[go: up one dir, main page]

JPH03256387A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH03256387A
JPH03256387A JP5544090A JP5544090A JPH03256387A JP H03256387 A JPH03256387 A JP H03256387A JP 5544090 A JP5544090 A JP 5544090A JP 5544090 A JP5544090 A JP 5544090A JP H03256387 A JPH03256387 A JP H03256387A
Authority
JP
Japan
Prior art keywords
layer
active layer
type
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5544090A
Other languages
Japanese (ja)
Inventor
Seiji Kawada
誠治 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5544090A priority Critical patent/JPH03256387A/en
Publication of JPH03256387A publication Critical patent/JPH03256387A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture an AlGaInP-based semiconductor laser, whose astigmatism is small and which is oscilatted in a single transverse mode, in a self- aligned manner by a method wherein a GaAs layer having a thickness which makes a quantum level larger than the energy gap of an active layer is formed in parts other than the surface of a mesa structure of a p-clad layer of a specific structure and a p-type layer of a specific structure is formed on the whole surface of it. CONSTITUTION:A double heterostructure composed of the following is formed on an n-type GaAs substrate 1: an active layer 3 composed of GaInP or AlGaInP or a quantum well layer of them; and clad layers 2, 4 which sandwich the active layer 3, whose refractive index is smaller than that of the active layer 3 and which is composed of AlGaInP. The p-type (AlXGa1-X)0.5In0.5 clad layer 4 at the upper part of the active layer 3 has a stripe-shaped mesa structure formed by making its layer thickness partially thick. A GaAs layer 5 having a thickness which makes a quantum level larger than the energy gap of the active layer 3 is formed in parts other than the surface of the mesa structure. A p-type (AlYGa1-Y)0.5In0.5P (where Y>X) layer 6 is formed on the whole surface of the structures.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一物モードて発振するAJfGaInP系
の半導体レーザ装置に−する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to an AJfGaInP semiconductor laser device that oscillates in a single object mode.

〔従来の技術〕[Conventional technology]

最近、有機金風熱分解法(以後MOVPEと略す)によ
る結晶或表によシ形戚された単一槓モードで発振するA
j!’GaInP系の半導体レーザ装置として、第3図
に示すような半導体レーザ装置が報告されている(エク
ステンプイド・アブストラクツ・オン・ザ・エイティー
ンス・カンファレンス・オン・ソリッド・ステート・デ
バイシーズ・アンド・マテリアルズ(Extended
 Abstracts of the 18thCon
ference on Sol id 5tate D
evices and Mater−ials 、 T
okyo 、 1986 、 l)p、 153−15
6 )。この半導体レーザ装置は以下の手順で作製する
。筐ず、第一回目の成長でIll fJ GaAs基板
1上に、n型(Ano。
Recently, a crystal that oscillates in a single oscillation mode has been developed using an organic metal wind pyrolysis method (hereinafter abbreviated as MOVPE).
j! 'As a GaInP-based semiconductor laser device, a semiconductor laser device as shown in Fig. 3 has been reported (Extemporized Abstracts on the Eighteenth Conference on Solid State Devices and Materials (Extended
Abstracts of the 18thCon
ference on solid 5tate D
evices and Mater-ials, T
okyo, 1986, l) p, 153-15
6). This semiconductor laser device is manufactured by the following procedure. In the first growth, an n-type (Ano.

G a 6,4) 6.5 I n @、6Fクラッド
層2 、GaInP活性層3゜p型(Ala、IB G
a6.4 )(1,5In6.5 FクラッドMl 4
 * p型Ga 6,5 I n (1,5Pキー?5
Tプ層7.を順次形成する0次にフォトリソクラフィー
によ#)8 t O2をマスクとして、メサストライプ
を形成する。そして8i0□マスクをつけた1ま、第二
回目の成長を行ないエツチングしたところをn型GaA
sブロック層10で埋め込む。次に8i0□マスクを除
去し、p−」全面に電極が形成できるように第三回目の
成長でp型GaAsコンタクト層8を成長する。
Ga 6,4) 6.5 I n @, 6F cladding layer 2, GaInP active layer 3°p type (Ala, IB G
a6.4 ) (1,5In6.5 F clad Ml 4
* p-type Ga 6,5 I n (1,5P key?5
T-layer 7. Using 0-order photolithography to sequentially form #)8tO2 as a mask, mesa stripes are formed. Then, with the 8i0□ mask attached, the second growth was performed and the etched area was etched with n-type GaA.
Embed with s block layer 10. Next, the 8i0□ mask is removed, and a p-type GaAs contact layer 8 is grown in a third growth so that an electrode can be formed on the entire p-'' surface.

この構造の半導体レーザ装置では、電流はn型GaAs
層10にようブロックされ、メサストライプ部にのみ注
入される。また、メサストライプ形成のエツチングのと
きに、メサストライプ部以外のp型りラッド層の厚みを
光の閉じ込めには不十分な犀み會でエツチングするので
n型GaAs層10のある部分では、このn型GaAs
 Hlt 10に光が吸収され、メサストライプ部にの
み光は導波される。
In a semiconductor laser device with this structure, the current flows through n-type GaAs.
It is blocked by layer 10 and implanted only in the mesa stripes. In addition, when etching to form a mesa stripe, the thickness of the p-type rad layer other than the mesa stripe portion is etched with insufficient etching to confine light. n-type GaAs
Light is absorbed by Hlt 10 and guided only to the mesa stripe portion.

このようにこの半導体レーザ装置では、電流狭窄機構と
光導波機構が同時に作シ付けられる。
In this way, in this semiconductor laser device, the current confinement mechanism and the optical waveguide mechanism are created simultaneously.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の第3図の半導体レーザ装置では、モードの安定に
光の吸収を用い、かつ横方向の実効屈折率差がステップ
状についているために、メサストライプ両脇で光の波面
が遅れてし1い、非点収差が大きくなってし筐うという
問題がある。
In the semiconductor laser device shown in FIG. 3 described above, light absorption is used to stabilize the mode, and the effective refractive index difference in the lateral direction is stepped, so the wavefront of light is delayed on both sides of the mesa stripe. However, there is a problem in that astigmatism becomes large.

本発明の目的は、上述の問題点を解決し、MOVPE法
による非点収差の小さい横モード制御構造のAAtGa
InP系半導体レーザ装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and to obtain an AAtGa film with a transverse mode control structure with small astigmatism by MOVPE
An object of the present invention is to provide an InP-based semiconductor laser device.

(IIILを解決するための手段〕 本発明は、n型GaA s基板上に、GaInPもしく
 FiAJGa I nPもしくはそれらの量子井戸層
から欧る活性層と、この活性層を挾み活性層ようも屈折
率の小さIAA!GaInPからなるクラッド層とから
欧るダブルへテロ構造が形成してあう、前記活性層の上
側のp型(AlxGa□−x)6.5 ”0.5 Pク
ラ71層は層専が部分的に厚くなることによう形成され
るストライプ状のメサ構造を有し、前記メサ構造の上面
以外の部分に量子準位が活性層のエネルギーキャップよ
シもすきくなる丹みのG aA s層を菊し、これらの
構造の上全面にp型(AAiy Ga 1イ)。s I
 n 0.s P (Y>X )層を有することを%徴
とする。
(Means for Solving IIIL) The present invention provides an active layer formed by forming an active layer formed from GaInP or FiAJGaInP or a quantum well layer thereof on an n-type GaAs substrate, and an active layer sandwiching this active layer. The p-type (AlxGa□-x) 6.5''0.5P cladding layer 71 above the active layer forms a double heterostructure with the cladding layer made of IAA!GaInP with a small refractive index. has a striped mesa structure that is formed by partially thickening the layer, and the quantum level is formed in parts other than the top surface of the mesa structure, which is larger than the energy cap of the active layer. A GaAs layer is formed on the entire surface of these structures, and a p-type (AAiy Ga1) layer is formed on the entire surface of these structures.
n 0. The presence of an s P (Y>X) layer is a % characteristic.

〔作用〕[Effect]

本発明の構造によれば、メサ構造の上面以外の部分の量
子準位が活性層のエネルギーキャップよシも大きくなる
厚みのGaAs層のある部分では、それを挾み込んでい
るp型(AlXGa1−x)6.5 In(1,5Pク
ラッド層とp型(AjYGal−Y) (1,s I 
n0.、P (y>X)層に、GaAs層との大きなバ
ンド不連続によるキャリヤーの空乏層が広がシ、ホール
が流れることができなくな少電流のフロック層として働
く、またGaAs層は、量子単位が活性層のエネルギー
キャップよりも大きく危る厚みと規定しであるので活性
層の光は吸収できない。そして構造の上全面のpffi
(AjYGaly)0.5In0.5P(Y>X)層は
、p fIi(AlXGa1−x ) 6.B In6
.5 Fクランド層ようも屈折率が小さいので、光の吸
収は用いない実屈折率型の導波機構となシ非点収差を小
さく押さえることができる。
According to the structure of the present invention, in a part of the GaAs layer whose thickness is such that the quantum level of the part other than the top surface of the mesa structure is larger than the energy cap of the active layer, the p-type (AlXGa1 -x) 6.5 In (1,5P cladding layer and p-type (AjYGal-Y) (1,s I
n0. , a carrier depletion layer spreads in the P (y> Since the unit is specified to be thicker than the energy cap of the active layer, the active layer cannot absorb light. and ffi on the entire upper surface of the structure
(AjYGaly)0.5In0.5P (Y>X) layer is p fIi (AlXGa1-x) 6. B In6
.. Since the 5F ground layer also has a small refractive index, it is possible to suppress astigmatism to a small value with a real refractive index type waveguide mechanism that does not use light absorption.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第1図は本発明の半導体レーザ装置の一実施例を示す断
面図で1、第2図はその製造工租図でるる。
FIG. 1 is a sectional view showing one embodiment of a semiconductor laser device of the present invention, and FIGS. 1 and 2 are manufacturing process diagrams thereof.

筐す一回目の減圧MOVPEによる成長で、n型GaA
s基板1(S1ドープ;n−2X10  cIrL )
上に、n型(A# 0.6 Ga 04) 0.s 1
 n O,s Pクララド層2(n−5x1om;Jl
み1μ伺)、Ga O,s I n O,s P活性層
3(アンドープ;厚み0.1μm)、p型(AlO,6
GaO,4)0.5I n 6.5 Fクララ1層4 
(p=5X10  crn  ;厚み1.0μm)を順
次形成した(第2図(al )、成長条件は、温度70
0℃、圧カフ 0Torr、 V/ m = 200 
、キャリヤガス(H2)の全流量151/rninとし
た。
During the first low-pressure MOVPE growth, n-type GaA
s substrate 1 (S1 doped; n-2X10 cIrL)
On top, n-type (A# 0.6 Ga 04) 0. s 1
n O, s P Clarado layer 2 (n-5x1om; Jl
Ga O, s I n O, s P active layer 3 (undoped; thickness 0.1 μm), p-type (AlO, 6
GaO, 4) 0.5I n 6.5 F Clara 1 layer 4
(p = 5 x 10 crn; thickness 1.0 μm) were sequentially formed (Fig. 2 (al), the growth conditions were a temperature of 70 m
0℃, pressure cuff 0Torr, V/m = 200
, the total flow rate of the carrier gas (H2) was 151/rnin.

原料としては、トリメチルインジウム(TMI:(CH
a ) s I n )、トリ:x−y−ルカリウム(
TEG:(C4Hs ) 3Ga)、トリメチルアルミ
ニラA (TMA :(CH3) 3Al)、アルシン
(AsHa)、ホスフィン(PHa)、n!トド−ント
にはセレン化水素(H2Se)、p型ドーパントニハシ
クロペンタチェニルマグネシウム(CpzMg)を用い
た。こうして成長したウェハにフォトリングラフィによ
シ暢4μmのストライプ状の8i02マスクを形成した
(第2図(b))。
As a raw material, trimethylindium (TMI: (CH
a) s I n ), tri:xy-rupotassium (
TEG: (C4Hs) 3Ga), trimethylaluminilla A (TMA: (CH3) 3Al), arsine (AsHa), phosphine (PHa), n! Hydrogen selenide (H2Se) and p-type dopant cyclopentachenylmagnesium (CpzMg) were used as the dopant. On the thus grown wafer, a 4 μm striped 8i02 mask was formed by photolithography (FIG. 2(b)).

次にこの5in2マスクを用いて塩酸系のエツチング液
によシ、p型(A16.6 Ga 6,4 ) 65I
 n O,S Pクランド眉4の途中筐で(ここでは0
.8μmとした)をメサ状にエツチングした(第2図<
CI )、つぎに5i02マスクをつけた1ま減圧MO
VPEによシ二回目の成長を6晩いp型G aAs層5
(厚み50A)を形成した(第2図(d) )、そして
第2図(elに示すように、8i02マスクを除去した
後に・減圧MOVPEによシ三回目の成長を6危いp型
(Al0.5Gal0.z) 0.5In(L5Pキャ
ップ716 (p−5xlOtx  ;厚み1.0Jl
−)q I)mGaosIn0.sPP層、p型(ja
As =r yタグ1層8、を形成した(第2図(f)
)。最後に、p。
Next, using this 5in2 mask, p-type (A16.6 Ga 6,4 ) 65I was etched with a hydrochloric acid-based etching solution.
n O, S In the middle of the P clan eyebrow 4 (here 0
.. 8 μm) was etched into a mesa shape (Fig.
CI ), then 1-mass decompression MO with 5i02 mask on
The p-type GaAs layer 5 was grown by VPE for 6 nights.
(thickness 50A) (Fig. 2(d)), and after removing the 8i02 mask, the third growth was performed by low pressure MOVPE as shown in Fig. 2(d). Al0.5Gal0.z) 0.5In (L5P cap 716 (p-5xlOtx; thickness 1.0Jl
-) q I) mGaosIn0. sPP layer, p type (ja
As=ry tag 1 layer 8 was formed (Fig. 2(f)
). Finally, p.

n両電極(図示省略)を形成してキヤとティ長300μ
偏にへき関し、個々のチップに分離して半導体レーザ装
置とした。
n both electrodes (not shown) are formed and the gear and tee length is 300μ
As a result, the semiconductor laser device was separated into individual chips.

こうして得られた本発明のレーザ装置の非点収差を、メ
サ幅4μ餌の従来構造の半導体レーザ装置を比較したと
ころ、メサ幅4μmの従来構造の半導体レーザ装置が1
2μ惰程度の非点収差を持つのに比べ、メサ幅4μmの
本発明の半導体レーザ装置の非点収差は3μ解以下でb
った。
When the astigmatism of the laser device of the present invention thus obtained was compared with that of a semiconductor laser device of a conventional structure with a mesa width of 4 μm, it was found that the semiconductor laser device of a conventional structure with a mesa width of 4 μm was 1
Compared to the astigmatism of about 2 μm, the semiconductor laser device of the present invention with a mesa width of 4 μm has an astigmatism of less than 3 μm.
It was.

以上述べた実施例では、活性層やクラッド層の組成を規
定したが、活性層組成は製作する半導体レーザ装置に要
求される発振波長要件を満たす組成、もしくは量子井戸
にすればよく、クラッド層組成は用いる活性層組成に対
して光とキャリヤの閉じ込めが十分にできる組成を選べ
ばよい。また半導体レーザ装置Kl!求される特性によ
りSCH構造にするなどクラッド層をよシ多層化するこ
ともできる。
In the embodiments described above, the compositions of the active layer and cladding layer are specified, but the active layer composition may be a composition that satisfies the oscillation wavelength requirements for the semiconductor laser device to be manufactured, or a quantum well. It is sufficient to select a composition that can sufficiently confine light and carriers for the active layer composition used. Also, the semiconductor laser device Kl! Depending on the required characteristics, the cladding layer can be made more multi-layered, such as having an SCH structure.

〔発明の効果〕〔Effect of the invention〕

このように本発明により、非点収差の小さい半導体レー
ザ装置が自己整合的に製作できる。
As described above, according to the present invention, a semiconductor laser device with small astigmatism can be manufactured in a self-aligned manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図(at〜
(f)Fi本発明の製作工程を示す概略図、第3図は従
来の半導体レーザ装置の例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
(f) Fi A schematic diagram showing the manufacturing process of the present invention, and FIG. 3 is a cross-sectional view showing an example of a conventional semiconductor laser device.

Claims (1)

【特許請求の範囲】[Claims] n型GaAs基板上に、GaInPもしくはAlGaI
nPもしくはそれらの量子井戸層からなる活性層と、こ
の活性層を挾み活性層よりも屈折率の小さなAlGaI
nPからなるクラッド層とからなるダブルヘテロ構造が
形成してあり、前記活性層の上側のp型(Al_XGa
_1_−_X)_0_._5In_0_._5Pクラッ
ド層は層厚が部分的に厚くなることにより形成されるス
トライプ状のメサ構造を有し、前記メサ構造の上面以外
の部分に量子準位が活性層のエネルギーギャップよりも
大きくなる厚みのGaAs層を有し、これらの構造の上
全面にp型(Al_YGa_1_−_Y)_0_._5
In_0_._5P(Y>X)層を有することを特徴と
する半導体レーザ装置。
GaInP or AlGaI on n-type GaAs substrate
An active layer consisting of nP or a quantum well layer thereof, and an AlGaI layer sandwiching this active layer and having a smaller refractive index than the active layer.
A double heterostructure consisting of a cladding layer made of nP is formed, and a p-type (Al_XGa
_1_-_X)_0_. _5In_0_. The _5P cladding layer has a striped mesa structure formed by partially thickening the layer, and a portion other than the top surface of the mesa structure has a thickness such that the quantum level is larger than the energy gap of the active layer. It has a GaAs layer, and p-type (Al_YGa_1_-_Y)_0_. _5
In_0_. A semiconductor laser device characterized by having a _5P (Y>X) layer.
JP5544090A 1990-03-06 1990-03-06 Semiconductor laser device Pending JPH03256387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5544090A JPH03256387A (en) 1990-03-06 1990-03-06 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5544090A JPH03256387A (en) 1990-03-06 1990-03-06 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH03256387A true JPH03256387A (en) 1991-11-15

Family

ID=12998656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5544090A Pending JPH03256387A (en) 1990-03-06 1990-03-06 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH03256387A (en)

Similar Documents

Publication Publication Date Title
JPH0656906B2 (en) Semiconductor laser device
JPH06350189A (en) Semiconductor laser
JPS61190994A (en) Semiconductor laser element
JPH03256387A (en) Semiconductor laser device
JPH0258883A (en) Semiconductor laser device
JPS637692A (en) Semiconductor light-emitting device
JPH02172287A (en) Semiconductor laser device
JP2550725B2 (en) Semiconductor laser and manufacturing method thereof
JPH04154184A (en) Semiconductor laser and manufacture thereof
JPH01102982A (en) Semiconductor laser device
JP2611509B2 (en) Semiconductor laser
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP2973215B2 (en) Semiconductor laser device
JPH0373584A (en) Semiconductor laser device
JPH01300582A (en) Semiconductor laser device
JPH0353581A (en) Manufacture of semiconductor laser device
JPH02213183A (en) Semiconductor laser and manufacture thereof
JPH0414277A (en) Semiconductor laser and its manufacture
JP3144821B2 (en) Semiconductor laser device
JPH04106991A (en) Semiconductor laser
JPH0329385A (en) Semiconductor laser and its manufacturing method
JPH0388382A (en) Semiconductor laser
JPH02172288A (en) Semiconductor laser device
JPS62144379A (en) Semiconductor laser element
JP2908125B2 (en) Semiconductor laser device and method of manufacturing the same