JPH01214754A - Composition-ratio determining apparatus - Google Patents
Composition-ratio determining apparatusInfo
- Publication number
- JPH01214754A JPH01214754A JP63040142A JP4014288A JPH01214754A JP H01214754 A JPH01214754 A JP H01214754A JP 63040142 A JP63040142 A JP 63040142A JP 4014288 A JP4014288 A JP 4014288A JP H01214754 A JPH01214754 A JP H01214754A
- Authority
- JP
- Japan
- Prior art keywords
- compounds
- compound
- sensitivities
- peak
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 46
- 239000012634 fragment Substances 0.000 claims abstract description 22
- 150000002500 ions Chemical class 0.000 claims abstract description 21
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000011002 quantification Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 17
- 239000002131 composite material Substances 0.000 abstract description 12
- 229940126062 Compound A Drugs 0.000 description 10
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はGC/MS(ガスクロマトグラフ/質量分析計
)を用いて複数の化合物を含む試料の組成比を測定する
組成比定量装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composition ratio quantification device that measures the composition ratio of a sample containing a plurality of compounds using GC/MS (gas chromatograph/mass spectrometer). be.
(従来技術)
ガスクロマトグラフによる組成比定量法は、クロマトグ
ラムのピークの面積が各化合物の含有量に比例するのを
利用して組成比を求めるものである。例えば修正百分率
法では
として定義される。ここに補正係数は一定の測定状態で
のピーク面積に対する各化合物の含有量の比すなわち分
析感度を表すもので、成分化合物毎に異なるものである
。この方法によれば比較的高精度に組成比が求められる
が、ピーク面積を計測するためにはクロマトグラムにお
いて種々の化合物のピーク波形を完全に分離させる必要
があるために、ガスクロマトグラフの分離カラムを長く
しなければならず、そのために分析時間が長くかかると
いう欠点があった。(Prior Art) The composition ratio determination method using gas chromatography is a method for determining the composition ratio by utilizing the fact that the area of the peak in the chromatogram is proportional to the content of each compound. For example, in the modified percentage method, it is defined as . The correction coefficient here represents the ratio of the content of each compound to the peak area under a certain measurement condition, that is, the analytical sensitivity, and differs for each component compound. This method allows the composition ratio to be determined with relatively high accuracy, but in order to measure the peak area, it is necessary to completely separate the peak waveforms of various compounds in the chromatogram, so the separation column of the gas chromatograph is required. This has the disadvantage that the analysis time is long.
(発明が解決しようとする課題)
本発明は上記の点に鑑み、クロマトグラムの各ピーク波
形が完全に分離していなくても個々の化、合物の含有量
を正確に求めることができ、従って従来法に比し短時間
の計測で組成比を求めることができるような組成比定量
装置を提供することを目的とするものである。(Problems to be Solved by the Invention) In view of the above points, the present invention enables accurate determination of the content of individual compounds and compounds even if the peak waveforms of the chromatogram are not completely separated. Therefore, it is an object of the present invention to provide a composition ratio determination device that can determine composition ratios in a shorter time than conventional methods.
(課題を解決するための手段)
本発明による組成比定量装置においては、GC/MSを
使用して各成分化合物A、B、・・・に含まれた特定の
フラグメントイオン(質m ml + m2 r・・・
)の含有量を測定するようにし、ピーク波形が近接した
複数の化合物A、Bをそれぞれ単独に分析した時の上記
特定のフラグメントの感度(イオン検出強度) P a
+、P b+、P at、P byを予め記憶しておく
記憶部と、試料分析時に質量分析部の設定質量数ml
+ rrl gにおけるGC/MSの出力D r 、
D tと上記各フラグメントイオンの感度Pa+、Pb
t等とにより各時点での各化合物A、Bの含有m M
a 、 M bを演算すると共に、複数時点での各化合
物の含有量M a 、 M bでそれぞれ形成されるク
ロマトグラムのピーク面積を算出することにより、試料
中の各化合物A、Hの含有量を求める演算部とを備えた
ものである。(Means for Solving the Problems) In the composition ratio determination device according to the present invention, specific fragment ions (quality m ml + m2 r...
), and when multiple compounds A and B with close peak waveforms are individually analyzed, the sensitivity (ion detection intensity) of the above specific fragment P a
+, P b+, P at, and P by in advance, and a set mass number ml of the mass spectrometer during sample analysis.
+ GC/MS output D r at rrl g,
Dt and the sensitivity of each fragment ion above Pa+, Pb
The content of each compound A, B at each time point m M
The content of each compound A, H in the sample can be determined by calculating the peak areas of the chromatograms formed by the contents M a and M b of each compound at multiple points in time, as well as calculating a and M b. It is equipped with an arithmetic unit that calculates .
(作用)
まずピーク波形が互いに近接した2種類の化合物A、H
については、各化合物を特徴づけるようなフラグメント
イオン(例えばOHやCOOHなど)を2種類選んで、
各化合物をそれぞれ単独に分析した時に各化合物の単位
濃度中に含まれているフラグメントイオンの感度(検出
出力)Pad。(Effect) First, two types of compounds A and H whose peak waveforms are close to each other.
For each compound, select two types of fragment ions (such as OH and COOH) that characterize each compound.
Sensitivity (detection output) Pad of fragment ions contained in the unit concentration of each compound when each compound is analyzed individually.
Pa、及びPb、、Pb、を予め測定して記憶しておく
。Pa, and Pb, , Pb are measured and stored in advance.
この場合、2種類のフラグメントイオン(質m数I’l
l 1 + mt )はいずれも一方の化合物に固有で
ある必要はない。In this case, two types of fragment ions (quality m number I'l
l 1 + mt ) need not be unique to one compound.
次に実際の分析すなわち両化合物A、13を含む試料の
分析において、質量分析部の設定質量数m33m、での
GC/MSの出力D I、 D zと上記各フラグメン
トイオンの感度Pa+、Pb+及びPat、Pbtとか
ら連立方程式
%式%
但し Pad:例えばlμgの化合物Aをクロマトグラ
フに導入したときA中のフ
ラグメントイオンm、による単独
出力のピーク値
Pbn: 〃 化合物B ” ml 〃p3
.;tt 化合物A //m2 〃pb、:
” 化合物B ” mt ”D、:実試料測定
でA、B両成分混合ピークが出ている間の一時点におけ
る
質量数m、における複合出力
り、:同じく質量数m、における複合出力Ma:上記計
測時点の化合物Aの含有量Mb二同計測時点での化合物
Bの含有量を解き、その時点における各化合物の含有N
M a 。Next, in the actual analysis, that is, the analysis of the sample containing both compounds A and 13, the GC/MS outputs D I, D z and the sensitivities of each of the above fragment ions Pa+, Pb+ and Simultaneous equation from Pat, Pbt % formula % However, Pad: For example, when 1 μg of compound A is introduced into the chromatograph, the peak value of the single output due to the fragment ion m in A Pbn: 〃 Compound B ” ml 〃 p3
.. ;tt Compound A //m2 〃pb,:
"Compound B" mt "D,: Composite output at mass number m at one point while a mixed peak of both components A and B appears in actual sample measurement; Composite output Ma at mass number m, also: Above Content of compound A at the time of measurement Mb2 Content of compound B at the time of measurement is solved, content N of each compound at that time
Ma.
Mbを求める。Find Mb.
このような処理を1個の複合ピーク波形の複数時点につ
いて行い、各時点毎に得られるM a 、 M bをプ
ロブトすることによって形成される二つのクロマトゲラ
ムのピーク面積を算出すれば、各化合物の試料中の含有
量が得られるのである。If such processing is performed for multiple time points of one composite peak waveform and the peak areas of the two chromatogels formed by probing M a and M b obtained at each time point are calculated, each compound The content in the sample can be obtained.
(実施例)
第1図は本発明装置の実施例を示したもので、GC/M
SIの出力をマイクロコンピュータを用いた演算部2に
よって処理し、プリンタ3あるいはCRT4に出力する
。5は記憶部で、演算プログラム及び上記各感度などが
記憶される。(Example) Figure 1 shows an example of the device of the present invention.
The output of the SI is processed by a calculation unit 2 using a microcomputer and output to a printer 3 or CRT 4. Reference numeral 5 denotes a storage section in which calculation programs and the above-mentioned sensitivities are stored.
上記の装置を用いて組成比が未知の試料を測定するに当
たり、まずピーク波形が互いに重なり合う各化合物A、
Hの1種類を含み且つその濃度が分かっている標準試料
を予めGC/MSIにより分析し、それぞれの化合物に
特徴的なフラグメントイオン(質量数m 、 、 m
2 )についてのイオンクロマトグラムを測定する。こ
うして得られたイオンシロマドグラムを演算部2で処理
して各ピーク面積を計算し、それぞれ化合物A、Hの1
μgに対する感度Pa+、Pb+、Pat、Pbtを求
めて記憶部5に記憶させる。When measuring a sample with an unknown composition ratio using the above device, first, each compound A whose peak waveforms overlap each other,
A standard sample containing one type of H and whose concentration is known is analyzed in advance by GC/MSI, and fragment ions (mass numbers m, , m
Measure the ion chromatogram for 2). The ion cyromadogram thus obtained is processed by the calculation unit 2 to calculate the area of each peak.
The sensitivities Pa+, Pb+, Pat, and Pbt with respect to μg are determined and stored in the storage unit 5.
次に組成比が未知の試料を分析する。第2図はガスクロ
マトグラフの出力であるトータルイオンクロマトグラム
(T I G)における各化合物A。Next, a sample with an unknown composition ratio is analyzed. Figure 2 shows each compound A in the total ion chromatogram (TIG) output from the gas chromatograph.
B、C,D、・・・のピーク波形を示したもので、完全
に分離している化合物C,Dについては、そのピーク面
積の比を求めることにより試料中での組成比を容易に算
出することができる。またこのTICの代わりに、予め
感度が求められているフラグメントのイオンクロマトグ
ラムを使用することも可能である。This shows the peak waveforms of B, C, D, etc. For completely separated compounds C and D, the composition ratio in the sample can be easily calculated by finding the ratio of their peak areas. can do. Moreover, instead of this TIC, it is also possible to use an ion chromatogram of a fragment whose sensitivity has been determined in advance.
第2図のクロマトグラムでは、2種類の化合物A、Bの
ピークが重なった複合ピークA+Hについては、個々の
化合物A、Bの組成比を算出することができない。従っ
てその場合には前述のように予め測定されている2種の
フラグメント(m + 。In the chromatogram shown in FIG. 2, the composition ratio of the individual compounds A and B cannot be calculated for the composite peak A+H in which the peaks of two types of compounds A and B overlap. Therefore, in that case, two types of fragments (m + ) have been measured in advance as described above.
m 、 )の感度、すなわち各化合物A、Bをそれぞれ
単独に分析した際に各化合物の!μg中に含まれていた
特定のフラグメント(例えばOHとCO0+1)による
GC/MSの出力Pa+、Pa2及びPb+。m, ) sensitivity, that is, the sensitivity of each compound when each compound A and B is analyzed individually. GC/MS output Pa+, Pa2 and Pb+ with specific fragments (eg OH and CO0+1) contained in μg.
Pb、を使用し、複合ピークA+Hの計測時において、
各質量数m 、 、 m 2におけるGC/MSの出力
D + 、 D zと上記P al 、 P b+及び
P at、 P btとから前述の連立方程式の解とし
て、その時点における各化合物の含有量M a 、 M
bを算出する。When measuring the composite peak A+H using Pb,
From the GC/MS output D + , D z at each mass number m , , m 2 and the above P al , P b + and Pat, P bt, the content of each compound at that point is determined as a solution to the above simultaneous equations. M a, M
Calculate b.
1個の複合ピーク波形については複数時点で上述のよう
な計測が行われるので、各時点毎に得られるM a 、
M bをプロット(実際にプロットする必要はないカ
リすれば二つのクロマトグラムが形成される。従ってこ
れらのピーク面積を算出することによって各化合物A、
Hの試料中の含有量が得られ、これらが化合物C,Dな
どの含ff量と共にプリンタ3あるいはCRT4に表示
される。For one composite peak waveform, the above-mentioned measurements are performed at multiple time points, so M a obtained at each time point,
Plot Mb (it is not necessary to actually plot it, otherwise two chromatograms will be formed. Therefore, by calculating these peak areas, each compound A,
The content of H in the sample is obtained, and these are displayed on the printer 3 or CRT 4 together with the content of compounds C, D, etc.
なお上記の実施例では複合ピークとして2種の化合物が
重なり合った例を示したが、必ずしも2種類である必要
はなく、例えば第4図に示すように4種類であってもよ
い。その場合には同図に示すように、各化合物A、B、
C,Dについて特徴的な4種のフラグメントm+ +
rrl t + rrl31 fY14についてイオン
クロマトグラムを求めればよい。またこれらのフラグメ
ントは必ずしも各化合物に固有のものである必要はなく
、たとえ各フラグメントがすべての化合物A、B、C,
Dに共通のものであっても、4元連立方程式の解として
各化合物の含有量M a 、 M b 、 M c 、
M dを求めることができる。In the above example, an example was shown in which two types of compounds overlapped as a composite peak, but it does not necessarily have to be two types, and for example, four types may be used as shown in FIG. 4. In that case, as shown in the figure, each compound A, B,
Four characteristic fragments m+ + for C and D
An ion chromatogram may be obtained for rrl t + rrl31 fY14. Also, these fragments do not necessarily have to be unique to each compound, even if each fragment is unique to all compounds A, B, C,
Even if it is common to D, the content of each compound M a , M b , M c ,
M d can be found.
また第5図に示すように、複合ピークを構成する3種以
上の化合物A、B、Cのうち2種の化合物A、Bが完全
に分離している場合には、この2種について同一のフラ
グメントmjを使用することもできる。Furthermore, as shown in Figure 5, if two of the three or more compounds A, B, and C that make up a composite peak are completely separated, the same It is also possible to use fragment mj.
(発明の効果)
本発明によれば上述のように、複数の化合物が重なり合
った複合ピークを分析する際に、予め感度の分かってい
る複数のフラグメントについてのGC/MSの出力と各
感度とを用いた連立方程式を解くことによって、試料中
の各化合物の含有量を求めることができるものであるか
ら、クロマトグラムの各ピーク波形をガスクロマトグラ
フにより完全に分離しなくても個々の化合物の含有量を
正確に求めることができ、従って従来のように分離カラ
ムを長くする必要がないので、短時間の計測で組成比を
求めることができるという利点がある。(Effects of the Invention) According to the present invention, as described above, when analyzing a composite peak in which multiple compounds overlap, the GC/MS output and each sensitivity are calculated for multiple fragments whose sensitivities are known in advance. Since the content of each compound in the sample can be determined by solving the simultaneous equations used, the content of each compound can be determined without completely separating each peak waveform of the chromatogram using a gas chromatograph. can be determined accurately, and there is therefore no need to use a long separation column as in the conventional method, so there is an advantage that the composition ratio can be determined in a short measurement time.
第1図は本発明装置の一実施例を示すブロック図、第2
図及び第3図は同上の動作説明図、第4図は他の実施例
の動作説明図、第5図は更に他の実施例の動作説明図で
ある。
Δ、B・・・試料中の各化合物FIG. 1 is a block diagram showing one embodiment of the device of the present invention, and FIG.
3 and 3 are explanatory diagrams of the same operation as above, FIG. 4 is an explanatory diagram of the operation of another embodiment, and FIG. 5 is an explanatory diagram of the operation of still another embodiment. Δ, B...Each compound in the sample
Claims (1)
クロマトグラムを出力するGC/MSと、互いにピーク
波形の重なった複数の化合物A、Bをそれぞれ単独に分
析した時の各単位濃度中に含まれている質量m_1、m
_2の複数のフラグメントイオン検出強度Pa_1、P
a_2、Pb_1、Pb_2を予め記憶しておく記憶部
と、試料分析時に上記各フラグメントイオンの質量数m
_1、m_2でのGC/MSの出力D_1、D_2と上
記各フラグメントイオン検出強度Pa_1、Pb_1、
Pa_2、Pb_2とから連立方程式Pa_1・Ma+
Pb_1・Mb=D_1 Pa_2・Ma+Pb_2・Mb=D_2 の解Ma、Mbを演算すると共に、複数時点での各解M
a、Mbによりそれぞれ形成されるクロマトグラムのピ
ーク面積を算出する演算部とを備えて成ることを特徴と
する組成比定量装置。(1) GC/MS that analyzes compounds contained in a sample and outputs the ion chromatogram, and each unit concentration when multiple compounds A and B with overlapping peak waveforms are individually analyzed. The mass m_1, m contained in
Multiple fragment ion detection intensities of _2 Pa_1, P
A storage unit that stores a_2, Pb_1, and Pb_2 in advance, and a mass number m of each of the above fragment ions during sample analysis.
GC/MS output D_1, D_2 at _1, m_2 and each fragment ion detection intensity Pa_1, Pb_1,
From Pa_2 and Pb_2, the simultaneous equation Pa_1・Ma+
Calculate the solutions Ma and Mb of Pb_1・Mb=D_1 Pa_2・Ma+Pb_2・Mb=D_2, and calculate each solution M at multiple points in time.
A composition ratio quantification device comprising: a calculation section for calculating peak areas of chromatograms formed by a and Mb, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040142A JP2605081B2 (en) | 1988-02-23 | 1988-02-23 | Composition ratio determination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040142A JP2605081B2 (en) | 1988-02-23 | 1988-02-23 | Composition ratio determination device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01214754A true JPH01214754A (en) | 1989-08-29 |
JP2605081B2 JP2605081B2 (en) | 1997-04-30 |
Family
ID=12572527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63040142A Expired - Fee Related JP2605081B2 (en) | 1988-02-23 | 1988-02-23 | Composition ratio determination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2605081B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105699A (en) * | 2004-10-01 | 2006-04-20 | Maruzen Pharmaceut Co Ltd | Quantitatively determining method of peptide |
JP2013506843A (en) * | 2009-10-02 | 2013-02-28 | メタボロン,インコーポレイテッド | Apparatus and related methods for small molecule component analysis in complex mixtures |
-
1988
- 1988-02-23 JP JP63040142A patent/JP2605081B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105699A (en) * | 2004-10-01 | 2006-04-20 | Maruzen Pharmaceut Co Ltd | Quantitatively determining method of peptide |
JP4563764B2 (en) * | 2004-10-01 | 2010-10-13 | 丸善製薬株式会社 | Peptide quantification method |
JP2013506843A (en) * | 2009-10-02 | 2013-02-28 | メタボロン,インコーポレイテッド | Apparatus and related methods for small molecule component analysis in complex mixtures |
Also Published As
Publication number | Publication date |
---|---|
JP2605081B2 (en) | 1997-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Burdette et al. | Establishing an accuracy basis for the vitamin D external quality assessment scheme (DEQAS) | |
US20070112534A1 (en) | Peak pattern calibration | |
US4016419A (en) | Non-dispersive X-ray fluorescence analyzer | |
JP2001028252A (en) | Mass spectrometry | |
JPH01214754A (en) | Composition-ratio determining apparatus | |
JPH06194313A (en) | Reactive measurement method | |
JP3610256B2 (en) | X-ray fluorescence analyzer | |
JP2666838B2 (en) | Quantitative analysis method using gas chromatography mass spectrometer | |
US8119415B2 (en) | X-ray fluorescence method for a composition analysis of a sample containing at least two elements | |
JPH04294271A (en) | Chromatograph/mass analyser | |
JPS60104238A (en) | Method and device for quantitative analysis by detecting simultaneously multi-wavelength | |
US20030066803A1 (en) | Analytical instrument calibration and data correction | |
Weber et al. | Fast and precise determination of fluorine in geological samples by 14 MeV neutron activation analysis | |
JP2000065765A (en) | X-ray fluorescence analyzer | |
Dube et al. | A combination of gas chromatography, combustion, and 13C/12C isotope dilution mass spectrometry (GC/C/IDMS) | |
JP3569734B2 (en) | X-ray fluorescence analyzer | |
JPS63111461A (en) | Mass spectroscopy with gas chromatography | |
Oliva et al. | Measurement of uncertainty in peptide molecular weight determination using size-exclusion chromatography with multi-angle laser light-scattering detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry | |
JP2002005890A (en) | Method for analyzing multicomponent mixed spectrum | |
JP2650363B2 (en) | Chromatography equipment | |
JPH11201960A (en) | Gas chromatograph | |
JPS6024447A (en) | High performance liquid chromatography quantitative analytical method and apparatus using multi-wavelength simultaneous detection | |
SU406158A1 (en) | METHOD OF GAS CHROMATOGRAPHIC DETERMINATION OF SECTIONS OF IONIZATION OF COMPONENTS OF MIXTURES | |
McLafferty et al. | Signal enhancement in real-time for high-resolution mass spectra | |
JPH0339591B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |