[go: up one dir, main page]

JPH01156426A - Manufacture of directional magnetic steel plate having low iron loss - Google Patents

Manufacture of directional magnetic steel plate having low iron loss

Info

Publication number
JPH01156426A
JPH01156426A JP62314833A JP31483387A JPH01156426A JP H01156426 A JPH01156426 A JP H01156426A JP 62314833 A JP62314833 A JP 62314833A JP 31483387 A JP31483387 A JP 31483387A JP H01156426 A JPH01156426 A JP H01156426A
Authority
JP
Japan
Prior art keywords
steel plate
annealing
strains
iron loss
regulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62314833A
Other languages
Japanese (ja)
Other versions
JPH0663037B2 (en
Inventor
Satoru Ide
井出 哲
Masahiro Yamamoto
政広 山本
Hiroshi Nishizaka
西阪 博司
Akira Sakaida
晃 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62314833A priority Critical patent/JPH0663037B2/en
Publication of JPH01156426A publication Critical patent/JPH01156426A/en
Publication of JPH0663037B2 publication Critical patent/JPH0663037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably manufacture the title steel plate by forming compressive linear strains at specific intervals only by vertical loads by a press or the plate surface of the directional electromagnetic steel plate and annealing. CONSTITUTION:The directional magnetic steel plate S subjected to finish annealing by a feed roll 7 is passed to the main body 1 of the press and the plate surface is provided with the loads vertical thereto by the high-speed movement of a forwardly or backwardly driving apparatus 3 in the use of plural projected teeth 2 to form compressive linear strains 8. At this time, the intervals of the strains 8 are regulated to 1-30mm, the direction in the strains 8 is regulated to about 90-45 deg. against the rolling direction, its width is regulated to about 10-300mu and the loads to be applied are preferably regulated to about 3-20kg/mm. By this method, the compressive linear strains 8 can uniformly be formed over the whole of the plate width; and when annealed at about >=750 deg.C, newly recrystallized grains are generated in the direction of the plate thickness onto the strain part 8-1 and the fining of its magnetic domain is executed. In this way, the directional magnetic steel plate S having low iron loss is stably manufactured at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄損の低い方向性電磁鋼板の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with low core loss.

〔従来の技術] 通常、方向性電磁鋼板は、Si:4%以下を含有する珪
素鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1
回又は中間焼鈍をはさんで2回以上の冷間圧延工程によ
り、最終仕上厚みの冷延板を得、次に脱炭焼鈍を行った
後、MgOを主成分とする焼鈍分離剤を塗布し、仕上焼
鈍を施してゴス方位をもった2次再結晶粒を発現させ、
更にS、 Nなどの不純物を除去するとともに、グラス
皮膜を生成させて製造される。さらに必要に応じて、平
坦化焼鈍及び絶縁コーティング処理が施される。
[Prior Art] Normally, a grain-oriented electrical steel sheet is produced by hot rolling a silicon steel material containing 4% or less of Si, and annealing the hot rolled sheet as necessary.
A cold-rolled sheet with the final finish thickness is obtained through two or more cold rolling processes with two or more intermediate annealing steps in between, and then decarburization annealing is performed, and then an annealing separator containing MgO as the main component is applied. , final annealing is performed to develop secondary recrystallized grains with Goss orientation,
Furthermore, it is manufactured by removing impurities such as S and N and forming a glass film. Furthermore, flattening annealing and insulation coating treatment are performed as necessary.

ところで方向性電磁鋼板においては、省エネルギーの観
点から鉄損特性を改善することが強く要望されており、
鉄損特性を改善する検討がなされ種りの方法が提案され
ている。
By the way, in grain-oriented electrical steel sheets, there is a strong desire to improve iron loss characteristics from the perspective of energy conservation.
Studies have been conducted to improve iron loss characteristics, and various methods have been proposed.

方向性電磁鋼板の鉄損特性を改善する方法の一つとして
鋼板の表面に微小底や歪を付与する方法が知られている
。例えば特公昭5B −5968号公報がある。これは
最終仕上焼鈍後の一方向性電磁鋼板の表面に小球等を押
圧して深さ5μ以下のへこみを形成して線状の微小ひず
みを付与することで磁区細分化を行い鉄損を改善させる
ものである。これによると、鉄損が極めて低い材料が得
られる。
As one of the methods for improving the core loss characteristics of grain-oriented electrical steel sheets, a method of imparting micro-bottoms or distortion to the surface of the steel sheet is known. For example, there is Japanese Patent Publication No. 5B-5968. This is done by pressing small balls etc. onto the surface of the unidirectional electrical steel sheet after final finish annealing to form indentations with a depth of 5μ or less and applying linear microstrain to refine the magnetic domains and reduce iron loss. It is something that can be improved. According to this, a material with extremely low iron loss can be obtained.

しかし、その後例えば、巻鉄心を製造するさいの歪取焼
鈍が行なわれると鉄損改善効果が消失する問題がある。
However, there is a problem in that the effect of improving iron loss disappears if, for example, strain relief annealing is subsequently performed during manufacturing of the wound core.

このような問題のない磁区細分化法が検討され提案され
ている。例えば特開昭56−130454号公報では仕
上焼鈍ずみの方向性電磁鋼板に、ナイフ、カミソリ刃、
金閘砂、歯車ロール、ショット、レーザーなどで線状の
複雑ひずみを与え、次いで700°C以上の温度に加熱
して、ひずみ導入領域に微細再結晶粒群を生成させ鉄損
の低下が図られている。
Magnetic domain refining methods that do not have such problems have been studied and proposed. For example, in Japanese Patent Application Laid-open No. 56-130454, knives, razor blades,
Linear complex strain is applied using metal sand, gear rolls, shot, laser, etc., and then heated to a temperature of 700°C or higher to generate fine recrystallized grain groups in the strain-introduced region, which reduces iron loss. It is being

また、特開昭61−117218号公報には仕上焼鈍済
み方向性電磁鋼板の表面に圧延方向に対し直角から45
°の範囲で歯形ロールにて90〜220kg/−の荷重
をかけ、溝形底を付与した後、750°C以上で熱処理
することにより低鉄損方向性電磁鋼板を製造する方法が
記載されている。
In addition, Japanese Patent Application Laid-open No. 61-117218 discloses that the surface of a finish annealed grain-oriented electrical steel sheet is
A method is described for producing a low iron loss grain-oriented electrical steel sheet by applying a load of 90 to 220 kg/- with a toothed roll in the range of 100°C to provide a grooved bottom, and then heat-treating at 750°C or higher. There is.

これらによると、歪取焼鈍がその後に施されても、鉄損
改善効果は消失しない磁区細分化が行なわれ、それなり
の作用効果があり磁気特性の改善に寄与している。
According to these, even if strain relief annealing is performed afterwards, magnetic domain refining is performed that does not eliminate the iron loss improving effect, and has a certain effect and contributes to improving the magnetic properties.

〔発明が解決しようとする問題点〕 ところで、方向性電磁鋼板の磁気特性向上については、
もうこれで十分というのはなく、さらなる向上がユーザ
ー等から要望される。また、磁区細分化の方法について
も可及的低コストで、かつ鋼板の板幅方向全般にわたり
安定して、微小歪を付与することが重要である。
[Problems to be solved by the invention] By the way, regarding the improvement of the magnetic properties of grain-oriented electrical steel sheets,
This is no longer sufficient, and users are demanding further improvements. Furthermore, regarding the magnetic domain refining method, it is important to stably impart microstrains to the steel sheet over the entire width direction at the lowest possible cost.

本発明は歪取焼鈍により鉄損改善効果が失しなわれない
磁区細分化がなされ、鉄損の低い方向性電磁鋼板を、安
定してかつ安価に製造することを目的とする。
An object of the present invention is to stably and inexpensively produce a grain-oriented electrical steel sheet with low core loss, which is subjected to magnetic domain refining without losing its core loss improving effect through strain relief annealing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者達は前記目的を達成すべく種々の実験を行なっ
た結果、プレスにより方向性電磁鋼板の板面に対して垂
直向き荷重のみの力で圧縮線状歪を間隔をおいて形成す
ると、歪は板厚方向に強く導入され、その後の焼鈍で磁
区細分化作用が強く現出し、従来法と同一荷重で歪を付
与した場合にくらべて鉄損の低下が著しいことを見出し
た。また、歪付与に要する力が小さくてよいから、作業
性がよく、かつ安定して行なえる。
The present inventors conducted various experiments in order to achieve the above object, and found that when compressive linear strain is formed at intervals using only a load perpendicular to the surface of a grain-oriented electrical steel sheet using a press, It was found that strain was strongly introduced in the thickness direction of the sheet, and the subsequent annealing produced a strong magnetic domain refining effect, resulting in a significant reduction in iron loss compared to when strain was applied with the same load as in the conventional method. Further, since only a small force is required to impart strain, workability is good and the process can be carried out stably.

以下に、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明は、仕上焼鈍の前または後の方向性電磁鋼板につ
いて、プレスにより圧縮線状歪を間隔をおいて付与する
が、該方向性電磁鋼板は鋼成分および圧縮線状歪付与ま
での製造条件は特定する必要はない。すなわち例えばイ
ンヒビターとして八I!、L MnS、 MnSe、 
BN+ CuzS等が適宜用いられる。
In the present invention, compressive linear strain is applied at intervals by pressing to a grain-oriented electrical steel sheet before or after final annealing. does not need to be specified. That is, for example, eight I! as an inhibitor! , L MnS, MnSe,
BN+CuzS etc. are used as appropriate.

また必要に応じてCu、 Sn、 Cr、 Ni、 M
o、 Sb、 W等の元素が含有され、熱間圧延し、焼
鈍して1回、または中間焼鈍工程をはさんで2回以上の
冷間圧延により最終板厚とし、脱炭焼鈍し、焼鈍分離剤
を塗布して仕上焼鈍される。
In addition, Cu, Sn, Cr, Ni, M
Contains elements such as O, Sb, and W, and is hot rolled and annealed once, or cold rolled two or more times with an intermediate annealing step to achieve the final thickness, decarburized, and then annealed. A separating agent is applied and finish annealing is performed.

この−例では、仕上焼鈍された方向性電磁鋼板に圧縮歪
付与を行なった場合を述べる。
In this example, a case will be described in which compressive strain is applied to a finish annealed grain-oriented electrical steel sheet.

方向性電磁鋼板は第1図に示すようなプレス装置で圧縮
線状歪が付与される。図面において、Sは方向性電磁鋼
板で矢印方向に通板される。1はプレス本体で、その下
部には通板方向に対してほぼ直交している突起歯2が間
隔をおいて設けられている。該突起歯2は進退駆動装置
3の作用により通板中の方向性電磁鋼板Sに高速で進退
し、板面に対して垂直向き荷重を与え圧縮線状歪を形成
させる。4は圧下力制御機構であり、圧下荷重を制御す
る。5は金型、6は受台である。また7は送りロールで
ある。
A grain-oriented electrical steel sheet is subjected to compressive linear strain using a press device as shown in FIG. In the drawing, S is a grain-oriented electrical steel sheet that is threaded in the direction of the arrow. Reference numeral 1 denotes a press main body, and projecting teeth 2 substantially perpendicular to the sheet passing direction are provided at intervals on the lower part of the press main body. The projecting teeth 2 move forward and backward at high speed against the grain-oriented electromagnetic steel sheet S that is being passed through by the action of the advance/retreat drive device 3, and apply a load perpendicular to the sheet surface to form a compressive linear strain. 4 is a rolling force control mechanism, which controls the rolling load. 5 is a mold, and 6 is a pedestal. Further, 7 is a feed roll.

ところで、プレスにより突起歯2にて方向性電磁鋼板S
に板面に対して垂直向きのみの荷重で、圧縮線状歪8を
付与したものは第2図に示すように、その歪部8−1は
板厚方向に集中して強く導入されることをつきとめた。
By the way, the grain-oriented electromagnetic steel sheet S is
When a compressive linear strain 8 is applied to the plate by applying a load only perpendicular to the plate surface, the strained portion 8-1 is concentrated and strongly introduced in the plate thickness direction, as shown in Fig. 2. I found out.

その圧下力荷重を変化させて5値間隔で圧縮線状歪を付
与し、次いで焼鈍して、鉄損特性を調査した。なお、試
験材はStを3.20%含有し、板厚0.220mmの
仕上焼鈍ずみの方向性電磁鋼板である。その結果を第3
図に、段付ロールで線状歪を同じ間隔で付与したものと
ともに示す。
Compressive linear strain was applied at five-value intervals by changing the rolling force load, and then annealing was performed to investigate iron loss characteristics. The test material was a finish-annealed grain-oriented electrical steel sheet containing 3.20% St and having a thickness of 0.220 mm. The result is the third
The figure also shows a stepped roll with linear strain applied at the same intervals.

この図から明らかなように、圧縮線状歪を付与したもの
は圧下荷重は小さくして磁区細分化作用が奏せられ鉄損
が低いことが知見された。
As is clear from this figure, it was found that when compressive linear strain was applied, the rolling load was small, the magnetic domain refining effect was achieved, and the iron loss was low.

またプレスにより圧縮線状歪を付与する場合、突起歯2
を間隔をおいて複数個設けたもので行なうと、方向性電
磁鋼板Sは、同時に複数個の突起歯2で圧縮荷重をうけ
るので、拘束された状態で歪が付与される。このために
、鋼板に形状変化が生じないとともに、板幅全般にわた
って一様に圧縮線状歪が形成される。
In addition, when applying compressive linear strain by pressing, the protruding teeth 2
If a plurality of such protrusions are provided at intervals, the grain-oriented electromagnetic steel sheet S receives a compressive load from the plurality of protruding teeth 2 at the same time, so that strain is applied in a restrained state. For this reason, the steel plate does not undergo any shape change, and compressive linear strain is uniformly formed over the entire width of the plate.

圧縮線状歪は間隔をおいて付与されるが、その間隔が狭
くなると磁区の細分化効果が少なくなるとともに、磁束
密度を低下させるので1m以上とする。一方その間隔が
広くなり過ぎるとこの場合も磁区の細分化効果が少なく
なるので30mm以下とする。
Compressive linear strain is applied at intervals, and if the intervals become narrower, the effect of subdividing the magnetic domains will decrease and the magnetic flux density will decrease, so the interval is set to 1 m or more. On the other hand, if the spacing becomes too wide, the effect of subdividing the magnetic domains will be reduced in this case as well, so it is set to 30 mm or less.

圧縮線状歪の向きは、方向性電磁鋼板の圧延方向に対し
て90度から45度の向きが望ましく、その歪の幅は1
0〜300μmとすることが好ましい。
The direction of the compressive linear strain is preferably 90 degrees to 45 degrees with respect to the rolling direction of the grain-oriented electrical steel sheet, and the width of the strain is 1
It is preferable to set it as 0-300 micrometers.

また圧縮線状歪を付与するための荷重は、作業性または
プレス装置の寿命の長期化等の面から3〜20kg/m
II+が好ましい。
In addition, the load for applying compressive linear strain is 3 to 20 kg/m from the viewpoint of workability and prolonging the life of the press equipment.
II+ is preferred.

圧縮線状歪を付与した後には、750°C以上で焼鈍す
る。この焼鈍により圧縮線状歪部に板厚方向に向って新
たな再結晶粒が生成し、磁区の細分化が行なわれる。こ
のためには750°C以上で行なう必要がある。この焼
鈍は、絶縁被膜コーテイング液を鋼板に塗布し焼付ける
焼鈍と兼用して行なうことができる。
After applying compressive linear strain, it is annealed at 750°C or higher. By this annealing, new recrystallized grains are generated in the compressive linear strain portion in the thickness direction, and the magnetic domains are refined. For this purpose, it is necessary to carry out the process at 750°C or higher. This annealing can be performed in combination with annealing in which an insulating film coating liquid is applied to the steel plate and baked.

仕上焼鈍の前に圧縮線状歪を付与する場合は、最終板厚
に冷間圧延後、脱炭焼鈍された鋼板に行うことが望まし
い。この場合にも同様な作用効果がある。
When applying compressive linear strain before final annealing, it is desirable to apply compressive linear strain to a steel plate that has been cold rolled to the final thickness and then decarburized and annealed. Similar effects can be obtained in this case as well.

〔実施例] 以下実施例を説明する。〔Example] Examples will be described below.

実施例1 重量%でC: 0.083 、Si : 3.27、M
n : 0.076、Af:0.028、S:0.02
1 、Cu:0.15、Sn:0.15残部鉄からなる
珪素鋼スラブを周知の方法によって熱間圧延−焼鈍−冷
間圧延を経て0.220鴫厚の鋼板を得た。
Example 1 C: 0.083, Si: 3.27, M in weight %
n: 0.076, Af: 0.028, S: 0.02
A silicon steel slab consisting of 1, Cu: 0.15, Sn: 0.15 and balance iron was hot rolled, annealed and cold rolled by a well-known method to obtain a steel plate having a thickness of 0.220 mm.

次いで更に周知の脱炭焼鈍−焼鈍分離剤塗布−最終仕上
焼鈍の各工程を実施した。得られた鋼板について鋼板圧
延方向に対し直交して突起歯を5肛間隔で20個設けた
プレスにより圧下刃11kg/mmにて、圧縮線状歪を
付与した。
Next, the well-known steps of decarburization annealing, application of an annealing separator, and final finish annealing were performed. Compressive linear strain was applied to the obtained steel plate using a press having 20 protruding teeth arranged at 5-hole intervals perpendicular to the rolling direction of the steel plate at a reduction blade of 11 kg/mm.

次いで、焼鈍を800″CX2時間で行ない「処理後」
の供試材とした。また比較のため仕上焼鈍後ヒートフラ
ットニング焼鈍をa o o ”cで行ない「未処理」
の供試材とした。それぞれの磁気特性を測定し、その結
果を第1表に示す。w+?/s。は鉄損(W/kg) 
、B、。は磁束密度(T)である。
Next, annealing was performed at 800″CX for 2 hours, and “after treatment”
This was used as the sample material. In addition, for comparison, heat flattening annealing was performed after finish annealing at ao o "c" and "untreated"
This was used as the sample material. The magnetic properties of each were measured and the results are shown in Table 1. w+? /s. is iron loss (W/kg)
,B. is the magnetic flux density (T).

第  1  表 実施例2 重量%テC: 0.082 、St : 3.25、M
n : 0.074、//!:0.027、S:0.0
22、Cu:0.10.Sn:0.08残部鉄からなる
珪素鋼スラブを周知の方法によって熱間圧延−焼鈍−冷
間圧延を経て0.220胴厚の鋼板を得た。
Table 1 Example 2 Weight % TeC: 0.082, St: 3.25, M
n: 0.074, //! :0.027, S:0.0
22, Cu:0.10. A silicon steel slab consisting of Sn: 0.08 and balance iron was hot rolled, annealed and cold rolled by a well-known method to obtain a steel plate having a body thickness of 0.220.

次いで、更に周知の脱炭焼鈍を行なった。Next, the well-known decarburization annealing was further performed.

その後、鋼板圧延方向に対し直交して突起歯を5mm間
隔で20個設けたプレスにより圧下刃6kg/Mにて圧
縮線状歪を付与した。
Thereafter, compressive linear strain was applied to the steel plate using a press having 20 protruding teeth at 5 mm intervals perpendicular to the rolling direction of the steel plate using a rolling blade of 6 kg/M.

次いで焼鈍分陣材を塗布し1200℃で仕上焼鈍をし、
その後、絶縁皮膜コーテイング液を塗布し絶縁皮膜焼付
は処理とヒートフラットニングを兼ねて焼鈍を880°
Cで行ない、「処理後」の供試材とした。また、比較の
ために、前記プレスによる圧縮線状歪を付与することな
く、脱炭焼鈍の後、前述の仕上焼鈍と皮膜焼付は処理と
ヒートフラットニングの兼用の焼鈍を行ない、「未処理
」の供試材とした。それぞれ磁気特性を測定し、その結
果を第2表に示す。W+?/S。は鉄損(W/kg)、
B1゜は磁束密度(T)である。
Next, apply annealing material and finish annealing at 1200℃,
After that, an insulating film coating liquid is applied, and the insulating film is baked by annealing at 880°, which also serves as processing and heat flattening.
C, and it was used as a "post-treated" test material. For comparison, after the decarburization annealing without applying compressive linear strain by the press, the above-mentioned finish annealing and film baking were performed by annealing that was both a treatment and a heat flattening, and the "untreated" This was used as the sample material. The magnetic properties of each were measured and the results are shown in Table 2. W+? /S. is iron loss (W/kg),
B1° is the magnetic flux density (T).

第2表 (発明の効果) 以上の実施例からも明らかなように、本発明によると鉄
損の低い方向性電磁鋼板が安定して、かつ低コストで製
造される。
Table 2 (Effects of the Invention) As is clear from the above examples, according to the present invention, grain-oriented electrical steel sheets with low core loss can be stably manufactured at low cost.

また得られた方向性電磁鋼板は、その後に、巻鉄心の製
造のさい施される歪取焼鈍が行なわれても鉄損の劣化は
全く生じない。
In addition, even if the obtained grain-oriented electrical steel sheet is subsequently subjected to strain relief annealing that is performed during the manufacture of the wound core, no deterioration in iron loss occurs at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例において圧縮線状歪を付与す
るだめのプレスを示す図、第2図は本発明の詳細な説明
するための圧縮線状歪を示す図、第3図は本発明におけ
る一実験例での、鉄損値と圧縮線状歪付与の圧下荷重の
関係を示す図である。 第2図    第3図 圧下荷重(KV/nす
Fig. 1 is a diagram showing a press for applying compressive linear strain in one embodiment of the present invention, Fig. 2 is a diagram showing compressive linear strain for detailed explanation of the present invention, and Fig. 3 is a diagram showing a press for applying compressive linear strain. FIG. 3 is a diagram showing the relationship between iron loss value and rolling load for applying compressive linear strain in an experimental example in the present invention. Fig. 2 Fig. 3 Rolling load (KV/n)

Claims (1)

【特許請求の範囲】[Claims] 方向性電磁鋼板に、プレスにより板面に対して垂直向き
の荷重のみで圧縮線状歪を1〜30mmの間隔で形成し
、その後、焼鈍することを特徴とする鉄損の低い方向性
電磁鋼板の製造方法。
A grain-oriented electrical steel sheet with low core loss characterized by forming compressive linear strains at intervals of 1 to 30 mm by pressing only a load perpendicular to the plate surface, and then annealing the grain-oriented electrical steel sheet. manufacturing method.
JP62314833A 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss Expired - Lifetime JPH0663037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314833A JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314833A JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH01156426A true JPH01156426A (en) 1989-06-20
JPH0663037B2 JPH0663037B2 (en) 1994-08-17

Family

ID=18058147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314833A Expired - Lifetime JPH0663037B2 (en) 1987-12-12 1987-12-12 Method for producing grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JPH0663037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343205A (en) * 1991-05-20 1992-11-30 Kenichi Arai Magnetic plate and manufacture thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739865B1 (en) 2016-01-22 2017-05-25 주식회사 포스코 Method and apparatus for refining magnetic domains grain-oriented electrical steel
EP3561089B1 (en) 2016-12-23 2023-07-19 POSCO Co., Ltd Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor
KR102178733B1 (en) 2018-09-28 2020-11-13 주식회사 포스코 Alien substance capturing apparatus and electrical steel sheet manufacturing facility having thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343205A (en) * 1991-05-20 1992-11-30 Kenichi Arai Magnetic plate and manufacture thereof

Also Published As

Publication number Publication date
JPH0663037B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
WO2016056501A1 (en) Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same
JP5835557B2 (en) Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
CN113727788B (en) Method for producing non-oriented electromagnetic steel sheet
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP5434524B2 (en) Method for producing grain-oriented electrical steel sheet
JP7028215B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH01156426A (en) Manufacture of directional magnetic steel plate having low iron loss
JP2020056105A (en) Method for manufacturing grain-oriented electrical steel sheet
JPH0623410B2 (en) Method for manufacturing non-oriented electric iron plate with high magnetic flux density
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JP2003034821A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic-flux density having no undercoat film
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss
JPH07113128B2 (en) Method for manufacturing silicon steel sheet
JPS62151521A (en) Method for manufacturing grain-oriented electrical steel sheet with low core loss and excellent glass film properties
JPH03104823A (en) Production of grain-oriented silicon steel sheet with superlow iron loss
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP3561918B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPS6134118A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
CN117203355A (en) Method for producing oriented electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14