[go: up one dir, main page]

JPH01275444A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH01275444A
JPH01275444A JP10414488A JP10414488A JPH01275444A JP H01275444 A JPH01275444 A JP H01275444A JP 10414488 A JP10414488 A JP 10414488A JP 10414488 A JP10414488 A JP 10414488A JP H01275444 A JPH01275444 A JP H01275444A
Authority
JP
Japan
Prior art keywords
preform
optical fiber
base material
transparent glass
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10414488A
Other languages
Japanese (ja)
Inventor
Hiroo Matsuda
松田 裕男
Toshio Danzuka
彈塚 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10414488A priority Critical patent/JPH01275444A/en
Publication of JPH01275444A publication Critical patent/JPH01275444A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/69Auxiliary thermal treatment immediately prior to drawing, e.g. pre-heaters, laser-assisted resistance heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an optical fiber completely free of bubbles by preheating a rod-shaped transparent glass preform at a temp. lower than the softening point and close to the softening point on the upstream side of the drawing point of the preform to degasify the preform, and then drawing the preform to efficiently degasify the preform in a short time. CONSTITUTION:The transparent glass preform 4 inserted into a drawing furnace 10 is preheated by a preheater 11 to a temp. lower than the melting point of the preform 4 and as high as possible, e.g., about 800-1,500 deg.C. As a result, the gas remaining in the preform 4 is diffused and discharged to the outside, and the preform 4 is degasified. The degasified preform 4 is moved to a drawing and heating zone, heated 2 to a drawing temp., and continuously drawn. Consequently, a high-quality optical fiber 5 completely free of bubbles is obtained. The drawing heater 2, a heat insulator 3, and an inert gas inlet hole 6 are shown in the figure.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、気泡を含有しない光ファイバを製造する光フ
ァイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical fiber manufacturing method for manufacturing an optical fiber that does not contain bubbles.

〈従来の技術〉 光ファイバは、透明ガラス母材を線引炉の上部より送給
してその先端を加熱溶融し、この溶融部分を線引炉下部
より引出し所望の径に細径化することにより線引きされ
て!!!造されている。
<Prior art> Optical fibers are produced by feeding a transparent glass base material from the top of a drawing furnace, heating and melting the tip, and pulling out this molten part from the bottom of the drawing furnace to reduce the diameter to a desired diameter. The line is drawn by! ! ! It is built.

このような従来の光ファイバの線引装置を第4図に示す
。同図に示すように、線引炉1内には線引きヒータ2及
び保温材3が設けられており、線引炉1の上部開口部1
aがら透明ガラス母材4を押入し、線引きされた光ファ
イバ5を下部開口部1bから線引きするようになってい
る。なお、この線引炉1の下端側壁には、不活性ガス導
入口6が設けられており、炉内には不活性ガスが満たさ
れている。
FIG. 4 shows such a conventional optical fiber drawing apparatus. As shown in the figure, a drawing heater 2 and a heat insulating material 3 are provided in the drawing furnace 1, and an upper opening 1 of the drawing furnace 1 is provided.
A transparent glass preform 4 is pushed in through the opening 1b, and the drawn optical fiber 5 is drawn from the lower opening 1b. Note that an inert gas inlet 6 is provided on the lower end side wall of the drawing furnace 1, and the inside of the furnace is filled with inert gas.

ここで供給される透明ガラス母材4は、−般に、VAD
法、ovpo法等により製造される石英系ガラス微粉末
が堆積された多孔質光フアイバ母材を、例えばゾーン炉
及び均熱炉等を用いた脱水焼結工程によって透明化する
  −ことにより製造されている。この脱水焼結工程で
は、一般にガラス内での拡散速度が特に大きいHeガス
又はHeガス混合ガスの雰囲気中で加熱を行うことによ
り透明ガラス化が行われている。これにより該透明ガラ
ス母材内に閉塞した空孔が残留することを防止している
The transparent glass base material 4 supplied here is generally VAD
A porous optical fiber base material on which fine silica glass powder is deposited is made transparent by a dehydration sintering process using, for example, a zone furnace or a soaking furnace. ing. In this dehydration and sintering process, transparent vitrification is generally performed by heating in an atmosphere of He gas or He gas mixed gas, which has a particularly high diffusion rate within the glass. This prevents closed pores from remaining within the transparent glass base material.

しかしながら、従来においてはこのような脱水焼結して
透明化した透明ガラス母材には、末だHeガスが溶解し
ていたり、あるいは微小な空孔が残留してその中にHe
ガス等が多量に残留していることが判明された。このよ
うな従来の透明ガラス母材を用いて従来の第4図に示す
線引装置を用いて線引きを行う場合、溶解している残留
ガスが気化して発泡したり、得られた光フアイバ中の微
小な気泡が残留してしまい、伝送損失が増大してしまう
などの問題がある。
However, in the past, in the transparent glass base material made transparent by dehydration and sintering, residual He gas may be dissolved or microscopic pores may remain in which He may be trapped.
It was found that a large amount of gas remained. When drawing a wire using the conventional drawing device shown in FIG. 4 using such a conventional transparent glass base material, residual dissolved gas may vaporize and foam, or the resulting optical fiber There are problems such as small air bubbles remaining and increasing transmission loss.

このため、従来においては、上記脱水焼結工程において
、焼結温度や昇温方法及び焼結時間の条件を種々変化さ
せて透明ガラス母材中にガスが残留することを防止する
方法が種々検討されている。
For this reason, in the past, various methods have been studied to prevent gas from remaining in the transparent glass base material by varying the sintering temperature, temperature raising method, and sintering time conditions in the dehydration and sintering process. has been done.

〈発明が解決しようとする課題〉 しかしながら、従来種々検討されている脱水焼結工程で
の微量の脱ガス処理は、例えば焼結時間を通常の3〜4
倍と長くする必要があるので、温度の維持に多大なエネ
ルギーを使いヒータ電力の増加等の通常経費が嵩み、ま
た作業工程が遅延して大幅に作業時間がかかるという問
題がある。また、この作業時間を短縮するために、例え
ば脱水焼結工程度をより高温にして行う場合にはその温
度を高精度に維持することが困難となり、また、軟化点
を越えた場合には透明ガラス母材が変形するおそれがあ
り、ひいては線引き時の線速の変動を起こしてしまうと
いう問題がある。
<Problems to be Solved by the Invention> However, a trace amount of degassing treatment in the dehydration and sintering process, which has been variously studied in the past, requires, for example, a sintering time of 3 to 4
Since it needs to be twice as long, there is a problem that a large amount of energy is required to maintain the temperature, which increases ordinary expenses such as an increase in heater power, and also delays the work process and takes a considerable amount of time. In addition, in order to shorten this work time, for example, if the dehydration sintering process is carried out at a higher temperature, it becomes difficult to maintain that temperature with high precision, and if the temperature exceeds the softening point, it becomes transparent. There is a problem that the glass base material may be deformed, which in turn may cause fluctuations in the drawing speed during drawing.

以上述べた事情に鑑み、本発明は短時間で且つ効率よく
脱ガスされた気泡を全く含有しない光ファイバを製造す
る光ファイバの製造方法を提供することを目的とする。
In view of the above-mentioned circumstances, an object of the present invention is to provide an optical fiber manufacturing method for manufacturing an optical fiber that is efficiently degassed in a short time and does not contain any bubbles.

く課題を解決するための手段〉 前記目的を達成するための本発明の光ファイバの製造方
法の構成は、棒状の透明ガラス母材を加熱軟化させつつ
延伸して光ファイバを線引き製造する光ファイバの製造
方法において、線引き点の上流側にて上記透明ガラス母
材を軟化点以下で且つ軟化点近傍の温度で予備加熱して
脱ガスを行い、これに連続して線引きすることを特徴と
する。
Means for Solving the Problems> The structure of the optical fiber manufacturing method of the present invention for achieving the above object is to produce an optical fiber by drawing an optical fiber by stretching a rod-shaped transparent glass base material while heating and softening it. In the manufacturing method, the transparent glass base material is preheated at a temperature below the softening point and near the softening point to degas it on the upstream side of the drawing point, and this is then continuously drawn. .

く作   用〉 前記構成において、透明ガラス母材は軟化点近傍で予備
加熱する過程において内部に残留していたガスが拡散さ
れて外部へ放出される。その後、脱ガスされた透明ガラ
ス母材が連続的に線引されて気泡を含有しない光ファイ
バを得る。
Effect> In the above structure, during the process of preheating the transparent glass base material near its softening point, the gas remaining inside is diffused and released to the outside. The degassed transparent glass preform is then continuously drawn to obtain a bubble-free optical fiber.

〈実 施 例〉 以下、本発明の光ファイバの製造方法を実施する光ファ
イバの線引装置の好適な実施例を図面を参照しながら詳
細に説明する。
<Embodiments> Hereinafter, preferred embodiments of an optical fiber drawing apparatus for implementing the optical fiber manufacturing method of the present invention will be described in detail with reference to the drawings.

第1図は本実施例にかかる光ファイバの線引装置の概略
を示す。なお、従来技術にかかる第4図と同一部材には
同一符号を付して重復した説明を省略する。
FIG. 1 schematically shows an optical fiber drawing apparatus according to this embodiment. Note that the same members as in FIG. 4 according to the prior art are given the same reference numerals, and repeated explanations will be omitted.

同図に示すように、本実施例の線引装置の線引炉lO内
には、従来と同様に線引きを行う線引きヒータ2が設け
られて線引加熱域を構成しており、その上流側には脱ガ
スを行うための予備加熱用の予備加熱ヒータ11が設け
られて予備加熱域を構成している。この予備加熱し−タ
11は、上記線引き用ヒータ2と同径で且つその長さを
当該線引ヒータ2の等倍あるいはそれ以上とするのが好
適である。
As shown in the figure, in the drawing furnace lO of the drawing apparatus of this embodiment, a drawing heater 2 for drawing the drawing is provided in the same manner as in the conventional drawing apparatus, and a drawing heating area is formed, and the upstream side thereof A preheating heater 11 for preheating for degassing is provided to constitute a preheating area. Preferably, the preheater 11 has the same diameter as the wire drawing heater 2 and a length equal to or longer than the wire drawing heater 2.

これは出来るだけ長い時間透明ガラス母材4を該予備加
熱ヒータ11内で加熱することによりより完全な脱ガス
を行うためである。
This is to achieve more complete degassing by heating the transparent glass base material 4 in the preheater 11 for as long as possible.

ここで、上記予備加熱ヒータ11による予備加熱域の温
度は、供給されろ透明ガラス母材4の組成及び線引きの
線速等種々の要因によって変動するが、母材4の軟化点
以下でなるべく高いのが好ましく、例えば約800℃〜
1500℃前後の範囲が好適である。これは約800℃
以下で加熱すると母材中心に残留している残留ガスの脱
ガスが十分に行われなく、また、約1500℃以上で加
熱すると母材自身に変形が生じて線速に変動を生じてし
まうからである。
Here, the temperature of the preheating region by the preheating heater 11 varies depending on various factors such as the composition of the supplied transparent glass base material 4 and the drawing speed, but is as high as possible below the softening point of the base material 4. For example, about 800℃~
A range of about 1500°C is suitable. This is about 800℃
If heated below, the residual gas remaining in the center of the base material will not be sufficiently degassed, and if heated above approximately 1,500°C, the base material itself will deform and the linear speed will fluctuate. It is.

一般に、透明ガラス母材に残留しているHe等のガスは
高温にするとガラス中を拡散して外部に出ようとする性
質がある。
Generally, gases such as He remaining in a transparent glass base material tend to diffuse through the glass and come out when the temperature is high.

この拡散速度は一般に、 D=Doexp (Q/ RT) (Do、 Q、 Rは定数、Tは絶対温度)で表わされ
ており、高温になるほどその拡散速度は大となる。一方
、ガラス中のガスの溶解度は高温になるほど低下するこ
とが知られている。
This diffusion rate is generally expressed as D=Doexp (Q/RT) (Do, Q, and R are constants, and T is absolute temperature), and the higher the temperature, the faster the diffusion rate becomes. On the other hand, it is known that the solubility of gas in glass decreases as the temperature increases.

このため、上述したように軟化点近傍で予備加熱ヒータ
11により予備加熱することによりガラス内の残留ガス
は拡散されて外部に放出され脱ガスが行われる。
Therefore, as described above, by preheating the glass near the softening point using the preheating heater 11, the residual gas in the glass is diffused and released to the outside, thereby performing degassing.

次に脱水焼結した透明ガラス母材を用い、本発明方法に
かかる本実施例の脱ガスを行う過程での残留ガス濃度を
測定した例を第2図(alに示す。なお、比較として従
来技術の脱ガスの状態を第2図(blに示す。
Next, an example of measuring the residual gas concentration during the degassing process of this example according to the method of the present invention using a dehydrated and sintered transparent glass base material is shown in Figure 2 (al). The degassing state of the technology is shown in Figure 2 (bl).

また、第3図(a)に本実施例の線引炉内の予備加熱域
及び線引加熱域にかかる温度分布を、第3図(blに従
来例の線引炉内の線引加熱域にかかる温度分布を各々示
す。これらの図面に示すように、透明ガラス母材はその
初期においてaに示すようにその母材中心から母材を表
面に亘って濃度Coのガスが溶解されていたが、本発明
方法によって予備加熱域を通過していくに従って、その
濃度分布がdlからd2と変化し予備加熱の終了時には
屯となり母材中心から表面に亘っでのガス濃度が光ファ
イバに気泡が存在するか否かの軟化点における限界濃度
より低い状態となった。一方の従来例においては、その
加熱時間が短いため濃度分布がbとなり母材表面の一部
のみが脱ガスされ末だ発泡性のガスが残留していること
が確認された。
In addition, Fig. 3(a) shows the temperature distribution in the preheating area and the drawing heating area in the drawing furnace of this embodiment, and Fig. 3(bl shows the drawing heating area in the drawing furnace of the conventional example). As shown in these drawings, at the initial stage of the transparent glass base material, a gas with a concentration of Co was dissolved from the center of the base material to the surface of the base material, as shown in a. However, as the method of the present invention passes through the preheating region, the concentration distribution changes from dl to d2, and at the end of preheating, the gas concentration increases from the center of the base material to the surface, causing bubbles to form in the optical fiber. The concentration was lower than the critical concentration at the softening point, which determines whether or not it exists.On the other hand, in the conventional example, because the heating time was short, the concentration distribution was b, and only a part of the surface of the base material was degassed, resulting in foaming. It was confirmed that toxic gas remained.

また、第3図(a)に示す本実施例によれば、透明ガラ
ス母材4が予備加熱ヒータ11によって加熱され始める
と、先ず母材の温度が軟化点近傍のA点まで温度が上昇
し、このA点に上昇すまでに第2図(alに示す溶解ガ
ス濃度dの分布となる。そして引き続き軟化点近傍の予
備加熱域(A点〜B点)に保持されて予備加熱が行われ
ろ。このB点へ移行する過程で第2図(alで示すd2
の状態さらに屯の状態となるように脱ガスが行われる。
Furthermore, according to the present embodiment shown in FIG. 3(a), when the transparent glass base material 4 begins to be heated by the preheating heater 11, the temperature of the base material first rises to point A near the softening point. , by the time it rises to point A, the distribution of dissolved gas concentration d becomes as shown in Figure 2 (al).Then, the preheating is continued by being held in the preheating region (point A to point B) near the softening point. In the process of moving to this point B, d2 shown in Figure 2 (al)
Degassing is carried out so that the state is as follows.

その後、母材は線引加熱域へ移動され線引温度まで加熱
されて線引きがなされる。一方の従来例においては第3
図(b)に示すように本実施例のごとく軟化温度近傍で
一定時間の予備加熱を行っていないため、線引温度まで
急激に上昇しているので溶解ガスの濃度分布が第2図(
blのbの状態となり脱ガスが不十分となっている。
Thereafter, the base material is moved to a drawing heating area, heated to a drawing temperature, and drawn. In one conventional example, the third
As shown in Figure (b), since preheating for a certain period of time was not performed near the softening temperature as in this example, the temperature rose rapidly to the drawing temperature, so the concentration distribution of the dissolved gas changed as shown in Figure 2 (
The state is b of bl, and degassing is insufficient.

次に本発明の効果を表す試験例について説明する。Next, test examples showing the effects of the present invention will be explained.

本実施例は上述した本実施例の線引装置を用い、線引き
の線速、予備加熱ヒータ11の長さ及びその温度を第1
表に示すように変化させて試験した。なお、試験例1と
試験例2とは同じ材質の透明ガラス母材を使用した。
In this embodiment, the wire drawing apparatus of this embodiment described above is used, and the drawing speed, the length of the preheating heater 11, and its temperature are adjusted to the first
Tests were conducted with changes as shown in the table. In Test Example 1 and Test Example 2, the same transparent glass base material was used.

試験例1は、外径125μmφの光ファイバを線速30
0m/分で試作し、また試験例2は外径125μmφの
光ファイバを線速200 m7分で試作し、各々100
 km当りの光フアイバ中に存在する気泡数を評価した
。また比較例として予備加熱ヒータ11を設置していな
い従来の線引装置を用い、第1表に示す各々の条件で試
作し、同様に評価した。
In test example 1, an optical fiber with an outer diameter of 125 μmφ was used at a linear velocity of 30
In Test Example 2, an optical fiber with an outer diameter of 125 μmφ was manufactured at a linear speed of 200 m/min, and each
The number of bubbles present in the optical fiber per km was evaluated. Further, as a comparative example, using a conventional wire drawing apparatus in which the preheater 11 was not installed, prototypes were manufactured under each of the conditions shown in Table 1, and evaluated in the same manner.

これらの結果を第1表に示す。These results are shown in Table 1.

第  1  表 ※ファイバ1100k当りの気泡の数 便用母材 第1表の結果から明かなように、本発明の方法によれば
、透明ガラス母材が線引加熱域に到達する前に、予備加
熱域である一定の温度(軟化意匠fj!I)を一定時間
かけて通過させろことにより、母材内部に残留している
Heガス等が拡散されて外部へ放出され、残留ガスは完
全に除去された。その後説ガスされた透明ガラス母材を
線引加熱域に引き続いて移行するようにしているので、
母材に変形の生じろおそれがなく気泡をほとんど含有せ
ず且っ線径等も一定となる光ファイバを提供することが
できろ。
Table 1 * Number of bubbles per 1100k of fiber Base material As is clear from the results in Table 1, according to the method of the present invention, before the transparent glass base material reaches the drawing heating region, the preliminary By passing through the heating area at a certain temperature (softening design fj!I) for a certain period of time, He gas, etc. remaining inside the base material is diffused and released to the outside, and the residual gas is completely removed. It was done. Since the transparent glass base material that has been gassed is then transferred to the drawing heating area,
It is possible to provide an optical fiber which has no fear of deformation of the base material, contains almost no bubbles, and has a constant wire diameter.

〈発明の効果〉 以上、実施例及び試験例とともに詳しく説明したように
、本発明の光ファイバの製造方法によえば予備加熱され
て脱ガスを行ないつつ引き続いて光ファイバを線引きす
ることができるので、予備加熱が効率よ(行なわれて気
泡を全く含有しない高品質な光ファイバを提供すること
ができる。
<Effects of the Invention> As explained above in detail together with Examples and Test Examples, according to the optical fiber manufacturing method of the present invention, the optical fiber can be drawn successively while being preheated and degassed. Since the preheating is performed efficiently, it is possible to provide a high-quality optical fiber that does not contain any bubbles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する好適な実施例にかかる線
引炉の概略図、第2図(a)は本実施例にかかる母材内
溶解ガス濃度分布図、第2図(blは従来例にかかる母
材内溶解ガス濃度分布図、第3図(a)ξよ本実施例に
かかる線引炉内温度分布図、第3図(blは従来例にか
かる線引炉内温度分布図、第4図は従来例にかかる線引
炉の概略図を示す。 図 面 中、 1.10は線引炉、 2は線引きヒータ、 3は保温材、 4は透明ガラス母材、 5は光ファイバ、 11は予備加熱ヒータである。 特  許  出  願  人 住友電気工業株式会社 代    理    人
FIG. 1 is a schematic diagram of a drawing furnace according to a preferred embodiment of the method of the present invention, FIG. Dissolved gas concentration distribution diagram in the base metal according to the conventional example, Figure 3 (a) ξ is a temperature distribution diagram in the drawing furnace according to this embodiment, Figure 3 (bl is the temperature distribution diagram in the drawing furnace according to the conventional example) 4 shows a schematic diagram of a conventional drawing furnace. In the drawings, 1.10 is a drawing furnace, 2 is a drawing heater, 3 is a heat insulating material, 4 is a transparent glass base material, and 5 is a drawing furnace. Optical fiber, 11 is a preheating heater. Patent applicant: Sumitomo Electric Industries, Ltd. Agent

Claims (1)

【特許請求の範囲】 1)棒状の透明ガラス母材を加熱軟化させつつ延伸して
光ファイバを線引き製造する光ファイバの製造方法にお
いて、線引き点の上流側にて上記透明ガラス母材を軟化
点以下で且つ軟化点近傍の温度で予備加熱して脱ガスを
行い、これに連続して線引きすることを特徴とする光フ
ァイバの製造方法。 2)上記予備加熱と線引きとを同一線引炉内で行うこと
を特徴とする特許請求の範囲第1項記載の光ファイバの
製造方法。
[Scope of Claims] 1) In an optical fiber manufacturing method in which an optical fiber is produced by drawing a rod-shaped transparent glass preform while softening it by heating, the transparent glass preform is heated to a softening point on the upstream side of the drawing point. 1. A method for producing an optical fiber, which comprises preheating at a temperature near the softening point to degas the fiber, and then drawing the fiber continuously. 2) The method for manufacturing an optical fiber according to claim 1, wherein the preheating and drawing are performed in the same drawing furnace.
JP10414488A 1988-04-28 1988-04-28 Production of optical fiber Pending JPH01275444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10414488A JPH01275444A (en) 1988-04-28 1988-04-28 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10414488A JPH01275444A (en) 1988-04-28 1988-04-28 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPH01275444A true JPH01275444A (en) 1989-11-06

Family

ID=14372896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10414488A Pending JPH01275444A (en) 1988-04-28 1988-04-28 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPH01275444A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902106A1 (en) * 1997-09-11 1999-03-17 Sumitomo Wiring Systems, Ltd. Heating furnace for a device for drawing a plastic optical fiber
JP2009526732A (en) * 2006-02-15 2009-07-23 エルエス ケーブル リミテッド A heater having a plurality of high temperature zones, a melting furnace for drawing an optical fiber from a preform of an optical fiber having the heater, and a method of drawing an optical fiber using the melting furnace
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus
CN115403265A (en) * 2022-09-19 2022-11-29 武汉烽火锐拓科技有限公司 Optical fiber manufacturing system and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604980U (en) * 1983-06-23 1985-01-14 富士計器株式会社 Reflector support structure by back cover
JPS6051630A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Preparation of optical fiber
JPS62119136A (en) * 1985-11-20 1987-05-30 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for drawing optical fiber
JPS6346439B2 (en) * 1979-06-27 1988-09-14 Yamaha Kk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346439B2 (en) * 1979-06-27 1988-09-14 Yamaha Kk
JPS604980U (en) * 1983-06-23 1985-01-14 富士計器株式会社 Reflector support structure by back cover
JPS6051630A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Preparation of optical fiber
JPS62119136A (en) * 1985-11-20 1987-05-30 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for drawing optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902106A1 (en) * 1997-09-11 1999-03-17 Sumitomo Wiring Systems, Ltd. Heating furnace for a device for drawing a plastic optical fiber
JP2009526732A (en) * 2006-02-15 2009-07-23 エルエス ケーブル リミテッド A heater having a plurality of high temperature zones, a melting furnace for drawing an optical fiber from a preform of an optical fiber having the heater, and a method of drawing an optical fiber using the melting furnace
JP2009234857A (en) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber drawing method and optical fiber drawing apparatus
CN115403265A (en) * 2022-09-19 2022-11-29 武汉烽火锐拓科技有限公司 Optical fiber manufacturing system and manufacturing method
CN115403265B (en) * 2022-09-19 2024-02-02 武汉烽火锐拓科技有限公司 Optical fiber manufacturing system and manufacturing method

Similar Documents

Publication Publication Date Title
DE69900958T2 (en) Process for producing a large preform for single-mode fibers
DE29823926U1 (en) Optical fiber glass semifinished product and device for producing a tubular member for optical fiber production
JP2002519285A (en) Method and apparatus for producing rare earth metal doped optical fiber preforms
JPH0733258B2 (en) Method for producing article containing high silica glass body
US4867774A (en) Method of producing an elongated glass body, particularly a preform for optical waveguides
JP2524010B2 (en) How to deform a hollow body without tools
EP1957420B1 (en) Method for producing an optical fiber having low and uniform optical loss along the entire length
JPS6172646A (en) Manufacture of optical waveguide tube
JPH01275444A (en) Production of optical fiber
US20070271964A1 (en) Method and Device for Producing a Hollow Quartz-Glass Cylinder
EP1716084B1 (en) Process for producing a low-attenuation optical fiber
CN100379694C (en) Fiber optics made with enhanced doping
US6649261B2 (en) Rod-shaped preform for manufacturing an optical fiber therefrom, a method for manufacturing such a rod-shaped preform as well as a method for manufacturing an optical fiber, using such a rod-shaped preform
US20040000171A1 (en) Manufacture of depressed index optical fibers
JP2004525842A (en) Method for vitrifying porous soot body
JP2003081657A (en) Vitrification method and vitrification apparatus for porous soot body of optical fiber preform
JPH08333129A (en) Method for drying and sintering porous glass optical waveguide preform
US5364427A (en) Manufacture of optical fiber using sol-gel
JP2004345919A (en) Method for manufacturing optical fiber
KR20220022863A (en) Glass preform for optical fiber, and method for drawing glass preform for optical fiber
JP2005320197A (en) Apparatus for manufacturing optical fiber preform, and method of manufacturing optical fiber preform
JP2003054958A (en) Method for manufacturing glass articles
JP5989943B1 (en) Optical fiber preform and optical fiber manufacturing method
JP3485673B2 (en) Dehydration and sintering device for porous preform for optical fiber
JP4453991B2 (en) Manufacturing method of glass preform for optical fiber