JPS62119136A - Method and apparatus for drawing optical fiber - Google Patents
Method and apparatus for drawing optical fiberInfo
- Publication number
- JPS62119136A JPS62119136A JP25866285A JP25866285A JPS62119136A JP S62119136 A JPS62119136 A JP S62119136A JP 25866285 A JP25866285 A JP 25866285A JP 25866285 A JP25866285 A JP 25866285A JP S62119136 A JPS62119136 A JP S62119136A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- base material
- furnace
- temperature
- increase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/029—Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/60—Optical fibre draw furnaces
- C03B2205/62—Heating means for drawing
- C03B2205/64—Induction furnaces, i.e. HF/RF coil, e.g. of the graphite or zirconia susceptor type
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/60—Optical fibre draw furnaces
- C03B2205/62—Heating means for drawing
- C03B2205/69—Auxiliary thermal treatment immediately prior to drawing, e.g. pre-heaters, laser-assisted resistance heaters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、長期間にわたって信頼性のすぐれた光ファイ
バを得るための光ファイバ線引き方法およびその装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber drawing method and apparatus for obtaining an optical fiber with excellent reliability over a long period of time.
[従来の技術]
従来の光ファイバの線引き方法は、光ファイバ母材を加
熱、軟化させるための線引き炉として抵抗加熱炉あるい
は高周波誘導加熱炉を用いて、母材を外側から加熱して
いた。しかし、光ファイバの材料として一般的な石英ガ
ラスは熱伝導率が非常に小さいので、母材中心を軟化温
度まで到達させるためには母材表面をそれ以上の高い温
度で長時間加熱する必要があった。[Prior Art] In a conventional optical fiber drawing method, a resistance heating furnace or a high frequency induction heating furnace is used as a drawing furnace to heat and soften the optical fiber preform, and the preform is heated from the outside. However, silica glass, which is a common material for optical fibers, has very low thermal conductivity, so in order to reach the softening temperature at the center of the base material, it is necessary to heat the surface of the base material at an even higher temperature for a long time. there were.
第2図に従来の誘導加熱炉を示す。図において1は光フ
ァイバ母材、2は線引きされた光ファイバ、3は誘導加
熱炉で容器31、ソレノイド状コイル32、円筒状酸化
ジルコニウム発熱体33からなっている。コイル32に
高周波電流を流すと、酸化ジルコニウム発熱体33に渦
電流が8起され、ジュール熱を発生する。母材1は酸化
ジルコニウム発熱体からの熱ふく射および熱対流によっ
て表面が加熱され、さらに熱伝導によって母材中心まで
加熱されるので、母材の表面と中心とで温度差があり、
また表面と中心を同温度に保つには長時間の加熱を要し
た。FIG. 2 shows a conventional induction heating furnace. In the figure, 1 is an optical fiber base material, 2 is a drawn optical fiber, and 3 is an induction heating furnace, which is composed of a container 31, a solenoid-shaped coil 32, and a cylindrical zirconium oxide heating element 33. When a high frequency current is passed through the coil 32, an eddy current is generated in the zirconium oxide heating element 33, generating Joule heat. The surface of the base material 1 is heated by thermal radiation and convection from the zirconium oxide heating element, and the center of the base material is further heated by heat conduction, so there is a temperature difference between the surface and center of the base material.
Also, it took a long time to heat the surface and center to maintain the same temperature.
結晶を高温に加熱すると空格子点や、格子間原子などの
欠陥が生ずるように、石英ガラスの場合においても軟化
点以上の温度に加熱した場合に類似の欠陥であるE′セ
ンタや過酸化ラジカルの増加が観測されている。その生
成量は線引き時の母材温度が高いほど、また加熱時間が
長いほど多くなる。したがって、光ファイバの線引き工
程における母材の過加熱は、光ファイバ中に余分の欠陥
を誘起することになる。最近、これらの線引き誘起欠陥
が放射線や水素による光ファイバの損失増加の原因と考
えられている。この増大増加は不可逆な変化であって、
光ケーブルの長期間にねたる信頼性を損うものである。Just as when crystals are heated to high temperatures, defects such as vacancies and interstitial atoms occur, similar defects such as E' centers and peroxide radicals occur in silica glass when heated to temperatures above its softening point. has been observed to increase. The amount produced increases as the base material temperature during wire drawing increases and as the heating time increases. Therefore, overheating of the base material during the optical fiber drawing process will induce additional defects in the optical fiber. Recently, these drawing-induced defects are considered to be the cause of increased loss in optical fibers due to radiation and hydrogen. This increase is an irreversible change,
This impairs the long-term reliability of optical cables.
しかし母材の過加熱をさけ、欠陥の増大を防ぐために線
引き炉温度を低下させると、線引き張力が増大するので
、炉温度の低下には限界がある。However, if the drawing furnace temperature is lowered in order to avoid overheating the base material and prevent an increase in defects, the drawing tension increases, so there is a limit to the reduction in the furnace temperature.
また従来のカーボン発熱体を用いた線引き炉では、光フ
ァイバ母材の外周から加熱を行うために、母材表面は必
要以上に加熱されざるを得ないという欠点を有していた
。In addition, conventional drawing furnaces using carbon heating elements have the disadvantage that the surface of the optical fiber base material must be heated more than necessary because heating is performed from the outer periphery of the optical fiber base material.
さらに、母材表面の過加熱は、母材構成元素の拡散によ
る屈折率分布の変化や、母材の蒸発による線引き炉内お
よび光ファイバの汚染を引ぎ起こし、光ファイバの伝送
特性や機械的強度を悪化させるという問題をも生じさせ
ている。Furthermore, overheating of the base material surface causes changes in the refractive index distribution due to diffusion of base material constituent elements, contamination of the inside of the drawing furnace and the optical fiber due to evaporation of the base material, and the transmission characteristics and mechanical properties of the optical fiber. This also causes a problem of deterioration of strength.
[発明が解決しようとする問題点]
本発明は、上述した光ファイバの伝送損失増加の原因と
なる線引き誘起欠陥の生成を抑制し、光ファイバ線引き
時の光ファイバ母材の過加熱を防止し、高速線引きを可
能として長期安定性に優れた光ファイバを得ることを目
的とする。[Problems to be Solved by the Invention] The present invention suppresses the generation of drawing-induced defects that cause an increase in the transmission loss of the optical fiber described above, and prevents overheating of the optical fiber preform during drawing of the optical fiber. The purpose of this study is to obtain an optical fiber that can be drawn at high speed and has excellent long-term stability.
[問題点を解決するための手段]
かかる目的を達成するために、本発明に係る光ファイバ
の線引き方法においては、光ファイバ母材を予加熱炉を
用いて予熱し、引きつづき予熱された母材を誘導加熱に
よって軟化温度以上に加熱して光ファイバに線引きする
。[Means for Solving the Problems] In order to achieve the above object, in the optical fiber drawing method according to the present invention, an optical fiber preform is preheated using a preheating furnace, and then the preheated preheated preform is heated. The material is heated to above its softening temperature by induction heating and drawn into optical fiber.
また、本発明に係る光ファイバ線引き装置は、光ファイ
バ母材を線引き炉内で加熱軟化させて光ファイバに線引
きする光ファイバ線引き装置において、線引き炉が、予
加熱炉と予加熱炉の下部に直列に設けられた8導加熱炉
とからなる。Further, an optical fiber drawing apparatus according to the present invention is an optical fiber drawing apparatus that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber. It consists of 8 conductive heating furnaces installed in series.
[作 用コ
誘導加熱は母材内部に誘起されるiM雷電流よって加熱
するものであるから、光ファイバ母材の内部において均
一な加熱が得られる。従って実質的に低い母材温度で光
ファイバを線引きすることができ、また高速線引きが可
能となるので線引き誘起欠陥が非常に少なく、放射線や
水素による損失増加をほとんど生じない長期信頼性にす
ぐれた光ファイバを得ることができる。[Operation] Since induction heating is a method of heating by iM lightning current induced inside the base material, uniform heating can be obtained inside the optical fiber base material. Therefore, optical fibers can be drawn at substantially lower base material temperatures, and high-speed drawing is possible, resulting in very few drawing-induced defects and excellent long-term reliability with almost no increase in loss due to radiation or hydrogen. Optical fiber can be obtained.
[実施例]
まず、線引き誘起欠陥と水素が反応して損失が増加する
様子を第3図に示す。これは、石英系のガラスファイバ
母材を線引きし紫外線硬化型のアクリル系樹脂被覆をほ
どこした光ファイバの線引き直後と、加速試験として、
室温で4気圧の水素雰囲気中に150時間さらした後、
200℃の空気中で15時間加熱処理した後の光ファイ
バの損失特性である。波長1.4μm付近の吸収ピーク
の増大およびさらに長波長側の損失増加は、水素処理に
より光ファイバ中に新たに生成した水酸基によるもので
ある。波長によらず、全体に損失が増加しているのは、
加熱処理により被覆中のファイバに微小な曲がりを生じ
たことによるマイクロベンド損失である。波長1.4μ
mの吸収増大で代表される線引き欠陥と水素の反応によ
る損失増加(水酸基吸収増加)は、加熱処理を終えた後
に観測されることからも明らかなように、不可逆な過程
であり、光ファイバの長期安定性に対して重大な問題と
なる。[Example] First, FIG. 3 shows how the loss increases due to the reaction between the drawing-induced defects and hydrogen. This was done immediately after drawing an optical fiber made from a quartz-based glass fiber base material and coated with UV-curable acrylic resin, and as an accelerated test.
After being exposed to a hydrogen atmosphere of 4 atm at room temperature for 150 hours,
This is a loss characteristic of an optical fiber after being heat-treated in air at 200° C. for 15 hours. The increase in the absorption peak near the wavelength of 1.4 μm and the increase in loss at longer wavelengths are due to hydroxyl groups newly generated in the optical fiber by the hydrogen treatment. The reason why the loss increases overall regardless of the wavelength is because
Microbend loss is caused by slight bending of the coated fiber due to heat treatment. Wavelength 1.4μ
The increase in loss (increase in hydroxyl absorption) due to the reaction of hydrogen with drawing defects, represented by the increase in absorption of This poses a serious problem for long-term stability.
この線引き誘起欠陥の生成を抑制して、この欠陥による
損失増大を防止するための方策として、線引き炉温度を
低下させることが有効である。第4図は線引き炉温度を
変化させて作製した光ファイバの水酸基吸収増加量(マ
イクロベンド損失を除いた水素処理前後の波長1.4μ
mにおける損失増力17量)を示す。第4図から明らか
なように線引き速度一定で線引き炉温度を下げることに
より、水酸基吸収増加量を低減させることができる。し
かし先に述べたように、従来の光ファイバの線引き方法
および装置では、線引き炉温度を効果的に下げて線引き
することはできなかった。As a measure to suppress the generation of these drawing-induced defects and prevent an increase in loss due to these defects, it is effective to lower the drawing furnace temperature. Figure 4 shows the increase in hydroxyl absorption of optical fibers produced by varying the drawing furnace temperature (wavelength 1.4μ before and after hydrogen treatment, excluding microbend loss).
17). As is clear from FIG. 4, by lowering the drawing furnace temperature while keeping the drawing speed constant, the increase in hydroxyl group absorption can be reduced. However, as mentioned above, with the conventional optical fiber drawing method and apparatus, it has not been possible to draw the optical fiber while effectively lowering the drawing furnace temperature.
線引き誘起欠陥による水酸基吸収増加を防止するもう一
つの方策としては、線引き速度の高速化が有望である。Another promising measure to prevent the increase in hydroxyl absorption due to drawing-induced defects is to increase the drawing speed.
第5図は線引き炉の温度を一定として線引き速度に対す
る水酸基吸収増加量の変化を示したものである。第5図
から線引き温度を一定とした時、高速で線引きするほど
吸収増加量が減少することがわかる。これは、光ファイ
バ母材が欠陥生成の生ずるような温度にさらされる時間
が短くなることによるものと考えられる。高速線引きに
よる吸収増加量減少の効果を得るためにも、従来の誘導
加熱炉を用いた線引き装置では母材表面と内部に温度差
があることが障害となっていた。FIG. 5 shows the change in the amount of increase in hydroxyl absorption with respect to the drawing speed while keeping the temperature of the drawing furnace constant. It can be seen from FIG. 5 that when the drawing temperature is kept constant, the amount of increase in absorption decreases as the drawing speed increases. This is thought to be due to the fact that the time during which the optical fiber preform is exposed to temperatures at which defects occur is shortened. In order to obtain the effect of reducing the amount of increase in absorption by high-speed drawing, the difference in temperature between the surface and the inside of the base material has been an obstacle in conventional drawing equipment using an induction heating furnace.
第1図に本発明の光ファイバ線引き装置の実施例を示す
。図において、】は光ファイバ母材、2は線引きされた
光ファイバ、4は予加熱炉でこの実施例では黒鉛抵抗炉
の例を示し、容器41.円筒状の黒鉛抵抗発熱体42か
らなっている。5は誘導加熱炉で、容器51とコイル5
2からなっている例を示しである。石英ガラスは室温で
は絶縁体であるが、第6図に示すように、温度の上昇と
ともに電気抵抗が小さくなり、1000℃以上では誘導
加熱が可能な良導体となる。第1図の本発明の実施例で
示した抵抗加熱炉によって、母材を誘導加熱が可能な1
000℃以上の温度まで予知熱すれば、コイル52に流
す高周波電流によって、直接、母材1に過電流が誘起さ
れ、母材自身が発熱するので、母材1を均一に加熱する
ことができる。従って巻き取りドラム、キャプスタン等
の適宜の手段を用いて光ファイバの線引きができる。予
加熱炉としては炭化硅素発熱体を用いた抵抗加熱炉や酸
水素炎等も予知熱源として使用可能である。FIG. 1 shows an embodiment of the optical fiber drawing apparatus of the present invention. In the figure, ] indicates an optical fiber base material, 2 indicates a drawn optical fiber, 4 indicates a preheating furnace, which is a graphite resistance furnace in this embodiment, and a container 41. It consists of a cylindrical graphite resistance heating element 42. 5 is an induction heating furnace, which includes a container 51 and a coil 5.
An example consisting of 2 is shown below. Although quartz glass is an insulator at room temperature, as shown in FIG. 6, its electrical resistance decreases as the temperature rises, and it becomes a good conductor that can be heated by induction at temperatures above 1000°C. The resistance heating furnace shown in the embodiment of the present invention shown in FIG.
If the base material 1 is preliminarily heated to a temperature of 000°C or more, the high frequency current flowing through the coil 52 will directly induce an overcurrent in the base material 1, and the base material itself will generate heat, so the base material 1 can be heated uniformly. . Therefore, the optical fiber can be drawn using any appropriate means such as a winding drum or capstan. As a preheating furnace, a resistance heating furnace using a silicon carbide heating element, an oxyhydrogen flame, or the like can also be used as a predictive heat source.
予加熱炉4によって母材の温度を1.000℃とし、誘
導加熱炉5として周波数300kHz、電力tskwの
高周波加熱炉を用いて母材1を加熱したところ、母材1
の温度は2.000℃に達し、100 m/minの速
度で光ファイバを線引きすることができた。When the temperature of the base material was set to 1.000° C. using the preheating furnace 4 and the base material 1 was heated using a high-frequency heating furnace with a frequency of 300 kHz and an electric power of tskw as the induction heating furnace 5, the base material 1
The temperature reached 2,000°C, and the optical fiber could be drawn at a speed of 100 m/min.
同じ条件で従来の誘導加熱炉によフて線引きした光ファ
イバと、先に述べた水素処理による水酸基吸収増加量を
比較したところ、本発明の線引き装置により製造したフ
ァイバは従来のものよりも水酸基吸収増加量、すなわち
E′センタおよび過酸化ラジカルが著しく少なくなった
。線引き誘起欠陥濃度の差から光ファイバ母材表面の加
熱温度は本発明の装置では従来のものより約200℃低
いことが推定された。A comparison of the increase in hydroxyl group absorption by the above-mentioned hydrogen treatment with an optical fiber drawn using a conventional induction heating furnace under the same conditions revealed that the fiber produced using the drawing apparatus of the present invention had a higher hydroxyl group absorption than the conventional one. The amount of absorption gain, ie E' center and peroxide radicals, was significantly reduced. From the difference in drawing-induced defect concentration, it was estimated that the heating temperature on the surface of the optical fiber preform was approximately 200° C. lower in the apparatus of the present invention than in the conventional apparatus.
第1図に示した誘導加熱炉5の下に、予加熱炉4と同様
の加熱炉を設けて、母材1の温度勾配をゆるくすること
もできる。なお、本発明の適用範囲は石英系光ファイバ
だけに限定されるものではなく、多成分系ガラス、カル
コゲナイドガラス。A heating furnace similar to the preheating furnace 4 may be provided below the induction heating furnace 5 shown in FIG. 1 to soften the temperature gradient of the base material 1. Note that the scope of application of the present invention is not limited to silica-based optical fibers, but also multi-component glasses and chalcogenide glasses.
フッ化物ガラス等−の光フ6アイバの線引きに対しても
使用できる。また、本発明は、真空中での線引きのよう
に、熱対流による加熱が困難な場合には特に有力である
。It can also be used for drawing optical fibers such as fluoride glass. Further, the present invention is particularly effective in cases where heating by thermal convection is difficult, such as when drawing wire in a vacuum.
[発明の効果]
以上説明したように、本発明は、光ファイバ線引き工程
において、母材を均一に加熱・軟化させることができる
ので、従来技術のように母材表面が中心に比べて高温、
長時間の加熱を受けるということがなく、したがって線
引き誘起欠陥の少ない、すなわち、水素や放射線による
伝送損失の増加が少なく、長期信頼性にすぐれた光ファ
イバを得ることができるという利点がある。[Effects of the Invention] As explained above, the present invention can uniformly heat and soften the base material in the optical fiber drawing process, so that the surface of the base material is at a higher temperature than the center unlike the conventional technology.
It has the advantage that it is not subjected to long-term heating and therefore has fewer drawing-induced defects, that is, less increase in transmission loss due to hydrogen or radiation, and that it is possible to obtain an optical fiber with excellent long-term reliability.
第1図は本発明の実施例の概略断面図、第2図は従来の
誘導加熱装置の概略断面図、第3図は水素処理前後の光
ファイバの損失スペクトル図、
第4図は水酸基吸収増加量と線引き炉温度の関係を示す
図、
第5図は水酸基吸収増加量と線引き速度の関係を示す図
、
第6図は石英ガラスの電気抵抗の温度による変化を示す
図である。
1・・・光ファイバ母材、
2・・・光ファイバ、
3.5・・・8導加熱炉、
4・・・予加熱炉。
第1図
0、’7 0.8 1.1 1.3
f、s f、7製表 (Pm)
第3図
線引き火た温度Tfζ・C)
第4図
釆袈引IAIRVt (In/rrLin)第5図Fig. 1 is a schematic cross-sectional view of an embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of a conventional induction heating device, Fig. 3 is a loss spectrum diagram of an optical fiber before and after hydrogen treatment, and Fig. 4 is an increase in hydroxyl group absorption. FIG. 5 is a diagram showing the relationship between the amount of hydroxyl group absorbed and the drawing furnace temperature. FIG. 6 is a diagram showing the change in electrical resistance of quartz glass depending on temperature. 1... Optical fiber base material, 2... Optical fiber, 3.5... 8 induction heating furnace, 4... Preheating furnace. Figure 1 0, '7 0.8 1.1 1.3
f, s f, 7 production table (Pm) Fig. 3 Line drawing temperature Tfζ・C) Fig. 4 IAIRVt (In/rrLin) Fig. 5
Claims (2)
つづき該予熱された母材を誘導加熱によって軟化温度以
上に加熱して光ファイバに線引きすることを特徴とする
光ファイバ線引き方法。(1) An optical fiber drawing method characterized by preheating an optical fiber preform using a preheating furnace, and subsequently heating the preheated preheated preform to a softening temperature or higher by induction heating to draw an optical fiber. .
ファイバに線引きする光ファイバ線引き装置において、
前記線引き炉が、予加熱炉と該予加熱炉の下部に直列に
設けられた誘導加熱炉とからなることを特徴とする光フ
ァイバ線引き装置。(2) In an optical fiber drawing device that heats and softens an optical fiber preform in a drawing furnace and draws it into an optical fiber,
An optical fiber drawing apparatus characterized in that the drawing furnace comprises a preheating furnace and an induction heating furnace provided in series below the preheating furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25866285A JPS62119136A (en) | 1985-11-20 | 1985-11-20 | Method and apparatus for drawing optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25866285A JPS62119136A (en) | 1985-11-20 | 1985-11-20 | Method and apparatus for drawing optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62119136A true JPS62119136A (en) | 1987-05-30 |
Family
ID=17323355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25866285A Pending JPS62119136A (en) | 1985-11-20 | 1985-11-20 | Method and apparatus for drawing optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62119136A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01275444A (en) * | 1988-04-28 | 1989-11-06 | Sumitomo Electric Ind Ltd | Production of optical fiber |
US11713272B2 (en) | 2019-03-05 | 2023-08-01 | Corning Incorporated | System and methods for processing an optical fiber preform |
-
1985
- 1985-11-20 JP JP25866285A patent/JPS62119136A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01275444A (en) * | 1988-04-28 | 1989-11-06 | Sumitomo Electric Ind Ltd | Production of optical fiber |
US11713272B2 (en) | 2019-03-05 | 2023-08-01 | Corning Incorporated | System and methods for processing an optical fiber preform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7677060B2 (en) | Method for manufacturing optical fiber and the cooling of the optical fiber | |
JP2002187733A (en) | Method for manufacturing optical fiber preform and method for manufacturing optical fiber | |
JP6340390B2 (en) | Optical fiber manufacturing method | |
EP0293416A4 (en) | Fabrication of fibre optic components | |
US4608473A (en) | Modified zirconia induction furnace | |
JP2944534B2 (en) | Method and apparatus for drawing optical fiber | |
JP2000335934A (en) | Apparatus and method for manufacturing optical fiber | |
JPS62119136A (en) | Method and apparatus for drawing optical fiber | |
Sakka | Effects of reheating on strength of glass fibers | |
JPH0471019B2 (en) | ||
CN116774348B (en) | Double-cladding fluoride gain optical fiber and preparation method thereof | |
Scott et al. | Preparation of low loss glasses for optical fibre communication systems | |
JPS62119135A (en) | Method and apparatus for drawing optical fiber | |
JP4374783B2 (en) | Optical fiber drawing method | |
JPS60186430A (en) | Method and apparatus for drawing optical fiber | |
JPS63195144A (en) | Optical fiber manufacturing method | |
US5247147A (en) | Method and apparatus for heating a silica optical fiber in a fiber-drawing installation | |
Hanafusa et al. | Thermodynamical behavior of the E’center in the optical-fiber drawing process | |
JP3021251B2 (en) | Fiber type wavelength conversion element and method of manufacturing the same | |
JP2004256367A (en) | Manufacturing method of optical fiber strand | |
CN115321811A (en) | Method for manufacturing glass filaments | |
JPS6278126A (en) | Optical fiber manufacturing method and device | |
JPS60204641A (en) | Production of core wire of optical fiber | |
JPH01183436A (en) | Heating of quartz glass | |
JP5639113B2 (en) | Manufacturing method of optical fiber preform |