[go: up one dir, main page]

JPH01102982A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01102982A
JPH01102982A JP26082687A JP26082687A JPH01102982A JP H01102982 A JPH01102982 A JP H01102982A JP 26082687 A JP26082687 A JP 26082687A JP 26082687 A JP26082687 A JP 26082687A JP H01102982 A JPH01102982 A JP H01102982A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
type
active layer
larger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26082687A
Other languages
Japanese (ja)
Inventor
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26082687A priority Critical patent/JPH01102982A/en
Publication of JPH01102982A publication Critical patent/JPH01102982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a visible light semiconductor laser having a positive refractive index guiding mechanism also in a parallel direction on a bonding face having less loss by combining AlGaInP series mixed crystal and AlGaAs series mixed crystal under specific conditions. CONSTITUTION:An active layer made of (AlxGa1-x)0.5In0.5P layer 2 lattice-bonded to a GaAs substrate 1 having a first conductivity and a double heterostructure formed of a clad layer made of (AlyGa1-y)0.5In0.5P(x<y)4 for holding the active layer are provided on the substrate 1. A second conductivity type active layer (AlzGa1-z)0.5In0.5P(x<z) layer 6 is provided in a stripe state on the second conductivity type clad layer. AluGa1-uAs layer 5 having first conductivity type or high low resistance, larger refractive index than that of the layer 6, and larger band gap than that of the layer 2 is provided at least on the part except the striped part. Since the refractive indices of the layers 6 and 5 are larger than those of the former, an optical wave is concentrated at the striped part, thereby effectively controlling a lateral mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一横モードで発振するAIGaInP系の
半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an AIGaInP semiconductor laser device that oscillates in a single transverse mode.

〔従来の技術〕[Conventional technology]

最近、肩磯金属熱分解法(以IMOVPWと略す)によ
る結晶成長により形成された単一横モードで発振するA
JGalnP系の半導体レーザ装置として、第3図に示
すような構造が報告されている( Extended 
AbStraClS of the IBth eon
−ference on 8o1id 5tate D
evices and Materi−al s 、i
”okyo 、 1986 、pp 、153−156
 )。このS造は、第1回目の成長でn型GaAs基板
ll上に、n型(λlo、s Gao、s)o、s x
n6.4I Pクラッド庖14.p型L1aAsキャッ
プ層17を順次形成する。次にフォトリングラフィによ
J、S i O,をマスクとして、p型UaAsキ’r
yプ層17とp 型(Alo、sGa(、、、)o、s
 xnO,41P 14を工、チングしてメf、*)ラ
イブを形成する。そして、810!マスクをつけたまま
、第2回目の成長を行ない工、チングしたところにn型
G a A s P、i 18を成長してメサストライ
プをn型GaAs層18で埋め込む。次に8102マス
クを除去し、p側全面に電極が形成できるように第3回
目の成長でp型GaAsコンタクト層19を成長する。
Recently, a single transverse mode oscillating A
The structure shown in Figure 3 has been reported as a JGalnP-based semiconductor laser device (Extended
AbStraClS of the IBth eon
-ference on 8o1id 5tate D
evices and Materials, i
"Okyo, 1986, pp, 153-156
). In the first growth, this S structure is grown on an n-type GaAs substrate 11 with n-type (λlo, s Gao, s) o, s x
n6.4I P clad plate 14. A p-type L1aAs cap layer 17 is sequentially formed. Next, by photolithography, using J, SiO, as a mask, p-type UaAs crystals were formed.
Yp layer 17 and p type (Alo, sGa(,,,)o,s
xnO, 41P 14 to form f, *) live. And 810! A second growth is performed with the mask on, and n-type GaAs P,i 18 is grown on the etched area to bury the mesa stripe with the n-type GaAs layer 18. Next, the 8102 mask is removed, and a p-type GaAs contact layer 19 is grown in a third growth so that an electrode can be formed on the entire p-side surface.

この構造によシミ流はn型GaAs層18によりブロッ
クされメサストライプ部にのみ注入される。また、メサ
ストライプ形成のエツチングのときに、メサストライプ
部以外のp型クラッド層の厚みを光のとじ込めには不十
分な厚みにまで工。
With this structure, the stain flow is blocked by the n-type GaAs layer 18 and is injected only into the mesa stripe portion. In addition, when etching to form mesa stripes, the thickness of the p-type cladding layer other than the mesa stripe area was etched to a thickness insufficient to trap light.

チングするのでn型GaAs層18のある部分では、こ
のn型GaAs層18に光が吸収され、メサストライプ
部のみ光は導波される。このようにこの構造では、電流
狭窒機構と光導波機構が同時につく9つけられる。
Because of this, light is absorbed by the n-type GaAs layer 18 in a certain portion of the n-type GaAs layer 18, and the light is guided only in the mesa stripe portion. In this way, in this structure, the current narrowing mechanism and the optical waveguide mechanism can be installed at the same time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この構造の光導痕は1本質的にはn型GaAs層18に
おける吸収によっておこなわれる。そのため、レーザ光
は一部GaAs層18に吸収されるためレーザの発振閾
値が比較的高いほか、レーザが高光出力で動作すると、
GaAs#18が高い電子励起状態におかれるため吸収
が飽和する現象が起こる。そのため横モード制御が不安
定になる欠点があった。本発明の目的は、この問題点を
解決した半導体レーザ装置を提供することにある。
The optical trace in this structure is essentially caused by absorption in the n-type GaAs layer 18. Therefore, a portion of the laser light is absorbed by the GaAs layer 18, so the oscillation threshold of the laser is relatively high, and when the laser operates at high optical output,
Since GaAs #18 is placed in a highly electronically excited state, a phenomenon occurs in which absorption is saturated. Therefore, there was a drawback that the transverse mode control became unstable. An object of the present invention is to provide a semiconductor laser device that solves this problem.

〔問題点を解決するための手段〕[Means for solving problems]

第一の導電性を鳴するGaAs1!#板上に、この基板
に格子整合するCklxGar−x)o、s Ino、
s Pからなる活性層と、この活性層を挾む(AlyG
a l−7)0.5In64P(x(y)からなるクラ
ッド層により形成されたダブルヘテロ構造を設け1m2
導電型クラッド層上に、ストライプ状に第2の導電型(
AI。
GaAs1 exhibits the first conductivity! #CklxGar-x) o, s Ino, lattice matched to this substrate on the board
An active layer consisting of sP and an active layer sandwiching this active layer (AlyG
a l-7) A double heterostructure formed by a cladding layer consisting of 0.5In64P (x(y)) was provided for 1 m2
The second conductivity type (
A.I.

Ga I−g )o、s Ino、s P (X < 
Z )を設け、同じく第2の導電型クラッド層上の前記
ストライプ部分を除く部分に、第一の導1性或いは高低
抵抗を有し且つ前記(AI、 Ga t−、)e、s 
I no、s Pの屈折率よりも大なる屈折率を有し且
2活性層(AJxGa、−8)o、5In6.5 P 
j pバンドギャップの大なる組成を有するAluGa
、−uAsを少なくとも設けて成ることを特徴としてい
る。
Ga I-g ) o, s Ino, s P (X <
Z ), which also has the first conductivity or high/low resistance on the second conductivity type cladding layer except for the stripe part, and has the above (AI, Ga t-, )e, s
I no,s has a refractive index larger than that of P and has two active layers (AJxGa, -8)o,5In6.5P
AluGa with a large p bandgap composition
, -uAs.

〔作用〕[Effect]

上述の本発明の構成を用いると、電流狭9についてはn
型AJ、GaAsを用いれば従来と同一機構である。ま
た、AJを含むAJGaAs結晶を用いるため、特に高
抵抗層が得やすく、高抵抗AlGaA3を用いれば電流
狭搾がよシ容易に実現できる。
Using the configuration of the present invention described above, for the current narrow 9, n
If type AJ and GaAs are used, the mechanism is the same as the conventional one. In addition, since AJGaAs crystal containing AJ is used, it is particularly easy to obtain a high resistance layer, and if high resistance AlGaA3 is used, current narrowing can be realized more easily.

さて、光の導波機構については1本発明によれば損失の
少ない屈折率導波型となる。(AI、Gat−、)。、
According to the present invention, the optical waveguide mechanism is of a refractive index waveguide type with low loss. (AI, Gat-,). ,
.

Ino、sPのバンドギャップEg(y)は、yの増大
とともに大きくなるがy〜1においても高々2.35e
Vである。一方、AJuGa、−uAsのノ(ンドギャ
ップgg(u)は、U≧0.5で間接遷移型になるがU
の増加とともに単調に増大する。しかし。
The bandgap Eg(y) of Ino, sP increases as y increases, but even at y~1 it is at most 2.35e.
It is V. On the other hand, the node gap gg(u) of AJuGa, -uAs becomes an indirect transition type when U≧0.5, but U
increases monotonically as . but.

U〜1でも高々2.2eVである。ところで、パンの関
係が存在するが、nは直接遷移型のバンドギヤ、プによ
ってはt琺まる。従ってA lu G a t −u 
A sのu)0.5における直接遷移ギヤ、プはU〜1
のとき、約3.0eVと大きい。従って、大きなUにお
いては、nの小さな値が対応する。この点を利用して、
AIGaInP系混晶とA I G a A s系混晶
を本発明が精求する一定の条件下で組合わせることによ
って、損失の少ない接合面に平行方向にも正の屈折率導
波機構を有する可視光半導体レーザを得ることができる
Even for U~1, it is at most 2.2 eV. By the way, there is a pan relationship, but n is a direct transition type band gear, and t depends on the type of band gear. Therefore, A lu G a t -u
Direct transition gear at u) 0.5 of A s, p is U ~ 1
When , it is as large as about 3.0 eV. Therefore, for a large U, a small value of n corresponds. Taking advantage of this point,
By combining AIGaInP-based mixed crystal and AIGaAs-based mixed crystal under certain conditions pursued by the present invention, it has a positive refractive index waveguide mechanism with low loss even in the direction parallel to the junction plane. A visible light semiconductor laser can be obtained.

すなわち、活性層に隣接する第2の導電型クラッド層に
染み出した光波は、ストライプ状の(AJGa 1−、
)6.5In64 P及び、その両側に接して設けられ
たAJ、Ga□−uAsに達するが、ストライプ部(A
lzG”x−1)o、s In0.、 PとAI、Ga
11Asとの屈折率が前者のそれが大きいために、スト
ライプ部に集中し、横モード制御が有効に行われる。
In other words, the light waves leaking into the second conductivity type cladding layer adjacent to the active layer form a stripe-shaped (AJGa 1-,
)6.5In64P, AJ provided in contact with both sides of it, and Ga□-uAs are reached, but the stripe part (A
lzG"x-1) o, s In0., P and AI, Ga
Since the former has a larger refractive index than that of 11As, it is concentrated in the stripe portion, and transverse mode control is effectively performed.

〔実施例〕〔Example〕

以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す半導体レーザ装置の断
面図であシ、第2図はこの半導体レーザ装置の製作工程
図である。
FIG. 1 is a sectional view of a semiconductor laser device showing an embodiment of the present invention, and FIG. 2 is a manufacturing process diagram of this semiconductor laser device.

まず1回目の成長で、n型GaAs基板1(S1ドープ
、 n = 2 X 1 o”cm−”)上に、n型(
Alo、5Gao、s)o、st I no、4s P
クラッド層2(fl=IX10”crn−3:厚み1.
2/jm)、GaInP活性層3(アンドープ;厚み0
.1μm)、下部p型(Alo、s Gao、4)o、
sI no、s Pクラッド層4(p=5×1017c
!rL−コ;厚み0、:lam)、上sp型(Alo、
s Gao、s)o、s Ino、s Pクラッド層6
 (pm5 X l 017cIL−3;厚みjAm)
、p型G a A S ’? ヤ、プ層7 (P=2X
10”cm−”:厚み0.5μm)を順次区長形成した
(第2図]1aJ )。
First, in the first growth, n-type (
Alo, 5Gao, s)o, st I no, 4s P
Cladding layer 2 (fl=IX10”crn-3: thickness 1.
2/jm), GaInP active layer 3 (undoped; thickness 0
.. 1 μm), lower p-type (Alo, s Gao, 4) o,
sI no, s P cladding layer 4 (p=5×1017c
! rL-co; thickness 0, :lam), upper sp type (Alo,
s Gao, s)o, s Ino, s P cladding layer 6
(pm5 X l 017cIL-3; thickness jAm)
, p-type G a A S '? Ya, P layer 7 (P=2X
10"cm-" (thickness: 0.5 μm) were sequentially formed into sections (FIG. 2] 1aJ).

成長には、威圧M OV P E法を用い成長条件は。For growth, the coercive MOVPE method is used and the growth conditions are as follows.

温度700℃、圧カフ 0Torr、V/[1−=20
0゜キャリアガス(Hs)の全流量15 (17m1n
)とした。原料にはトリメチルインジウム(T11dI
:(OH3)IIn)、)リエチルガリウム(TWG:
(C2H5)3Ga)、)リンチルアルミニウム(’r
M” : (CHs)s A−l) 、アルシン(As
H3)、ホスフィン(P)Ig)、p型ドーパントには
ジメチル亜鉛(DMZ : (CH3)2 Zn )、
n型ドーパントにはセレン化水素(H,8e)を用いた
。こうして成長じたウェハにフォトリングラフィにより
ストライプ状のdio、マスク9を形成した(第2図(
b))。
Temperature 700℃, pressure cuff 0Torr, V/[1-=20
0゜Total flow rate of carrier gas (Hs) 15 (17m1n
). The raw material is trimethylindium (T11dI
:(OH3)IIn),)ethylgallium (TWG:
(C2H5)3Ga),) lynchylaluminum ('r
M”: (CHs)s A-l), arsine (As
H3), phosphine (P)Ig), dimethylzinc (DMZ: (CH3)2Zn) for the p-type dopant,
Hydrogen selenide (H, 8e) was used as the n-type dopant. Striped dio and mask 9 were formed on the wafer thus grown by photolithography (see Fig. 2).
b)).

次にこの8i0,9を用いて化学工、チンダ液によ#)
p型GaAsキャップ層7をメサ状にエツチングし、つ
づいて、上部p型(klo、s (Jao、s)o、5
tT−no、aePクラッド層6をメサ状にエツチング
した(第2図(C))。そして8 i 02マスク9を
つけたままMOVPBにより2回目の成長を行ないn型
λらGa1−uAs層5を成長した(第2図(dl ”
)、次に5i02マスク9をエツチングで除去しく第2
図tel)。
Next, use this 8i0, 9 to apply chemical engineering and tyndah liquid.
The p-type GaAs cap layer 7 is etched into a mesa shape, and then the upper p-type (klo, s (Jao, s) o, 5
tT-no, the aeP cladding layer 6 was etched into a mesa shape (FIG. 2(C)). Then, a second growth was performed by MOVPB with the 8i02 mask 9 attached to grow an n-type λ Ga1-uAs layer 5 (see Figure 2 (dl'')).
), then remove the 5i02 mask 9 by etching.
Figure tel).

MOVPgによシ33回目成長を行ってp型GaAsコ
ンタクト層8を成長した(第2図げ))。2回目、3回
目の成長条件は上述の1回目の成長と同一である。最後
にpm”画電極を形成して、キャビティ長250μmに
へき開し1個々のチップに分離した。
A p-type GaAs contact layer 8 was grown by performing the 33rd growth using MOVPg (see Figure 2). The growth conditions for the second and third times are the same as those for the first growth described above. Finally, a pm" picture electrode was formed, and the chip was cleaved to a cavity length of 250 μm and separated into individual chips.

上述の方法によシ作製した本発明のレーザウェハ30.
トと、従来のレーザウェハ30.トカら表    1 表1かられかるように1本発明を用いると、吸収損失の
少ない低閾値のレーザ装置をつくることができる。
Laser wafer 30 of the present invention manufactured by the method described above.
and conventional laser wafer 30. Table 1 As can be seen from Table 1, by using the present invention, a laser device with low absorption loss and a low threshold value can be manufactured.

以上述べた実施例では、活性層をGaInP、クラッド
層を(AA’o、s Gao、s)o、s Ino、s
P等としたが。
In the embodiments described above, the active layer is GaInP, and the cladding layer is (AA'o,s Gao,s)o,s Ino,s
I named it P etc.

発振波長を変える(短波長にする)には1本発明の要件
を満たす範囲で活性層のAノ組成を増やせはよい。
In order to change the oscillation wavelength (make it shorter), it is better to increase the A composition of the active layer within a range that satisfies the requirements of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように本発明によシ1発振閾電流値の小さな基本横
モード制御AJGaInP系半導体レーザ装置を得るこ
とがする。
As described above, according to the present invention, a basic transverse mode control AJGaInP semiconductor laser device having a small oscillation threshold current value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図18)
〜(f)は本発明の裏作工程を示す断面図、第3図は、
従来の半導体レーザ装置の例を示す断面図である。図に
おいて、1.11はn型GaAs基板、 2Fin型(
klo、s G ao、s )o、s I n11.s
 Pクラッド層。 3.13はGaInP活性層、4は下部p型(AA’(
1,4G ao、s )o、s I no、i Pクラ
ッド層・5はn型A16,11 G a64As層、6
は上記p型GaAsキャップ層、8゜19はp型GaA
sコンタクト層、9はSin。 マスク、12はn型(Alo、s Ga6.5)6.5
 Ino、s Pクラッド層、14はp型(Alo、s
 Gao、s)o、s I no、s Pクラッド層、
18はn型GaAs層。 代理人 弁理士  内 原   晋 着 1 図 (0)   ’         (d)(b)(c) (C)            (f)第 2 図
Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (18)
~(f) is a sectional view showing the back production process of the present invention, and FIG.
1 is a cross-sectional view showing an example of a conventional semiconductor laser device. In the figure, 1.11 is an n-type GaAs substrate, 2Fin type (
klo, s G ao, s ) o, s I n11. s
P cladding layer. 3.13 is the GaInP active layer, 4 is the lower p-type (AA'(
1,4G ao, s ) o, s I no, i P cladding layer ・5 is n-type A16,11 Ga a64As layer, 6
8゜19 is the p-type GaAs cap layer, and 8゜19 is the p-type GaAs cap layer.
s contact layer, 9 is Sin. Mask, 12 is n-type (Alo, s Ga6.5) 6.5
Ino, s P cladding layer, 14 is p-type (Alo, s
Gao, s)o, s I no, s P cladding layer,
18 is an n-type GaAs layer. Agent Patent Attorney Shinku Uchihara 1 Figure (0) ' (d) (b) (c) (C) (f) Figure 2

Claims (1)

【特許請求の範囲】[Claims]  第1の導電性を有するGaAs基板上に、この基板に
格子整合する(Al_xGa_1_−_x)_0_._
5In_0_._5Pからなる活性層と、この活性層を
挾む第1及び第2の導電型の(Al_yGa_1_−_
y)_0_._5In_0_._5P(x<y)からな
るクラッド層により形成されたダブルヘテロ構造を設け
、前記第2導電型クラッド層上に、ストライプ状に第2
の導電型(Al_zGa_1_−_z)_0_._5I
n_0_._5P(x<z)を設け、同じく前記第2の
導電型クラッド層上で前記ストライプ状の第2の導電型
(Al_zGa_1_−_z)_0_._5In_0_
._5Pの両側部分に、第1の導電性或いは高低抵抗を
有し且つ前記(Al_zGa_1_−_zIn_0_.
_5Pの屈折率よりも大なる屈折率を有し且つ活性層(
Al_xGa_1_−_x)_0_._5In_0_.
_5Pよりバンドギャップの大なる組成を、有するAl
_uGa_1_−_uAsを少なくとも設けて成ること
を特徴とする半導体レーザ装置。
(Al_xGa_1_-_x)_0_. _
5In_0_. An active layer consisting of _5P and first and second conductivity type (Al_yGa_1_-_
y)_0_. _5In_0_. A double heterostructure formed of a cladding layer consisting of _5P (x<y) is provided, and a second conductive type cladding layer is provided in a stripe shape on the second conductivity type cladding layer.
conductivity type (Al_zGa_1_-_z)_0_. _5I
n_0_. _5P (x<z), and the striped second conductivity type (Al_zGa_1_-_z)_0_. _5In_0_
.. Both side portions of _5P have first conductivity or high and low resistance, and have the above-mentioned (Al_zGa_1_-_zIn_0_.
It has a refractive index larger than that of _5P and has an active layer (
Al_xGa_1_-_x)_0_. _5In_0_.
Al having a composition with a larger band gap than _5P
A semiconductor laser device comprising at least _uGa_1_-_uAs.
JP26082687A 1987-10-16 1987-10-16 Semiconductor laser device Pending JPH01102982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26082687A JPH01102982A (en) 1987-10-16 1987-10-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26082687A JPH01102982A (en) 1987-10-16 1987-10-16 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01102982A true JPH01102982A (en) 1989-04-20

Family

ID=17353294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26082687A Pending JPH01102982A (en) 1987-10-16 1987-10-16 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01102982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440471A2 (en) * 1990-01-31 1991-08-07 Nec Corporation Transverse-mode stabilized laser diode
EP0477033A2 (en) * 1990-09-21 1992-03-25 Sharp Kabushiki Kaisha A semiconductor laser device
US6590920B1 (en) 1998-10-08 2003-07-08 Adc Telecommunications, Inc. Semiconductor lasers having single crystal mirror layers grown directly on facet
JP2008071803A (en) * 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan Compound mixed crystal semiconductor light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172782A (en) * 1986-01-24 1987-07-29 Nec Corp Semiconductor light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172782A (en) * 1986-01-24 1987-07-29 Nec Corp Semiconductor light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440471A2 (en) * 1990-01-31 1991-08-07 Nec Corporation Transverse-mode stabilized laser diode
EP0477033A2 (en) * 1990-09-21 1992-03-25 Sharp Kabushiki Kaisha A semiconductor laser device
US6590920B1 (en) 1998-10-08 2003-07-08 Adc Telecommunications, Inc. Semiconductor lasers having single crystal mirror layers grown directly on facet
JP2008071803A (en) * 2006-09-12 2008-03-27 Institute Of National Colleges Of Technology Japan Compound mixed crystal semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
US5143863A (en) Method of manufacturing semiconductor laser
JPH01102982A (en) Semiconductor laser device
JPS603181A (en) Semiconductor laser device
JPH0728102B2 (en) Semiconductor laser and manufacturing method thereof
JPH02228087A (en) Semiconductor laser element
JPS603178A (en) Semiconductor laser device
JPS641952B2 (en)
JPS6334993A (en) Semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JPS60137088A (en) Semiconductor laser device
JPH02172288A (en) Semiconductor laser device
JPH0414277A (en) Semiconductor laser and its manufacture
JPS621290A (en) Hetero-junction type semiconductor laser
JPH0558594B2 (en)
JPH0373584A (en) Semiconductor laser device
JPS58196084A (en) Distributed feedback semiconductor laser device
JPH01300582A (en) Semiconductor laser device
JPS63314882A (en) Semiconductor laser device
JPH01244691A (en) Semiconductor laser device
JPH04218993A (en) Semiconductor laser and its manufacture
JPH0314280A (en) Large-output semiconductor laser and manufacture thereof
JPH03256387A (en) Semiconductor laser device
JPH02213183A (en) Semiconductor laser and manufacture thereof
JPH04162482A (en) Semiconductor laser
JPH04229678A (en) Semiconductor laser device