JPH07113128B2 - Method for manufacturing silicon steel sheet - Google Patents
Method for manufacturing silicon steel sheetInfo
- Publication number
- JPH07113128B2 JPH07113128B2 JP1515187A JP1515187A JPH07113128B2 JP H07113128 B2 JPH07113128 B2 JP H07113128B2 JP 1515187 A JP1515187 A JP 1515187A JP 1515187 A JP1515187 A JP 1515187A JP H07113128 B2 JPH07113128 B2 JP H07113128B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- hot
- cold
- silicon steel
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 28
- 238000005096 rolling process Methods 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000009749 continuous casting Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 239000010703 silicon Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001353 gamma loop Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば回転機や発電機等の磁心に用いられる
軟磁気特性の優れた高けい素鋼板の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a high silicon steel sheet having excellent soft magnetic properties, which is used for a magnetic core of a rotating machine, a generator, or the like.
けい素鋼板は優れた軟磁気特性を有するものとして、従
来から電力用の磁心や回転機用の材料として多量に使用
されているが、近年、省エネルギー、省資源の観点から
変圧器や回転機などの電気機器の効率化、小型化が強く
要請され、それに伴つてその鉄心用材料であるけい素鋼
板にもより優れた軟磁気特性及び鉄損特性が要求されつ
つある。Silicon steel sheets have been used in large amounts as magnetic cores for electric power and materials for rotating machines because of their excellent soft magnetic properties, but in recent years, transformers and rotating machines have been used from the viewpoint of energy saving and resource saving. There has been a strong demand for efficiency and miniaturization of the electric equipment, and accordingly, the soft magnetic properties and the iron loss properties that are excellent in the silicon steel sheet which is the material for the iron core are also being demanded.
このけい素鋼板の軟磁気特性は、けい素の添加量ととも
に向上し、特に6.5wt%近傍で、最高の透磁率を示し、
さらに固有電気抵抗も高いことから、鉄損も小さくなる
ことが知られている。しかしながらけい素含有量が4%
を超えると急激に加工性が劣化するために従来の圧延方
法による工業的規模での薄板製造は極めて困難とされて
いた。The soft magnetic properties of this silicon steel sheet improve with the amount of silicon added, and show the highest magnetic permeability, especially near 6.5 wt%.
Furthermore, since the specific electric resistance is high, it is known that the iron loss is also small. However, the silicon content is 4%
If it exceeds, the workability is rapidly deteriorated, and it has been considered extremely difficult to manufacture a thin plate on an industrial scale by the conventional rolling method.
この問題を解決するため、本発明者らは種々研究を重ね
た結果、上記の4%を超える高けい素含有鋼についても
適切な圧延条件を選ぶことによつて冷間加工性に優れた
高けい素熱延鋼板を連続的に製造出来ることを知見し、
特願昭60−128323号においてその基本的製造方法につい
て提示した。In order to solve this problem, the inventors of the present invention have conducted various studies, and as a result, by selecting an appropriate rolling condition for the above-mentioned high silicon-containing steel having a high silicon content of 4%, it is possible to obtain a high cold workability. Knowing that silicon hot rolled steel sheets can be manufactured continuously,
The basic manufacturing method was presented in Japanese Patent Application No. 60-128323.
すなわち、この方法は、インゴットあるいは連続鋳造ス
ラブを分塊圧延または粗圧延する際、適切な圧延条件を
選ぶことによつて結晶粒の微細化を達成し、それらを比
較的低温で連続仕上熱延し、熱延板板厚方向の平均結晶
粒界間隔をSi添加量に応じて調整することによつて優れ
た冷間圧延性を付与することに特徴を有するものであ
る。That is, this method achieves grain refinement by selecting appropriate rolling conditions when slab-rolling or rough-rolling an ingot or a continuous casting slab, and continuously finishing hot rolling them at a relatively low temperature. However, it is characterized by imparting excellent cold rolling property by adjusting the average grain boundary spacing in the thickness direction of the hot-rolled sheet according to the amount of Si added.
しかしながら、その後、さらに試験、研究を積重ねた結
果、以下の事実が判明した。すなわち、連続仕上熱延工
程において上記方法によつて板厚方向の結晶粒径をSi添
加量に応じた臨界値以下に調整するために、仕上熱延前
粒径から推定される必要累積圧下率に応じた歪を加えて
も、冷間加工性に優れた高けい素鋼板を安定的に製造出
来ない事例があるということである。However, as a result of further tests and studies, the following facts were revealed. That is, in order to adjust the grain size in the plate thickness direction to a critical value or less according to the amount of Si added by the above method in the continuous hot rolling process, the required cumulative rolling reduction estimated from the grain size before hot rolling That is, there is a case where a high silicon steel sheet excellent in cold workability cannot be stably manufactured even if strain corresponding to is added.
本発明者らは、上記問題点を解決すべくその後鋭意実
験、研究を重ねた結果、仕上熱延時に厳密なコントロー
ルをしなければ熱延板板板厚方向の組織が不均一とな
り、冷延性の劣化を招くことを新たに知見し、これを改
善するため上記高けい素鋼薄板製造法における仕上熱延
方法について、連続仕上熱延時に適切なロール径を有す
る熱間圧延機を使用することによって、板厚方向でより
均一な熱延板組織が得られ、冷間加工性に優れた高けい
素熱延鋼板を安定かつ効率的に製造し得ることを知見
し、この発明をなすに至つたものである。The inventors of the present invention have conducted diligent experiments and researches to solve the above-mentioned problems, and as a result, the structure in the thickness direction of the hot-rolled sheet becomes non-uniform unless the strict control is applied during the finish hot-rolling, resulting in cold rolling property. The new hot-rolling method in the above-mentioned high silicon steel sheet manufacturing method in order to improve the new finding that it causes deterioration of the use of a hot rolling machine having an appropriate roll diameter during continuous hot-rolling. According to the present invention, a more uniform hot-rolled sheet structure can be obtained in the sheet thickness direction, and a high-silicon hot-rolled steel sheet excellent in cold workability can be stably and efficiently produced, and the present invention was accomplished. It is an ivy.
すなわち、この発明はC:1wt%以下,Si:4.0〜7.0wt%,M
n:0.5wt%以下,Al:2wt%以下,残部鉄及び不可避不純物
からなる合金を溶製後、造塊もしくは連続鋳造により鋳
造し、分塊圧延・粗圧延もしくは粗圧延後仕上熱延し、
表面酸化膜を除去した後、冷間圧延及び焼鈍を行うこと
によりけい素鋼板を製造するに当り、仕上熱延時に、装
入板厚(以下熱延前板厚)の20倍以上の直径を有するロ
ールを用いて圧延することを基本的な特徴とするもので
ある。That is, the present invention is C: 1 wt% or less, Si: 4.0 ~ 7.0 wt%, M
n: 0.5wt% or less, Al: 2wt% or less, after melting an alloy consisting of balance iron and unavoidable impurities, cast by ingot casting or continuous casting, and slab rolling / rough rolling or rough rolling followed by finish hot rolling,
After removing the surface oxide film, cold rolling and annealing are performed to produce a silicon steel sheet. At the time of finish hot rolling, a diameter of 20 times or more of the charging thickness (hereinafter, the thickness before hot rolling) is applied. The basic feature is to roll using the rolls.
以下本発明法を詳述する。The method of the present invention will be described in detail below.
まず成分の限定理由を説明する。First, the reasons for limiting the components will be described.
Cは、鉄損を高める有害な成分であり、磁気時効の原因
となるので少ない方が望ましい。しかしながら、CはFe
−Si系平衡状態図のγループ拡大元素であるため、けい
素含有量によつて決まる一定量添加されると冷却途中に
α−γ変態点が現われるようになり、それを利用した熱
処理が可能となるため、ある程度Cを添加することが望
ましい場合がある。本発明では加工性の観点からCが1w
t%以下と限定する。C is a harmful component that increases iron loss and causes magnetic aging. However, C is Fe
Since it is an element that expands the γ loop in the -Si system equilibrium diagram, an α-γ transformation point will appear during cooling when a fixed amount determined by the silicon content is added, and heat treatment using it will be possible. Therefore, it may be desirable to add C to some extent. In the present invention, C is 1 w from the viewpoint of workability.
Limited to t% or less.
Siは、固有電気抵抗を高めて渦電流損を減らし、鉄損を
低下させるのに有効な元素である。本発明ではSi:4.0wt
%以上を含有する高けい素鉄合金をその対象とし、これ
を下限とする。一方、Si含有量が7.0wt%を超えると製
造コストが上昇するほか、磁気特性、特に最大透磁率が
劣化するためこれを上限とする。以上の理由からSiの限
定範囲を4.0〜7.0wt%とする。Si is an element effective in increasing the specific electric resistance, reducing the eddy current loss, and reducing the iron loss. In the present invention, Si: 4.0wt
The target is a high silicon iron alloy containing at least%, and this is the lower limit. On the other hand, if the Si content exceeds 7.0 wt%, the manufacturing cost will increase and the magnetic properties, especially the maximum magnetic permeability will deteriorate, so this is the upper limit. For the above reasons, the limited range of Si is 4.0 to 7.0 wt%.
Mnは、Sによる熱間脆性を抑制するために必要である
が、0.5wt%を超えると固溶硬化により加工性が劣化す
るため、0.5wt%以下の範囲とする。Mn is necessary to suppress hot embrittlement due to S, but if it exceeds 0.5 wt%, the workability deteriorates due to solid solution hardening, so the content is made 0.5 wt% or less.
Alは、鋼の脱酸及び磁気特性を劣化させるNを固定する
のに有効に作用するほか、Siと同様、固有電気抵抗を高
めて鉄損を低下させる上でも有用な元素である。しかし
ながら、多量に添加すると冷間圧延性の劣化及びコスト
の上昇を招くため、その上限を2wt%とする。Al effectively acts to fix N, which deteriorates the deoxidation and magnetic properties of steel, and is also a useful element to increase the specific electrical resistance and reduce the iron loss, like Si. However, if added in a large amount, the cold rolling property deteriorates and the cost increases, so the upper limit is made 2 wt%.
上記の如く成分調整した溶鋼は、造塊−分塊圧延法もし
くは連続鋳造法(連鋳−分塊圧延の場合もある)によつ
てスラブとし、このスラブを再結晶による組織の微細化
を図りながら粗熱延し、その後本発明によつて所定の板
厚まで仕上熱延する。この仕上熱延に際し本発明では、
装入板厚(仕上熱延前板厚)の20倍以上の直径を有する
ロールを用いて圧延するものとする。The molten steel whose composition has been adjusted as described above is made into a slab by the ingot-bulk rolling method or the continuous casting method (in some cases, continuous casting-bulk rolling), and the slab is recrystallized to refine the structure. Meanwhile, it is roughly hot rolled, and then finish hot rolled to a predetermined plate thickness according to the present invention. In the present invention in this finish hot rolling,
Rolling shall be carried out using a roll having a diameter 20 times or more the thickness of the charged sheet (thickness before hot rolling for finishing).
これにより、仕上熱延前粒径に応じた未再結晶温度域で
の、好ましくは500〜1100℃での強圧下熱延により生じ
易い板厚方向の組織の不均一を改善できる。その結果、
板厚方向に均一に上記温度域での累積圧下率に応じた歪
を加えることが可能となり、優れた冷間加工性を有する
熱延板組織の形成が容易となり、得られる熱延板の冷延
性も極めて良好となる。As a result, it is possible to improve the nonuniformity of the microstructure in the sheet thickness direction, which is likely to occur due to hot-rolling under high pressure in a non-recrystallization temperature range depending on the grain size before hot rolling, preferably at 500 to 1100 ° C. as a result,
It becomes possible to apply strain uniformly in the plate thickness direction according to the cumulative rolling reduction in the above temperature range, and it becomes easy to form a hot rolled sheet structure having excellent cold workability, and the cold rolled sheet of the obtained hot rolled sheet is cooled. The ductility is also extremely good.
装入板厚の20倍未満の直径を有するロールを用いた仕上
熱延では、板厚方向の歪分布が不均一になるために熱延
板板厚方向の組織が不均一となり、冷間圧延性も劣化す
る。In finish hot rolling using a roll having a diameter less than 20 times the thickness of the charged sheet, the strain distribution in the sheet thickness direction becomes non-uniform, resulting in a non-uniform structure in the sheet thickness direction of the hot-rolled sheet and cold rolling. The property also deteriorates.
すなわち、冷間圧延によつて高けい素鋼薄板を製造する
ためには、本発明法によつて仕上熱延し熱延板組織を板
厚方向に関して均一な組織とすれば、極めて良好な冷延
性を付与することが可能となる。That is, in order to produce a high silicon steel thin plate by cold rolling, if finish hot rolling is performed by the method of the present invention and the hot rolled sheet structure has a uniform structure in the plate thickness direction, an extremely good cold Ductility can be imparted.
実施例(1) 第1表に示す化学成分からなる厚さ150mmの分塊圧延ス
ラブを1150℃で3時間加熱後、粗圧延によつて30mm厚と
した後、それぞれ300mm,480mm,600mm,820mmのロール径
を有する4種類のロール用いて、1080℃からそれぞれ仕
上熱延し、仕上温度810℃で2mm厚とした。そして、これ
らをそれぞれ酸洗後、0.35mmまで冷間圧延し、その冷間
圧延性(5点評価による冷間圧延性)を評価した。第1
図はその結果を示すもので、装入板厚の20倍以上のロー
ル径を有するロールで仕上熱延したけい素鋼板は、優れ
た冷間加工性を示すことが判る。Example (1) A slab of slabs having a thickness of 150 mm and consisting of the chemical components shown in Table 1 was heated at 1150 ° C. for 3 hours and then rough-rolled to a thickness of 30 mm, and then 300 mm, 480 mm, 600 mm and 820 mm, respectively. Four types of rolls having the following roll diameters were used to finish hot-rolling each from 1080 ° C to a finishing temperature of 810 ° C to a thickness of 2 mm. Then, each of these was pickled and cold-rolled to 0.35 mm, and its cold-rollability (cold-rollability by 5-point evaluation) was evaluated. First
The figure shows the results, and it can be seen that the silicon steel sheet finished by hot rolling with a roll having a roll diameter of 20 times or more the thickness of the charging plate exhibits excellent cold workability.
実施例(2) Siを6.5wt%(目標値)含む鉄合金にC,Al,Mn,Pを諸種の
条件で添加したインゴツトを作り、これを均熱炉に熱塊
装入して1100〜1250℃で均熱し、60〜80%の圧下率の分
塊圧延を行つた。圧延後、加熱炉に熱片装入して1100〜
1250℃に加熱し、圧下率60〜90%の粗圧延を行い、厚さ
30mmの板とした。そして、板温が1100〜900℃の段階で
仕上熱延を開始し、板厚2mmの熱延板とした。この仕上
熱延は、ロール径が300〜2100mmのロールを用いて行つ
た。熱延板の脱スケールを行つた後、75%の圧下率で冷
間圧延を行い、冷間圧延性を実施例(1)と同じ基準で
評価した。なお、冷間圧延は板温が20〜250℃の範囲で
行つた。 Example (2) An ingot was prepared by adding C, Al, Mn, and P to an iron alloy containing Si at 6.5 wt% (target value) under various conditions, and the ingot was charged into a soaking blast furnace in a hot mass to produce an ingot. After soaking at 1250 ° C, slabbing with a rolling reduction of 60 to 80% was performed. After rolling, put one piece of heat into the heating furnace and start
Heated to 1250 ℃, rough rolling with a reduction rate of 60 to 90%, and
It was a 30 mm plate. Then, finishing hot rolling was started at a stage where the sheet temperature was 1100 to 900 ° C to obtain a hot rolled sheet having a sheet thickness of 2 mm. This finish hot rolling was performed using a roll having a roll diameter of 300 to 2100 mm. After descaling the hot-rolled sheet, cold rolling was performed at a reduction rate of 75%, and the cold rollability was evaluated according to the same criteria as in Example (1). The cold rolling was performed at a plate temperature of 20 to 250 ° C.
第2図に冷間圧延性(第1図における5点評価による冷
間圧延性)が「評点5」となる(仕上熱延ロール径/板
厚)比を示す。これによればAl,C,Mn,Pの各含有量が増
すと良好な冷延性を得るに必要なロール径が増大する傾
向があるが、本発明に従い(ロール径/板厚)比を20以
上とすることにより良好な冷間圧延性が得られることが
判る。FIG. 2 shows a ratio (cold hot-rolling roll diameter / plate thickness) at which the cold rolling property (cold rolling property based on the 5-point evaluation in FIG. 1) becomes “rating 5”. According to this, as the content of each of Al, C, Mn, and P increases, the roll diameter required to obtain good cold rolling tends to increase, but according to the present invention, the (roll diameter / plate thickness) ratio is 20 It can be seen that by the above, a good cold rolling property can be obtained.
実施例(3) 第2表の組成範囲の鉄−けい素合金を溶解した。そして
この際、Fe,Si,C,Mn,P,Alの各成分値を分析してその他
の不純物元素(主なるものとしては、Cr,Ti,W,Mo,Co,C
u,S,B,As)の総量を求め、その総量を変化させて不純物
元素総量の異なる種々のインゴツトを作つた。このイン
ゴツトを均熱炉に熱塊装入して1100〜1250℃で均熱し、
60〜80%の圧下率の分塊圧延を行つた。圧延後、加熱炉
に熱片装入して1100〜1250℃に加熱し、圧下率60〜90%
の粗圧延を行い、厚さ30mmの板とした。そして、板温が
1100〜900℃の段階で仕上熱延を開始して2mmの熱延板と
した。この仕上熱延は700mmの径のロールで行つた。熱
延板の脱スケールを行つた後、板温が20〜250℃の範囲
で圧下率75%の冷間圧延を行つた。Example (3) An iron-silicon alloy having a composition range shown in Table 2 was melted. At this time, the component values of Fe, Si, C, Mn, P, and Al are analyzed to analyze other impurity elements (mainly Cr, Ti, W, Mo, Co, C
u, S, B, As) was obtained, and the total amount was varied to make various ingots having different total amounts of impurity elements. This ingot was charged into a soaking furnace with hot mass and soaked at 1100 to 1250 ° C.
Slab rolling with a reduction rate of 60 to 80% was performed. After rolling, heat pieces are put into a heating furnace and heated to 1100 to 1250 ℃, and the rolling reduction is 60 to 90%.
Was roughly rolled to obtain a plate having a thickness of 30 mm. And the plate temperature
Finishing hot rolling was started at a stage of 1100 to 900 ° C to obtain a 2 mm hot rolled sheet. This finish hot rolling was performed with a roll having a diameter of 700 mm. After descaling the hot-rolled sheet, cold rolling was performed at a sheet temperature in the range of 20 to 250 ° C and a reduction rate of 75%.
第3図は合金中の不純物元素総量と冷間加工性(5点評
価による冷間圧延性)との関係を示すもので、不純物元
素総量が増すと冷延性が若干悪くなる傾向があるが、本
発明によつて(ロール径/板厚)比を20以上とすること
により良好な冷間加工性が得られることが示されてい
る。FIG. 3 shows the relationship between the total amount of impurity elements in the alloy and the cold workability (cold rollability based on a 5-point evaluation). When the total amount of impurity elements increases, cold ductility tends to deteriorate slightly. According to the present invention, it has been shown that good cold workability can be obtained by setting the (roll diameter / plate thickness) ratio to 20 or more.
〔発明の効果〕 以上説明したようにこの発明によれば、仕上熱延時の熱
延組織制御が容易となり、飛躍的に冷間加工性に優れた
高けい素鋼板を安定かつ効率的に製造できる。 [Effects of the Invention] As described above, according to the present invention, it becomes easy to control the hot rolling structure during finish hot rolling, and it is possible to stably and efficiently manufacture a high silicon steel sheet having dramatically excellent cold workability. .
第1図は(ロール径/装入板厚)比と冷間圧延性との関
係を示すグラフである。第2図は合金中における添加元
素別の濃度と冷間圧延性が良好となる(ロール径/装入
板厚)比との関係を示したものである。第3図は合金中
の不純物総量と冷間圧延性との関係を示したものであ
る。FIG. 1 is a graph showing the relationship between (roll diameter / charging plate thickness) ratio and cold rollability. FIG. 2 shows the relationship between the concentration of each additional element in the alloy and the ratio (roll diameter / charging plate thickness) at which the cold rolling property becomes good. FIG. 3 shows the relationship between the total amount of impurities in the alloy and the cold rolling property.
フロントページの続き (72)発明者 稲垣 淳一 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 日裏 昭 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 二宮 弘憲 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Junichi Inagaki Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd. Co., Ltd. (72) Inventor Hironori Ninomiya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd.
Claims (2)
以下,Al:2wt%以下,残部鉄及び不可避不純物からなる
合金を溶製後、造塊もしくは連続鋳造により鋳造し、分
塊圧延・粗圧延もしくは粗圧延後仕上熱延し、表面酸化
膜を除去した後、冷間圧延及び焼鈍を行うことによりけ
い素鋼板を製造するに際し、装入板厚の20倍以上の直径
を有するロールを用いて仕上熱延することを特徴とする
けい素鋼板の製造方法。1. C: 1 wt% or less, Si: 4,0-7,0 wt%, Mn: 0.5 wt%
Below, Al: 2wt% or less, the alloy consisting of balance iron and unavoidable impurities is melted, then cast by ingot casting or continuous casting, and slab rolling / rough rolling or rough rolling followed by finish hot rolling to remove surface oxide film. After that, when producing a silicon steel sheet by performing cold rolling and annealing, finish production hot rolling using a roll having a diameter 20 times or more the thickness of the charged sheet Method.
とを特徴とする特許請求の範囲(1)記載のけい素鋼板
の製造方法。2. The method for producing a silicon steel sheet according to claim 1, wherein the finish hot rolling is performed in a temperature range of 500 to 1100 ° C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-18172 | 1986-01-31 | ||
JP1817286 | 1986-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62278226A JPS62278226A (en) | 1987-12-03 |
JPH07113128B2 true JPH07113128B2 (en) | 1995-12-06 |
Family
ID=11964191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1515187A Expired - Fee Related JPH07113128B2 (en) | 1986-01-31 | 1987-01-27 | Method for manufacturing silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07113128B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062907B2 (en) * | 1988-03-11 | 1994-01-12 | 日本鋼管株式会社 | Non-oriented electrical steel sheet manufacturing method |
JPH0238528A (en) * | 1988-07-29 | 1990-02-07 | Kawasaki Steel Corp | Manufacture of grain-oriented silicon steel sheet |
DE102009015009B3 (en) * | 2009-03-26 | 2010-12-09 | Federal-Mogul Burscheid Gmbh | piston ring |
-
1987
- 1987-01-27 JP JP1515187A patent/JPH07113128B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62278226A (en) | 1987-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910000010B1 (en) | Method of producing silicon fron sheet having excellent soft magnetic properties | |
JP5287615B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR930010323B1 (en) | Process for manufacturing double oriented electrical steel sheet having high magnetic flux density | |
US5330586A (en) | Method of producing grain oriented silicon steel sheet having very excellent magnetic properties | |
JP3375998B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP2020056105A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP3483265B2 (en) | Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH07113128B2 (en) | Method for manufacturing silicon steel sheet | |
JPH0365001B2 (en) | ||
JP3348802B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH1161257A (en) | Method for producing non-oriented electrical steel sheet with low iron loss and low magnetic anisotropy | |
JP3849146B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP4013262B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JPH07113129B2 (en) | Method for manufacturing silicon steel sheet | |
JPH02258931A (en) | Method for manufacturing Cr-based stainless steel thin plate using thin-wall casting method | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3294367B2 (en) | Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same | |
JP3885240B2 (en) | Method for producing unidirectional silicon steel sheet | |
JPS60190521A (en) | Manufacture of nonoriented electrical steel sheet | |
JPH06240358A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3474586B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP4191806B2 (en) | Method for producing non-oriented electrical steel sheet | |
JPH02415B2 (en) | ||
JP2819993B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties | |
JP3697767B2 (en) | Method for producing grain-oriented silicon steel sheets with extremely stable magnetic properties in the plate width direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |