductor
JPH09251957A (en) Method for producing group 3-5 compound semiconductor
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
US6329540B1 (en) Volatile organogallium compound and deposition of gallium nitride film using same
US7026228B1 (en) Methods of fabricating devices and semiconductor layers comprising cadmium mercury telluride, mercury telluride, and cadmium telluride
JP2686859B2 (en) Method for growing crystal of n-type II-VI compound semiconductor
US5882805A (en) Chemical vapor deposition of II/VI semiconductor material using triisopropylindium as a dopant
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH04132214A (en) Manufacture of compound semiconductor thin film
JP2740681B2 (en) Method for manufacturing compound semiconductor thin film
JPH0535719B2 (en)
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPH0534819B2 (en)
JPH0312399A (en) Production of thin film of compound semiconductor
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JP2678736B2 (en) Organozinc compound
JPH0312400A (en) Production of thin film of compound semiconductor
JPH0740560B2 (en) Method for manufacturing compound semiconductor film
JPH04179221A (en) Manufacture of compound semiconductor thin film
JPH10270470A (en) Method of forming ii-vi compound semiconductor and group vi material for vapor growth of ii-vi compound semiconductor
JPS63220514A (en) Compound semiconductor film and manufacture thereof
JPH10256277A (en) Method of forming p-type ii-vi compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees