[go: up one dir, main page]

JP7575775B2 - Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part - Google Patents

Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part Download PDF

Info

Publication number
JP7575775B2
JP7575775B2 JP2020199675A JP2020199675A JP7575775B2 JP 7575775 B2 JP7575775 B2 JP 7575775B2 JP 2020199675 A JP2020199675 A JP 2020199675A JP 2020199675 A JP2020199675 A JP 2020199675A JP 7575775 B2 JP7575775 B2 JP 7575775B2
Authority
JP
Japan
Prior art keywords
conductor
insulating layer
conductive part
metal
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020199675A
Other languages
Japanese (ja)
Other versions
JP2022087629A (en
Inventor
大輔 田ノ岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2020199675A priority Critical patent/JP7575775B2/en
Priority to KR1020237014136A priority patent/KR20230113533A/en
Priority to PCT/JP2021/033122 priority patent/WO2022118517A1/en
Priority to CN202180076762.8A priority patent/CN116569660A/en
Priority to TW110144158A priority patent/TW202239282A/en
Publication of JP2022087629A publication Critical patent/JP2022087629A/en
Application granted granted Critical
Publication of JP7575775B2 publication Critical patent/JP7575775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/08Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by electric discharge, e.g. by spark erosion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/247Finish coating of conductors by using conductive pastes, inks or powders

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Fuses (AREA)

Description

本発明は、メタルインクを用いた焼成メタルインクを用いた導電構造の製造方法および導電構造に関するものである。 The present invention relates to a method for manufacturing a conductive structure using fired metal ink and the conductive structure.

基板上に導電体を導線とした電子部品が作られている。導電体の材料は多種多様あるが、導電体の表面にナノメートルオーダーの自然酸化層を形成する例えばチタンやアルミニウムおよびその合金が導電体材料として用いられることがある。これらの金属は大気中できわめて酸化しやすく、自然酸化層を形成する。自然酸化層は、絶縁体であり、大気と接触する部分はすべて自然酸化層で覆われてしまう。また、自然酸化層に代えてアルミニウムなどの配線層の上に、SiO、SiN、SiONなどの絶縁層をプラズマCVD法に形成することも特許文献2のように行われることもある。自然酸化層や絶縁層を表面に有する配線や電極の上に、別の配線を重ねて両者の間を通電させようとしても、単に重ねるだけでは、自然酸化層や絶縁層に阻まれて通電させることができない(導電部とならない)。
そこで、特許文献1のように研磨針で引っ掻き自然酸化層を物理的に破壊し、別の導線を重ねて導電部とすることも行われている。
Electronic components are made on a substrate with conductors as conductor wires. There are many different types of conductor materials, but titanium, aluminum, and their alloys, which form a nanometer-order natural oxide layer on the surface of the conductor, are sometimes used as conductor materials. These metals are very susceptible to oxidation in the atmosphere, forming a natural oxide layer. The natural oxide layer is an insulator, and all parts that come into contact with the atmosphere are covered with the natural oxide layer. In addition, as in Patent Document 2, an insulating layer such as SiO, SiN, or SiON may be formed by plasma CVD on a wiring layer such as aluminum instead of the natural oxide layer. Even if an attempt is made to pass electricity between a wiring or electrode that has a natural oxide layer or insulating layer on its surface by overlapping another wiring, the natural oxide layer or insulating layer will prevent electricity from passing between them by simply overlapping them (it will not become a conductive part).
Therefore, as described in Patent Document 1, a method is also used in which the native oxide layer is physically destroyed by scratching it with a polishing needle, and another conductor is then layered on top of it to form a conductive portion.

特開2000-22306号公報JP 2000-22306 A 特許第6711614号Patent No. 6711614

しかしながら、研磨針で引っ掻くなどの物理的な操作は、導線が細くなるにつれて難しくなり作業性が悪化する。しかも、自然酸化層が破壊され金属が露出しても、チタンやアルミニウムは大気中で酸化しやすく、きわめて短時間で再び自然酸化層が形成されてしまう。そのため、確実に導電性のある導電部を形成することが難しかった。
また、金属配線の表面に被覆される絶縁層についても同様であり、別の配線を重ねる場合、事前に絶縁層を除去する必要があった。
However, physical operations such as scratching with a polishing needle become more difficult as the conductor becomes thinner, and workability deteriorates. Moreover, even if the natural oxide layer is destroyed and the metal is exposed, titanium and aluminum are easily oxidized in the atmosphere, and the natural oxide layer forms again in an extremely short time. For this reason, it has been difficult to form a conductive part with reliable conductivity.
The same applies to the insulating layer that covers the surface of the metal wiring, and when overlapping another wiring, it is necessary to remove the insulating layer beforehand.

本発明は、絶縁層を表面に有する導電体と別の導電体との間に、簡略に導電部を作る製造方法の提供および新たな導電部の提供を目的(課題)とする。 The present invention aims to provide a manufacturing method for easily creating a conductive portion between a conductor having an insulating layer on its surface and another conductor, and to provide a new conductive portion.

本発明は絶縁層を表面に有する第1の導電体の上に、第2の導電体を積層する第1工程と、前記絶縁層を含め前記第1の導電体と前記第2の導電体を溶融し溶融領域を作ると共に、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を形成する第2工程を含む、導電部の製造方法とすることで課題を解決した。 The present invention solves this problem by providing a method for manufacturing a conductive part, which includes a first step of stacking a second conductor on a first conductor having an insulating layer on its surface, and a second step of melting the first conductor and the second conductor, including the insulating layer, to create a molten region and forming a hole in the center of the molten region that is surrounded by the molten region.

また、本発明の別の態様は、第1の導電体と第2の導電体と溶融領域を備え、第1の導電体は、表面に絶縁層を有し、前記第2の導電体は、前記第1の導電体に積層されており、前記溶融領域は、前記絶縁層を含め前記第1の導電体と前記第2の導電体が溶融した領域であり、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を有していることを特徴とする導電部とすることで課題を解決した。 In another aspect of the present invention, the problem is solved by providing a conductive part that includes a first conductor, a second conductor, and a molten region, the first conductor having an insulating layer on its surface, the second conductor being laminated to the first conductor, the molten region being a region in which the first conductor and the second conductor, including the insulating layer, are melted, and the molten region has a hole in the center surrounded by the molten region.

絶縁層を表面に有する導電体とその上に重ねた別の導電体との間に、簡略に導電性のある導電部を作ることが出来た。 It was possible to easily create a conductive area between a conductor with an insulating layer on its surface and another conductor layered on top of it.

メタルインクの焼成工程の説明図。(A)焼成用レーザの走査による焼成メタルインク導線の焼成工程概念図。(B)メタルインクの拡大図。(C)焼成メタルインクの拡大図。1 is an explanatory diagram of the metal ink baking process, (A) a conceptual diagram of the baking process of a baked metal ink conductor by scanning with a baking laser, (B) an enlarged view of the metal ink, and (C) an enlarged view of the baked metal ink. 溶融工程の説明図。(A)メタルインクを焼成した焼成メタルインク導線の断面図。(B)溶融用レーザで溶融領域を作成した状態の断面図。(C)は溶融用レーザのパルスエネルギーを変えて3箇所に当て、溶融用レーザの影響の及ぶ深度を変えた場合の断面図。An explanatory diagram of the melting process. (A) A cross-sectional view of a fired metal ink conductor after firing the metal ink. (B) A cross-sectional view of a state in which a melted region has been created using a melting laser. (C) A cross-sectional view of the case in which the depth of the influence of the melting laser is changed by changing the pulse energy of the melting laser and applying it to three locations. 穴を形成しない溶接用レーザを用いてレーザ照射した場合に、照射過程の進行とともに熱の影響が及ぶ範囲の説明図。(B)溶融領域が自然酸化層に及んでいない状態図。(C)溶融領域が自然酸化層を越えた状態図。When a non-hole-forming welding laser is used for laser irradiation, the range of the heat influence as the irradiation process progresses is shown in Fig. 1. (A) A diagram showing a state in which the molten area does not reach the native oxide layer, and (C) A diagram showing a state in which the molten area has exceeded the native oxide layer. 導電性試験結果。Conductivity test results. 導電部の写真。(A)導電部の断面の走査電子顕微鏡写真。(B) 図5(A)の走査電子顕微鏡写真の説明図。5(A) is a scanning electron microscope photograph of a cross section of the conductive part, and FIG. 実施例2の説明図。(A)TFT液晶パネルの平面図。(B)図6(A)の迂回回路の拡大図。6A and 6B are explanatory diagrams of a second embodiment of the present invention. 実施例3の導電部の断面図。FIG. 11 is a cross-sectional view of a conductive portion according to a third embodiment.

以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。また、一部の図面は、説明のため意図的にデフォルメされており、正確な縮尺で描かれているものではない。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same reference numerals in different drawings indicate parts with the same function, and duplicate descriptions in each drawing will be omitted as appropriate. In addition, some of the drawings have been intentionally deformed for the purpose of explanation, and are not drawn to exact scale.

[メタルインクの焼成前後の区別]
以下、焼成前のメタルインクは単に「メタルインク」といい、焼成後のメタルインクは「焼成メタルインク」とすることで区別する。
[Distinguishing between before and after baking of metal ink]
Hereinafter, the metal ink before baking will be simply referred to as "metal ink", and the metal ink after baking will be referred to as "baked metal ink" to distinguish them.

[導電体]
「導電体」という言葉には、配線や電極が含まれる。
[conductor]
The term "conductor" includes wiring and electrodes.

[用語に付けられる括弧の意味]
また、「焼成メタルインク導線(第2の導電体)」などと表記されることがあるが、括弧内の(第2の導電体)は、対応する特許請求の範囲で使用されている用語を示す。
[Meaning of parentheses around terms]
In addition, although it may be expressed as "fired metal ink conductor (second conductor)", the (second conductor) in parentheses indicates the term used in the corresponding claim.

[絶縁層の意味]
絶縁層は、アルミニウムなどを主原料とする金属導線(第1の導電体)の表面に自然酸化して形成された自然酸化層(絶縁層)を含む。
絶縁層には、自然酸化だけでなく人為的処理により作られたものも含まれる。例えば、金属導線(第1の導電体)の上に別の材料からなる絶縁層を被覆したものも本発明に包含される。
また、本発明において、絶縁層には、金属導線(第1の導電体)の表面に汚れが付いているなどのように、金属導線(第1の導電体)より電気抵抗の高い層も含まれる。
[Meaning of insulating layer]
The insulating layer includes a natural oxide layer (insulating layer) formed by natural oxidation on the surface of a metal conductor (first conductor) whose main material is aluminum or the like.
The insulating layer includes not only natural oxidation but also those formed by artificial processes. For example, a metal conductor (first conductor) coated with an insulating layer made of another material is also included in the present invention.
In the present invention, the insulating layer also includes a layer having a higher electrical resistance than the metal conductor (first conductor), such as a layer having a stain on the surface of the metal conductor (first conductor).

[電子部品]
本発明において、何らかの素子と別の素子の間が導線で接続されているものであれば、本発明の「電子部品」に含まれる。例えば、本発明の「電子部品」には、プリント基板などの回路基板も含まれる。
[Electronic components]
In the present invention, any element that is connected to another element by a conductor is included in the "electronic component" of the present invention. For example, the "electronic component" of the present invention also includes a circuit board such as a printed circuit board.

(実施例1)
図1~図5に示す実施例1は、自然酸化層(絶縁層B)721を表面に有する第1の導電体Aを金属導線72とし、第2の導電体Cを焼成メタルインク導線27としたときに、両導電体の間に導電部9を形成する例である。第1の導電体Aも第2の導電体Cもその素材について限定されるものではないが、第2の導電体Cにメタルインク2を用いる例を実施例1とした。断線等の修復にメタルインク2が使われる態様を説明するためである。例えば、フラットパネルディスプレイの回路基板の配線が製造工程中に基板に付着したゴミや塵などにより断線することがある。このような時、断線した前後の第1の導電体Aの間に第2の導電体Cとしてメタルインク2の迂回回路を作ることにより、修復できる。
実施例1は一例を示すものであり、本発明は、メタルインクとは異なる素材から成る第2の導電体Cとしたものを用いることを排除するものではない。
Example 1
Example 1 shown in Figs. 1 to 5 is an example in which a conductive portion 9 is formed between a first conductor A having a natural oxide layer (insulating layer B) 721 on its surface, which is a metal conductor 72, and a second conductor C, which is a fired metal ink conductor 27. Although the materials of the first conductor A and the second conductor C are not limited, an example in which metal ink 2 is used for the second conductor C is used in Example 1. This is to explain how metal ink 2 is used to repair a broken wire or the like. For example, the wiring of a circuit board of a flat panel display may be broken due to dirt or dust that adheres to the board during the manufacturing process. In such a case, the broken wire can be repaired by creating a detour path of metal ink 2 as second conductor C between the first conductor A before and after the broken wire.
Example 1 shows only one example, and the present invention does not exclude the use of a second conductor C made of a material different from the metal ink.

[絶縁層]
金属導線(第1の導電体A)72は、アルミニウムやチタンなどの大気中で自然酸化し表面に自然酸化層(絶縁層B)721を形成する金属が主成分となっている。
[Insulation layer]
The metal conductor (first conductor A) 72 is mainly composed of a metal such as aluminum or titanium that naturally oxidizes in the atmosphere to form a natural oxide layer (insulating layer B) 721 on the surface.

[メタルインク塗布工程]
図1はメタルインク2の焼成工程の説明図である。図1(A)は焼成用レーザ3の走査による焼成メタルインク導線(第2の導電体C)27の焼成工程概念図である。基板7は、上に金属導線(第1の導電体A)72が配設されている。金属導線(第1の導電体A)72は、アルミニウムを主成分とする導線であり、その表面に数ナノメートルのオーダーの自然酸化層(絶縁層B)721が形成されている。次いで、金属導線(第1の導電体A)の自然酸化層(絶縁層B)721の上にメタルインク2が塗布される。
[Metal ink application process]
1 is an explanatory diagram of the baking process of metal ink 2. Fig. 1(A) is a conceptual diagram of the baking process of a baked metal ink conductor (second conductor C) 27 by scanning with a baking laser 3. A metal conductor (first conductor A) 72 is disposed on a substrate 7. The metal conductor (first conductor A) 72 is a conductor mainly composed of aluminum, and a natural oxide layer (insulating layer B) 721 on the order of several nanometers is formed on its surface. Next, metal ink 2 is applied onto the natural oxide layer (insulating layer B) 721 of the metal conductor (first conductor A).

[メタルインク焼成工程]
図1(B)はメタルインク2の拡大図である。メタルインク2は、金、銀、銅などの導電性の高い金属をナノ粒子化し、有機溶媒26中に分散させたものである。金属はナノ粒子化することにより融点が劇的に下がる。金属ナノ粒子24の表面には、有機物25が吸着しており、この有機物25により、金属ナノ粒子24同志が凝集することなく有機溶媒26中に分散される。
[Metal ink baking process]
1B is an enlarged view of the metal ink 2. The metal ink 2 is made by forming highly conductive metals such as gold, silver, and copper into nanoparticles and dispersing them in an organic solvent 26. The melting point of metals is dramatically lowered by forming them into nanoparticles. Organic matter 25 is adsorbed on the surfaces of the metal nanoparticles 24, and this organic matter 25 allows the metal nanoparticles 24 to be dispersed in the organic solvent 26 without coagulating with each other.

メタルインク2に焼成用レーザ3や赤外線を照射して加熱すると、有機溶媒26が蒸発するとともに、金属ナノ粒子24表面の有機物25が脱離し、金属ナノ粒子24同志が凝集し、溶融することで金属塊となり導電性を持つようになる。焼成のための加熱手段は適宜である。
実施例1では焼成に、焼成用レーザ3を使用した。メタルインク2の吸収波長は、金属の種類と粒径によって異なるが実施例1で用いる20nm粒径の銀を主成分とする金属ナノ粒子24を含むメタルインク2では、400nm付近である。実施例1で用いた焼成用レーザ3は、当該吸収波長付近の波長を有する連続発振半導体レーザを使用した。
When the metal ink 2 is heated by irradiation with a baking laser 3 or infrared rays, the organic solvent 26 evaporates, the organic matter 25 on the surface of the metal nanoparticles 24 is desorbed, and the metal nanoparticles 24 aggregate and melt to become metal lumps that become conductive. Any suitable heating means can be used for baking.
A firing laser 3 was used for firing in Example 1. The absorption wavelength of the metal ink 2 varies depending on the type and particle size of the metal, but is around 400 nm for the metal ink 2 containing silver-based metal nanoparticles 24 with a particle size of 20 nm used in Example 1. The firing laser 3 used in Example 1 was a continuous oscillation semiconductor laser having a wavelength around the absorption wavelength.

図1(C)は焼成メタルインク導線(第2の導電体C)27の拡大図であり、金属ナノ粒子24が互いに融着し金属塊となっていることが分かる。焼成用レーザ3が照射された部位のみが、焼成され焼成メタルインク導線(第2の導電体C)27となり、導電性を有する焼成メタルインク導線(第2の導電体C)27となる。
図1(A)のように焼成用レーザ3は、矢印で示すようにメタルインク2に沿って左右に走査され、メタルインク2を焼成し、下層の金属導線(第1の導電体A)72上に焼成メタルインク導線(第2の導電体C)27が積層される。
1C is an enlarged view of the fired metal ink conductor (second conductor C) 27, from which it can be seen that the metal nanoparticles 24 are fused together to form metal lumps. Only the area irradiated with the firing laser 3 is fired to become the fired metal ink conductor (second conductor C) 27, which is conductive.
As shown in FIG. 1A , the firing laser 3 is scanned left and right along the metal ink 2 as indicated by the arrow, firing the metal ink 2 and stacking a fired metal ink conductor (second conductor C) 27 on the underlying metal conductor (first conductor A) 72.

[メタルインク塗布工程]と[メタルインク焼成工程]とは、併せて、(第1工程)自然酸化層(絶縁層B)721を表面に有する金属導線(第1の導電体A)721に焼成メタルインク導線(第2の導電体C)27を積層とする工程となる。 The [metal ink application process] and [metal ink baking process] are combined to form (first process) a process in which a baked metal ink conductor (second conductor C) 27 is laminated onto a metal conductor (first conductor A) 721 having a natural oxidation layer (insulating layer B) 721 on its surface.

構造としてみると、積層構造体は、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27を備え、金属導線(第1の導電体A)72は、表面に自然酸化層(絶縁層B)721を有し、焼成メタルインク導線(第2の導電体C)27は、金属導線(第1の導電体A)72の自然酸化層(絶縁層B)721上に積層されているものとなる。 Structurally, the laminated structure comprises a metal conductor (first conductor A) 72 and a fired metal ink conductor (second conductor C) 27, the metal conductor (first conductor A) 72 having a natural oxidation layer (insulating layer B) 721 on its surface, and the fired metal ink conductor (second conductor C) 27 being laminated on the natural oxidation layer (insulating layer B) 721 of the metal conductor (first conductor A) 72.

[溶融工程]
図2は、溶融工程の説明図である。図2(A)は、メタルインク2を焼成した焼成メタルインク導線27の断面図である。上述の[メタルインク焼成工程]で焼成を終えた状態が図2(A)である。
この時点では、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27との間に、自然酸化層(絶縁層B)721が間に挟まっているため、導電部9として機能するのに十分な導電性がない。
[Melting process]
2A is an explanatory diagram of the melting step. Fig. 2A is a cross-sectional view of a fired metal ink conductor 27 obtained by firing the metal ink 2. Fig. 2A shows the state after firing in the above-mentioned [metal ink firing step].
At this point, the natural oxide layer (insulating layer B) 721 is sandwiched between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27, so it does not have sufficient conductivity to function as a conductive part 9.

図2(B)は溶融用レーザ4で溶融領域8を作成した状態の断面図である。溶融用レーザ4の出力は、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27の厚さや金属の種類などで変わり得る。溶融用レーザ4の影響が基板7まで及ぶと好ましくなく、また、少なくとも自然酸化層(絶縁層B)721にまで影響を及ぶ出力であることが好ましい。より好ましくは、自然酸化層(絶縁層B)721を超えて金属導線(第1の導電体A)72まで影響が及ぶ出力であることが好ましい。 Figure 2 (B) is a cross-sectional view of the state where the melted region 8 has been created by the melting laser 4. The output of the melting laser 4 can vary depending on the thickness of the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27, the type of metal, etc. It is undesirable for the influence of the melting laser 4 to extend to the substrate 7, and it is preferable for the output to have an effect at least on the natural oxide layer (insulating layer B) 721. More preferably, the output is such that it extends beyond the natural oxide layer (insulating layer B) 721 and reaches the metal conductor (first conductor A) 72.

溶融用レーザ4は、自然酸化層(絶縁層B)721を破壊し、焼成メタルインク導線(第2の導電体C)27由来の銀と金属導線(第1の導電体A)72由来のアルミニウムに加え、自然酸化層(絶縁層B)721由来の酸化アルミニウムが混ざった溶融領域8を作る。 The melting laser 4 destroys the natural oxide layer (insulating layer B) 721, creating a melted region 8 that is a mixture of silver from the fired metal ink conductor (second conductor C) 27, aluminum from the metal conductor (first conductor A) 72, and aluminum oxide from the natural oxide layer (insulating layer B) 721.

溶融用レーザ4が当たった中央部には、図示されるように金属が蒸発した跡となる穴74が開く。ハッチングで示される溶融領域8は、穴74の内壁部に形成される。溶融領域8には、導電性の高いアルミニウムや銀が多く含まれており、高々数ナノメートル分の自然酸化層(絶縁層B)721が混ざっているだけなので、導電性が顕著に高い領域となる。結果的に、溶融用レーザ4の照射により、(第2工程)自然酸化層(絶縁層B)721を含めと金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27を溶融し溶融領域を作ると共に、溶融領域8の中心に溶融領域8で周囲を囲まれた穴74を形成する工程が行われたこととなる。 In the center where the melting laser 4 hits, a hole 74 is created as a trace of evaporated metal, as shown in the figure. The molten area 8, shown by hatching, is formed on the inner wall of the hole 74. The molten area 8 contains a large amount of highly conductive aluminum and silver, and is only mixed with a natural oxide layer (insulating layer B) 721 of at most a few nanometers, making it an area with significantly high conductivity. As a result, the irradiation of the melting laser 4 (second process) melts the metal conductor (first conductor A) 72 and the baked metal ink conductor (second conductor C) 27, including the natural oxide layer (insulating layer B) 721, to create a molten area, and a hole 74 surrounded by the molten area 8 is formed in the center of the molten area 8.

以上のように、自然酸化層(絶縁層B)721と焼成メタルインク導線(第2の導電体C)27と金属導線(第1の導電体A)72が溶融した溶融領域8が形成され、溶融領域8の中心に溶融領域8で周囲を囲まれた穴74を有しているものとなる。 As described above, a molten region 8 is formed in which the natural oxide layer (insulating layer B) 721, the fired metal ink conductor (second conductor C) 27, and the metal conductor (first conductor A) 72 are melted, and a hole 74 is formed in the center of the molten region 8, surrounded by the molten region 8.

[溶融工程の別態様]
図2(C)は溶融用レーザ4のパルスエネルギーを変えて3箇所に当て、溶融用レーザ4の影響の及ぶ深さを変えた場合の断面図である。(なお、図2は概念図であり、低出力、中出力、高出力とは、この図のパルスエネルギーを比較したものである。)
[Another embodiment of the melting step]
Fig. 2(C) is a cross-sectional view showing a case where the melting laser 4 is applied to three locations with different pulse energies, thereby changing the depth of the influence of the melting laser 4. (Note that Fig. 2 is a conceptual diagram, and low, medium, and high powers are a comparison of the pulse energies in this diagram.)

図2(C)(a)では、低出力のパルスエネルギーの溶融用レーザ4を照射している。溶融領域8が、焼成メタルインク導線(第2の導電体C)27の範囲にとどまっており、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27の間の導電性向上は期待できない。 In FIG. 2(C)(a), a melting laser 4 with low output pulse energy is irradiated. The melted area 8 remains within the range of the fired metal ink conductor (second conductor C) 27, and no improvement in conductivity between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27 can be expected.

また、図2(C)(b)では、中出力のパルスエネルギーの溶融用レーザ4を照射している。自然酸化層(絶縁層B)721付近まで溶融用レーザ4の影響が及んでおり、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27の間の導電性向上は期待できるものの、焼成メタルインク導線(第2の導電体C)27の厚さが均一でないため、導電性が期待したほど向上しない場合がある。 In addition, in FIG. 2(C)(b), a melting laser 4 with medium output pulse energy is irradiated. The effect of the melting laser 4 extends to the vicinity of the natural oxide layer (insulating layer B) 721, and although it is expected that the conductivity between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27 will improve, the thickness of the fired metal ink conductor (second conductor C) 27 is not uniform, so the conductivity may not improve as much as expected.

図2(C)(c)では、高出力のパルスエネルギーの溶融用レーザ4を照射している。溶融領域8は、金属導線(第1の導電体A)72の自然酸化層(絶縁層B)721を超えて形成されており、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27の間の導電性が確実に向上する。 In FIG. 2(C)(c), a melting laser 4 with high output pulse energy is irradiated. The melted region 8 is formed beyond the natural oxide layer (insulating layer B) 721 of the metal conductor (first conductor A) 72, which reliably improves the conductivity between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27.

メタルインク2は、導電部9を形成する箇所ごとに塗られ、それぞれの箇所の塗布条件が全く同一というわけではないため、焼成メタルインク導線(第2の導電体C)27の条件(厚さ等)が一定しない。そこで、パルスエネルギーを変えて2箇所以上、好ましくは3箇所に溶融用レーザ4を照射することにより、条件に適した出力を決めるための実験を導電部形成箇所ごとに行わなくても、確実に導電性を確保することが出来る。なお、パルス幅や照射回数を変えてもよい。 The metal ink 2 is applied to each location where the conductive portion 9 is to be formed, and the application conditions for each location are not exactly the same, so the conditions (thickness, etc.) of the fired metal ink conductor (second conductor C) 27 are not constant. Therefore, by irradiating the melting laser 4 to two or more locations, preferably three locations, with different pulse energies, it is possible to reliably ensure conductivity without having to conduct experiments to determine the output suitable for the conditions for each location where the conductive portion is to be formed. The pulse width and number of irradiations may also be changed.

まとめると、図2(c)では、溶融用レーザ4のパルスエネルギーを変えて3箇所に当てたが、2箇所以上であればよい。2箇所以上に溶融領域8の深さの異なる溶融領域8を作るには、第2工程に続いて、第2工程で形成された溶融領域と異なる位置に、溶融領域の深さが異なる別の溶融領域を作る第3工程を追加すればよい。 In summary, in FIG. 2(c), the melting laser 4 is applied to three locations with different pulse energies, but two or more locations are sufficient. To create melted regions 8 with different depths in two or more locations, a third process can be added following the second process to create another melted region with a different depth in a different location from the melted region formed in the second process.

また、溶融領域は2箇所以上設けられ、溶融領域の深さが、それぞれ異なっていることにより、確実に導電性を確保することが出来る。 In addition, two or more molten regions are provided, and the depths of the molten regions are different, ensuring electrical conductivity.

実施例では、パルスエネルギーにより穴74が形成されるように設定された溶融用レーザ4を用いる。溶融領域8の中心に溶融領域8で周囲を囲まれた穴74が形成されることで、溶融領域8が形成された深さを知ることができる。また、穴74が形成されることで、熱が穴74を通って放出され、素早く溶融領域8を冷却できる。一般に熱エネルギーは溶融領域8付近の部材に影響を与え、特に有機層などが溶融領域8に近接している基板7にレーザ照射を行った場合、有機層が変質することもあり得る。しかし、本発明のようなナノ秒パルスレーザを高出力照射して穴74が形成されるように設定した溶融用レーザ4は、自然酸化層(絶縁層B)721を貫く微小な穴74を形成する。溶融領域8の熱は、穴74からも放熱し冷却速度を速め、熱の影響を溶融領域8の周辺のきわめて小さい領域のみに留めることができる。 In the embodiment, a melting laser 4 is used that is set to form a hole 74 by pulse energy. The hole 74 is formed in the center of the melting region 8, surrounded by the melting region 8, so that the depth of the melting region 8 can be known. In addition, the formation of the hole 74 allows heat to be released through the hole 74, allowing the melting region 8 to be cooled quickly. In general, thermal energy affects members near the melting region 8, and when a laser is applied to a substrate 7 in which an organic layer or the like is close to the melting region 8, the organic layer may be altered. However, the melting laser 4 of the present invention is set to form a hole 74 by irradiating a nanosecond pulse laser at high power to form a minute hole 74 that penetrates the natural oxide layer (insulating layer B) 721. The heat of the melting region 8 is also released from the hole 74, accelerating the cooling speed, and the effect of the heat can be limited to only a very small area around the melting region 8.

他方、穴74を形成しない溶接用レーザ41を用いる場合、溶融領域8が大きくなるとともに熱の影響が及ぶ範囲も大きくなる。 On the other hand, if a welding laser 41 that does not form a hole 74 is used, the melted area 8 becomes larger and the area affected by heat also becomes larger.

比較実験に相当する図3は、穴74を形成しない溶接用レーザ41を用いてレーザ照射した場合に、照射過程の進行とともに熱の影響が及ぶ範囲の説明図である。図3(A)は照射直後の状態図であり、図3(B)は溶融領域8が自然酸化層(絶縁層B)721に及んでいない状態図であり、図3(C)は溶融領域8が自然酸化層(絶縁層B)721を越えた状態図である。 Figure 3, which corresponds to a comparative experiment, is an explanatory diagram of the range of the thermal effect as the irradiation process progresses when laser irradiation is performed using a welding laser 41 that does not form a hole 74. Figure 3(A) is a diagram of the state immediately after irradiation, Figure 3(B) is a diagram of the state where the molten area 8 has not reached the natural oxide layer (insulating layer B) 721, and Figure 3(C) is a diagram of the state where the molten area 8 has exceeded the natural oxide layer (insulating layer B) 721.

図3(A)のように、照射直後の溶融領域8は小さいものであるが、穴74を形成しない溶接用レーザ41の照射領域から熱伝導により熱が拡散する。照射を続けると、徐々に図3(B)のように溶融領域8が広がって行く。さらに照射を続けると、熱伝導は続き、次第に溶融領域8は拡大し、図3(C)のように穴74を形成しない溶接用レーザ41の照射領域より大きな溶融領域8ができ、自然酸化層(絶縁層B)721を溶かす。溶融領域8の温度は金属の融点に達し非常に高温であり、溶融領域8の周囲は熱伝導により熱の影響が及ぶ領域412となる。この際、放熱は、焼成メタルインク導線(第2の導電体C)27の表面からのみであり、溶融領域8の体積が大きくなればなるほど、表面積に比例する放熱は追い付かなくなる。熱の影響が及ぶ領域412は、体積を増した溶融領域8に溜まった高温の金属により大きく広がって行く。 As shown in FIG. 3(A), the melted area 8 immediately after irradiation is small, but heat is diffused by thermal conduction from the irradiation area of the welding laser 41 that does not form the hole 74. As irradiation continues, the melted area 8 gradually expands as shown in FIG. 3(B). As irradiation continues further, heat conduction continues, and the melted area 8 gradually expands, and a melted area 8 larger than the irradiation area of the welding laser 41 that does not form the hole 74 is formed as shown in FIG. 3(C), melting the natural oxide layer (insulating layer B) 721. The temperature of the melted area 8 reaches the melting point of the metal and is very high, and the area around the melted area 8 becomes an area 412 affected by heat due to thermal conduction. At this time, heat is dissipated only from the surface of the baked metal ink conductor (second conductor C) 27, and the larger the volume of the melted area 8, the less the heat dissipation proportional to the surface area can keep up. The area 412 affected by heat expands due to the high-temperature metal accumulated in the melted area 8, which has increased in volume.

実施例1では、図2のように溶融領域8の中心に穴74を開けるようにしたため、溶融領域8の金属は素早く冷める。
このように穴74を形成する溶融用レーザ4を用いた方が、穴74を形成しない溶接用レーザ41を用いるよりも、熱の影響が及ぶ領域412を著しく小さくすることができる。
In the first embodiment, since the hole 74 is provided in the center of the molten region 8 as shown in FIG. 2, the metal in the molten region 8 cools quickly.
In this manner, when the melting laser 4 that forms the hole 74 is used, the area 412 affected by heat can be made significantly smaller than when the welding laser 41 that does not form the hole 74 is used.

以下、本発明の実験例を説明する。
(実験1:電気抵抗とパルスエネルギーの関係を示す実験)
実験1は溶融領域8の深さを変えることにより、自然酸化層(絶縁層B)721が破壊される前後で電気抵抗がどのように変化するかを調べる実験である。実験1では、溶接レーザ4の照射用の試料として、基板上7の金属導線72上にメタルインク2を塗布し、焼成して、焼成メタルインク導線27を形成したものを、用意した。その後、条件を変えて試料に溶融用レーザ4を照射した。溶融用レーザ4で形成される溶融領域8の深さを変えるために、溶融用レーザ4のパルスエネルギーを100、200、250、300μJの4条件で変えている。また、パルスエネルギー以外の条件は同一で条件としている。
Experimental examples of the present invention will now be described.
(Experiment 1: Experiment showing the relationship between electrical resistance and pulse energy)
Experiment 1 is an experiment to investigate how the electrical resistance changes before and after the destruction of the natural oxide layer (insulating layer B) 721 by changing the depth of the melted region 8. In experiment 1, a sample for irradiation with the welding laser 4 was prepared by applying metal ink 2 onto a metal conductor 72 on a substrate 7 and baking it to form a baked metal ink conductor 27. The melting laser 4 was then irradiated onto the sample under different conditions. In order to change the depth of the melted region 8 formed by the melting laser 4, the pulse energy of the melting laser 4 was changed among four conditions: 100, 200, 250, and 300 μJ. Moreover, the conditions other than the pulse energy were the same.

実験1の条件を述べておく。
(1)溶融用レーザ4
波長 532nm
パルス幅 10ns
パルス回数 1回
溶融加工設定サイズ 1μm×1μm
パルスエネルギー 100、200、250、300μJで実験(図4参照)
(2)金属導線(第1の導電体A)72
金属の種類 アルミニウム
配線幅・5μm
(3)焼成メタルインク導線(第2の導電体C)27
金属の種類 銀(ナノ粒子)
配線の厚さ 0.4μm
以上の実験条件で、溶融用レーザ4のパルスエネルギーを変えたサンプルを作成し、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27間の電気抵抗を測定した。その結果が、図4である。
The conditions of Experiment 1 will now be described.
(1) Melting laser 4
Wavelength 532 nm
Pulse width: 10ns
Number of pulses: 1 Melting processing setting size: 1 μm x 1 μm
Experiments were conducted with pulse energies of 100, 200, 250, and 300 μJ (see Figure 4).
(2) Metal conductor (first conductor A) 72
Metal type: Aluminum Wiring width: 5 μm
(3) Baked metal ink conductor (second conductor C) 27
Metal type: Silver (nanoparticles)
Wiring thickness: 0.4 μm
Under the above experimental conditions, samples were created by varying the pulse energy of the melting laser 4, and the electrical resistance between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27 was measured. The results are shown in FIG.

パルスエネルギー100μJでは、電気抵抗が平均で340Ωあり溶融用レーザ4の照射前と比較して導電性の向上はなかった。溶融用レーザ4の影響は、図2(C)(a)のように焼成メタルインク導線(第2の導電体C)27の範囲にとどまっていると推測される。 At a pulse energy of 100 μJ, the electrical resistance was 340 Ω on average, and there was no improvement in conductivity compared to before irradiation with the melting laser 4. It is presumed that the effect of the melting laser 4 is limited to the area of the fired metal ink conductor (second conductor C) 27, as shown in FIG. 2(C)(a).

パルスエネルギー200μJでは、電気抵抗が平均で50Ωあり著しく導電性の向上が観察された。溶融用レーザ4の影響は、図2(C)(b)のように、自然酸化層(絶縁層B)721付近でとどまっているものと推測される。 At a pulse energy of 200 μJ, the electrical resistance was 50 Ω on average, and a significant improvement in conductivity was observed. It is presumed that the effect of the melting laser 4 remains near the natural oxide layer (insulating layer B) 721, as shown in FIG. 2(C)(b).

パルスエネルギー250μJと300μJでは、電気抵抗の平均が0Ω近くまで激減している。自然酸化層(絶縁層B)721は、溶融されていると推測され、溶融用レーザ4の影響は、図2(C)(c)のように金属導線(第1の導電体A)72に及んでいると推測される。そして、パルスエネルギー200μJではエラーバー(3σ)が片側30Ω、両側60Ω程度残っており、観察される電気抵抗に大きなばらつきが存在したが、パルスエネルギー250μJと300μJでは、エラーバー(3σ)が2~3Ωとなっている。 At pulse energies of 250 μJ and 300 μJ, the average electrical resistance drops sharply to nearly 0 Ω. It is assumed that the natural oxide layer (insulating layer B) 721 is melted, and that the influence of the melting laser 4 extends to the metal conductor (first conductor A) 72 as shown in Figure 2 (C) (c). At a pulse energy of 200 μJ, the error bars (3σ) remained at about 30 Ω on one side and 60 Ω on both sides, and there was a large variation in the observed electrical resistance, but at pulse energies of 250 μJ and 300 μJ, the error bars (3σ) were 2 to 3 Ω.

これは、確実に導電性を確保できるところまで溶融用レーザ4の影響が及んでいることを示している。そして電気抵抗が充分小さく、導電部9が、ばらつきが少なく安定して形成されていることを示している。 This shows that the influence of the melting laser 4 reaches a point where electrical conductivity can be reliably ensured. It also shows that the electrical resistance is sufficiently small, and that the conductive portion 9 is formed stably with little variation.

(実験2:溶融領域の確認)
溶融領域8の存在を確認すべく、導電部9の走査電子顕微鏡撮影を行う実験2を行った。
図5は導電部9の走査電子顕微鏡写真であり、図5(A)は導電部9の走査電子顕微鏡写真、そして、図5(B)は図5(A)の走査電子顕微鏡写真の説明図である。
(Experiment 2: Confirmation of the melted region)
In order to confirm the presence of the molten region 8, experiment 2 was carried out in which the conductive portion 9 was photographed using a scanning electron microscope.
5A and 5B are scanning electron microscope photographs of the conductive portion 9, and FIG. 5A is a scanning electron microscope photograph of the conductive portion 9, and FIG. 5B is an explanatory diagram of the scanning electron microscope photograph of FIG. 5A.

撮影試料を次のように調製し撮影した。
(1)上述のように作られた導電部9を有する基板7を試料とし、次の電子線ビーム切断を行うための前処理として保護膜73で被覆した。
(2)電子線ビームで、基板7ごと切断し、断面を切り出した。
(3)以上のように調製した試料を、断面が分かるような角度から走査電子顕微鏡で撮影した。
The photographed samples were prepared and photographed as follows.
(1) The substrate 7 having the conductive portion 9 produced as described above was used as a sample, and was covered with a protective film 73 as a pretreatment for the subsequent electron beam cutting.
(2) The substrate 7 was cut with an electron beam to obtain a cross section.
(3) The sample prepared as described above was photographed with a scanning electron microscope from an angle that allowed the cross section to be seen.

図5(B)のハッチングを施した保護膜73は、試料の調製時に被覆されたものであり、本来の導電部9には存在しないものである。
金属導線(第1の導電体A)72の表面には、自然酸化層(絶縁層B)721があるが、数ナノメートルの厚さであり、この倍率では写っていない。
The hatched protective film 73 in FIG. 5B is a coating applied during preparation of the sample, and is not present on the original conductive portion 9 .
There is a natural oxide layer (insulating layer B) 721 on the surface of the metal conductor (first conductor A) 72, but it is only a few nanometers thick and is not visible at this magnification.

溶融用レーザ4が照射された領域には、穴74が形成されている。穴74の側方には、本来存在すべき焼成メタルインク導線(第2の導電体C)27と金属導線(第1の導電体A)72との境界がぼやけるか完全に消失している。このことから、自然酸化層(絶縁層B)721を含め金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27が溶融し、溶融領域8となっていることが分かる。 A hole 74 is formed in the area irradiated with the melting laser 4. On the side of the hole 74, the boundary between the fired metal ink conductor (second conductor C) 27 and the metal conductor (first conductor A) 72, which should originally exist, is blurred or has completely disappeared. This shows that the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27, including the natural oxidation layer (insulating layer B) 721, have melted to form the molten area 8.

(実験1と実験2のまとめ)
以上の実験から、溶融用レーザ4の照射により、自然酸化層(絶縁層B)721を含め金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27が溶融し溶融領域8が形成されることが確認された。そして、溶融用レーザ4の照射により、金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27間の電気抵抗が著しく低下し、電気抵抗値にばらつきの少ない結果が得られることが確認された。本発明は、電気抵抗値にばらつきが少ないことから、実用に供し得るものといえる。
(Summary of Experiments 1 and 2)
From the above experiments, it was confirmed that the metal conductor (first conductor A) 72 and the baked metal ink conductor (second conductor C) 27, including the natural oxide layer (insulating layer B) 721, were melted by irradiation with the melting laser 4 to form a melted region 8. It was also confirmed that the electrical resistance between the metal conductor (first conductor A) 72 and the baked metal ink conductor (second conductor C) 27 was significantly reduced by irradiation with the melting laser 4, resulting in a result with little variation in the electrical resistance value. Since the electrical resistance value has little variation, it can be said that the present invention can be put to practical use.

(実施例2)
実施例2は、本発明の応用例である。図6は実施例2の説明図であり、図6(A)はTFT液晶パネルの基板7の平面図、図6(B)は図6(A)中に設けられた迂回回路の拡大図である。
Example 2
Example 2 is an application example of the present invention. Figure 6 is an explanatory diagram of Example 2, in which Figure 6(A) is a plan view of a substrate 7 of a TFT liquid crystal panel, and Figure 6(B) is an enlarged view of a bypass circuit provided in Figure 6(A).

LCD(液晶ディスプレイ)のTFT液晶パネルの基板7は、電界効果型トランジスタ12が実装されており、アルミニウムを主成分とする金属導線(第1の導電体A)72が配線されている。その配線の一つに欠陥(断線)722があり、通例なら不良品として廃棄されてしまう。 Field-effect transistors 12 are mounted on the substrate 7 of the TFT liquid crystal panel of an LCD (liquid crystal display), and metal conductors (first conductor A) 72 made mainly of aluminum are wired. One of the wires has a defect (disconnection) 722, and would normally be discarded as a defective product.

欠陥(断線)722の存在する基板7は、焼成メタルインク導線(第2の導電体C)27で作成した迂回回路76で修復され、これにより製品歩留まりが良くなる。 A board 7 with a defect (disconnection) 722 is repaired with a detour 76 made of a fired metal ink conductor (second conductor C) 27, thereby improving product yield.

欠陥(断線)722が生じた原因は色々とあり得るが、主な原因はゴミの付着である。欠陥(断線)722を直接、直線的に最短距離で繋ぐこともできるが、ゴミ等が残っている可能性があるため、あえて迂回回路76としている。もちろん、欠陥(断線)722を直接、直線的に最短距離で繋いで修復してもよい。 There are various possible causes for the defect (disconnection) 722, but the main cause is the adhesion of dirt. It is possible to connect the defect (disconnection) 722 directly in a straight line over the shortest distance, but since there is a possibility that dirt or other debris may remain, a detour route 76 is used instead. Of course, the defect (disconnection) 722 may also be repaired by connecting it directly in a straight line over the shortest distance.

銀のメタルインク2を用いた迂回回路76は、図示していない焼成用レーザ3で焼成され焼成メタルインク導線(第2の導電体C)27となっている。
これにより、導電部9の部分では、基板7、金属導線(第1の導電体A)72、自然酸化層(絶縁層B)721、焼成メタルインク導線(第2の導電体C)27の順に下から積層される構造となる。
The detour path 76 using the silver metal ink 2 is sintered by a sintering laser 3 (not shown) to become a sintered metal ink conductor (second conductor C) 27.
As a result, in the conductive portion 9, the substrate 7, the metal conductor (first conductor A) 72, the natural oxidation layer (insulating layer B) 721, and the fired metal ink conductor (second conductor C) 27 are stacked in this order from the bottom up.

溶融用レーザ4は、各導電部9に対して3か所、それぞれパルスエネルギーの強度を変えて照射される。(図2(C)参照) The melting laser 4 is irradiated to each conductive part 9 at three locations, each with a different pulse energy intensity. (See Figure 2 (C))

導電部9は、3か所の穴74の周囲に形成された溶融領域8に形成される。パルスエネルギーの強度を変えた3か所の溶融領域8のいずれか一つでも自然酸化層(絶縁層B)721まで届けば金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27間の電気抵抗が、TFT液晶パネルの作動に影響しない程度に低減する。
また、溶融領域8の中心に溶融領域8で周囲を囲まれた穴74が形成されるため、溶融領域8で溶融した金属は、穴74から熱を放出して素早く冷却され、溶融領域8の周辺に熱の影響を与えることが低減される。
The conductive portion 9 is formed in the melted region 8 formed around the three holes 74. If any one of the three melted regions 8 with different pulse energy intensities reaches the natural oxide layer (insulating layer B) 721, the electrical resistance between the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27 is reduced to a level that does not affect the operation of the TFT liquid crystal panel.
In addition, since a hole 74 surrounded by the molten region 8 is formed in the center of the molten region 8, the molten metal in the molten region 8 is cooled quickly by releasing heat from the hole 74, thereby reducing the thermal impact on the surrounding area of the molten region 8.

本発明は、実施例2のようにTFT液晶パネルの基板(電子部品)を製造方法に使用することができる。
さらに、本発明は、自然酸化層(絶縁層B)721を含め金属導線(第1の導電体A)72と焼成メタルインク導線(第2の導電体C)27が溶融した溶融領域8が設けられた導電部9を有するTFT液晶パネルの基板(電子部品)を提供できる。
The present invention can be used in a manufacturing method for a substrate (electronic component) of a TFT liquid crystal panel as in the second embodiment.
Furthermore, the present invention can provide a substrate (electronic component) for a TFT liquid crystal panel having a conductive portion 9 provided with a molten region 8 in which the metal conductor (first conductor A) 72 and the fired metal ink conductor (second conductor C) 27, including the natural oxidation layer (insulating layer B) 721, are melted.

さらに、前述のように提供されたTFT液晶パネルの基板(電子部品)を他の部品と組み立ててTFT液晶パネルという製品の製造方法としても使える。
さらに、前述のように提供されたTFT液晶パネル(電子部品)を他の部品と組み立てて液晶ディスプレイという製品も提供できる。
なお、TFT液晶パネルおよび液晶ディスプレイ技術の詳細と製造方法は、広く知られているので、ここでは説明しない。
Furthermore, the substrate (electronic component) of the TFT liquid crystal panel provided as described above can be assembled with other components to form a manufacturing method for a product called a TFT liquid crystal panel.
Furthermore, the TFT liquid crystal panel (electronic component) provided as described above can be assembled with other components to provide a product called a liquid crystal display.
The details of TFT liquid crystal panels and liquid crystal display technology and manufacturing methods are widely known and will not be described here.

(実施例3)
図7は、実施例3の導電部9の断面図である。
実施例1および実施例2は、自然酸化層721を絶縁層Bとした例であった。実施例3は金属導線(第1の導電体A)の表面に人為的に絶縁層Bを作る態様である。また、第2の導電体Cは焼成メタルインク導線でなくてもよい。さらに、第1の導電体Aと第2の導電体Cは同じ金属素材を用いてもよい。
Example 3
FIG. 7 is a cross-sectional view of a conductive portion 9 according to the third embodiment.
In the first and second embodiments, the natural oxide layer 721 is used as the insulating layer B. In the third embodiment, the insulating layer B is artificially formed on the surface of the metal conductor (first conductor A). The second conductor C does not have to be a fired metal ink conductor. Furthermore, the first conductor A and the second conductor C may be made of the same metal material.

例の一つとして、積層回路基板5の例を示す。積層回路基板5には、第1の導電体A、絶縁層B、第2の導電体C、絶縁層B、第1の導電体A、絶縁層B、第2の導電体Cのように、絶縁層Bを挟んで多数の導電体が積層されている。 As one example, we will show an example of a laminated circuit board 5. In the laminated circuit board 5, multiple conductors are stacked with an insulating layer B sandwiched between them, such as a first conductor A, an insulating layer B, a second conductor C, an insulating layer B, a first conductor A, an insulating layer B, and a second conductor C.

この積層した導電体に対して、溶融用レーザ4を照射することで、導電部9が、第1の導電体Aと第2の導電体Cと絶縁層Bを溶融した溶融領域8に形成される。溶融領域8が導電部9となり、積層した導電体すべてを導通させることができる。 By irradiating the laminated conductors with a melting laser 4, a conductive portion 9 is formed in the melted region 8 that melts the first conductor A, the second conductor C, and the insulating layer B. The melted region 8 becomes the conductive portion 9, and all of the laminated conductors can be made conductive.

以上、本発明に係る実施例1から実施例3を、図面を参照して詳述してきたが、具体的な構成は、これらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
また、前述の各実施例は、その目的および構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
Although the first to third embodiments of the present invention have been described above in detail with reference to the drawings, the specific configurations are not limited to these embodiments, and the present invention also includes design changes and the like within the scope of the present invention that do not deviate from the gist of the present invention.
Furthermore, the above-described embodiments can be combined by utilizing each other's techniques, so long as there are no particular contradictions or problems in the objects, configurations, and the like.

A 第1の導電体
B 絶縁層
C 第2の導電体
2 メタルインク
24 金属ナノ粒子
25 有機物
26 有機溶媒
27 焼成メタルインク導線(第2の導電体)
3 焼成用レーザ
4 溶融用レーザ
41 溶接用レーザ
412 熱の影響が及ぶ領域
5 積層回路基板
7 基板
72 金属導線(第1の導電体)
721 自然酸化層(絶縁層)
722 欠陥(断線)
73 保護膜
74 穴
75 電界効果型トランジスタ
76 迂回回路
8 溶融領域
9 導電部
A: First conductor B: Insulating layer C: Second conductor 2: Metal ink 24: Metal nanoparticles 25: Organic substance 26: Organic solvent 27: Sintered metal ink conductor (second conductor)
3 Firing laser 4 Melting laser 41 Welding laser 412 Area affected by heat 5 Multilayer circuit board 7 Board 72 Metal conductor (first conductor)
721 Natural oxide layer (insulating layer)
722 Defect (disconnection)
73 Protective film 74 Hole 75 Field effect transistor 76 Detour circuit 8 Melted region 9 Conductive portion

Claims (8)

絶縁層を表面に有する第1の導電体の上に、第2の導電体を積層する第1工程と、
前記絶縁層を含め前記第1の導電体と前記第2の導電体を溶融し溶融領域を作ると共に、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を形成する第2工程を含み、
前記第2工程に続いて、
前記第2工程で形成された前記溶融領域と異なる位置に、前記溶融領域の深さが異なる別の溶融領域を作る第3工程を含む導電部の製造方法。
A first step of laminating a second conductor on a first conductor having an insulating layer on a surface thereof;
a second step of melting the first conductor and the second conductor including the insulating layer to create a molten region and forming a hole in the center of the molten region surrounded by the molten region ;
Following the second step,
A method for manufacturing a conductive part, comprising a third step of forming another molten region at a position different from the molten region formed in the second step, the molten region having a different depth from the molten region formed in the second step .
絶縁層を表面に有する第1の導電体の上に、第2の導電体を積層する第1工程と、
前記絶縁層を含め前記第1の導電体と前記第2の導電体を溶融し溶融領域を作ると共に、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を形成する第2工程を含み、
前記絶縁層が、前記第1の導電体の金属が酸化された自然酸化層であり、
前記第2の導電体が、メタルインクを焼成した焼成メタルインク導線である導電部の製造方法。
A first step of laminating a second conductor on a first conductor having an insulating layer on a surface thereof;
a second step of melting the first conductor and the second conductor including the insulating layer to create a molten region and forming a hole in the center of the molten region surrounded by the molten region ;
the insulating layer is a native oxide layer formed by oxidizing a metal of the first conductor;
The method for manufacturing a conductive part , wherein the second conductor is a sintered metal ink conductor formed by sintering a metal ink .
前記第1の導電体は、基板上に配置され、請求項1又は2に記載の導電部を前記基板上で作成することを特徴とする電子部品の製造方法。 3. A method for manufacturing an electronic component, comprising the steps of: forming the conductive portion according to claim 1 on a substrate; and forming the conductive portion on the substrate. 請求項の電子部品を他の電子部品と組み立てて製品を作る、製品の製造方法。 A method for manufacturing a product, comprising assembling the electronic component of claim 3 with other electronic components to produce the product. 第1の導電体と第2の導電体と溶融領域を備え、
第1の導電体は、表面に絶縁層を有し、
前記第2の導電体は、前記第1の導電体に積層されており、
前記溶融領域は、前記絶縁層を含め前記第1の導電体と前記第2の導電体が溶融した領域であり、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を有しており、
前記溶融領域は2箇所以上設けられ、前記溶融領域の深さが、それぞれ異なっていることを特徴とする導電部。
a first conductor, a second conductor, and a fusion region;
the first conductor has an insulating layer on a surface thereof;
the second conductor is laminated on the first conductor;
the molten region is a region in which the first conductor and the second conductor, including the insulating layer, are melted, and the molten region has a hole at its center that is surrounded by the molten region;
The conductive portion is characterized in that the melted regions are provided in two or more places, and the melted regions have different depths .
第1の導電体と第2の導電体と溶融領域を備え、
第1の導電体は、表面に絶縁層を有し、
前記第2の導電体は、前記第1の導電体に積層されており、
前記溶融領域は、前記絶縁層を含め前記第1の導電体と前記第2の導電体が溶融した領域であり、前記溶融領域の中心に前記溶融領域で周囲を囲まれた穴を有しており、
前記絶縁層が、前記第1の導電体の金属に由来する自然酸化層であり、
前記第2の導電体が、メタルインクを焼成した焼成メタルインク導線である導電部。
a first conductor, a second conductor, and a fusion region;
the first conductor has an insulating layer on a surface thereof;
the second conductor is laminated on the first conductor;
the molten region is a region in which the first conductor and the second conductor, including the insulating layer, are melted, and the molten region has a hole at its center that is surrounded by the molten region;
the insulating layer is a native oxide layer derived from a metal of the first conductor,
The conductive portion, wherein the second conductor is a fired metal ink conductor formed by firing a metal ink .
前記第1の導電体は、基板上に配置され、請求項5又は6に記載の導電部を有する電子部品。 The first conductor is disposed on a substrate, and the electronic component has the conductive portion according to claim 5 or 6 . 請求項7記載の電子部品を組み込んだ製品。 A product incorporating the electronic component according to claim 7.
JP2020199675A 2020-12-01 2020-12-01 Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part Active JP7575775B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020199675A JP7575775B2 (en) 2020-12-01 2020-12-01 Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part
KR1020237014136A KR20230113533A (en) 2020-12-01 2021-09-09 Method for manufacturing a conductive part, method for manufacturing an electronic part including a conductive part, method for manufacturing a product in which electronic parts including a conductive part are assembled, conductive part, electronic part having a conductive part, product containing an electronic part including a conductive part
PCT/JP2021/033122 WO2022118517A1 (en) 2020-12-01 2021-09-09 Production method for conductive part, production method for electronic component including conductive part, production method for product made from electronic component including conductive part, conductive part, electronic component including conductive part, and product incorporating electronic component including conductive part
CN202180076762.8A CN116569660A (en) 2020-12-01 2021-09-09 Method for manufacturing conductive part, method for manufacturing electronic component including conductive part, method for manufacturing product obtained by assembling electronic component including conductive part, electronic component including conductive part, and product obtained by assembling electronic component including conductive part
TW110144158A TW202239282A (en) 2020-12-01 2021-11-26 Manufacturing method of conductive portion, manufacturing method of electronic component including conductive portion, manufacturing method of product assembled with electronic component including conductive portion, conductive portion, electronic component having conductive portion, and product incorporating electronic component including conductive portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020199675A JP7575775B2 (en) 2020-12-01 2020-12-01 Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part

Publications (2)

Publication Number Publication Date
JP2022087629A JP2022087629A (en) 2022-06-13
JP7575775B2 true JP7575775B2 (en) 2024-10-30

Family

ID=81854060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020199675A Active JP7575775B2 (en) 2020-12-01 2020-12-01 Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part

Country Status (5)

Country Link
JP (1) JP7575775B2 (en)
KR (1) KR20230113533A (en)
CN (1) CN116569660A (en)
TW (1) TW202239282A (en)
WO (1) WO2022118517A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022306A (en) 1998-06-30 2000-01-21 Kyocera Corp Repair method of aluminum thin film wiring
JP2005354009A (en) 2004-06-14 2005-12-22 V Technology Co Ltd Conductive substance-containing liquid for wiring repair of electronic circuit board and wiring repair method of electronic circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590856B2 (en) * 1987-01-27 1997-03-12 三菱電機株式会社 Circuit board and its repair method
JPH0196954A (en) * 1987-10-08 1989-04-14 Mitsubishi Electric Corp Resistance trimming method for semiconductor integrated circuits
JPH06314745A (en) * 1993-04-28 1994-11-08 Matsushita Electric Ind Co Ltd Processing method of metal film
JP6711614B2 (en) 2015-12-24 2020-06-17 キヤノン株式会社 Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022306A (en) 1998-06-30 2000-01-21 Kyocera Corp Repair method of aluminum thin film wiring
JP2005354009A (en) 2004-06-14 2005-12-22 V Technology Co Ltd Conductive substance-containing liquid for wiring repair of electronic circuit board and wiring repair method of electronic circuit board

Also Published As

Publication number Publication date
CN116569660A (en) 2023-08-08
KR20230113533A (en) 2023-07-31
WO2022118517A1 (en) 2022-06-09
TW202239282A (en) 2022-10-01
JP2022087629A (en) 2022-06-13

Similar Documents

Publication Publication Date Title
DE69125333T2 (en) Making metal patterns on a substrate
US4880959A (en) Process for interconnecting thin-film electrical circuits
JPH061793B2 (en) Method for connecting between multi-layer wiring conductors forming an interconnection wiring network of an integrated circuit by laser programming, and integrated circuit obtained by applying this method
JP2528625B2 (en) Method for repairing conductor on board and repaired structure
CN1116772A (en) High-density structure with laser etching resistance function and its design method
US10546710B2 (en) Fuse production method, fuse, circuit board production method and circuit board
KR100363410B1 (en) How to manufacture conductive link for interconnect
US11869993B2 (en) Method of manufacturing a thin film photovoltaic product
JP7575775B2 (en) Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part
Pawlak et al. Durability and reliability enhancement of selected electronic components achieved by laser technologies
JP2011137918A (en) Method for manufacturing metal sealed electronic element
JPH05182854A (en) Processing method for end of coil
US5940727A (en) Technique for producing interconnecting conductive links
JPH11307914A (en) Pattern forming method of thick film wiring board
WO2022009517A1 (en) Contact structure and method for manufacturing contact structure
WO2022024531A1 (en) Fired metal ink wiring manufacturing method and product manufactured by fired metal ink wiring manufacturing method
Lee et al. Effect of Heat-Affected Zone on the Nanosecond Pulsed Laser Scanning Ablation of Ag Nanoparticle Layer
JP5111206B2 (en) Pattern correction method and pattern parts
Okamoto et al. Micromachining of ITO film by LD-pumped SGH YAG laser
JP2009251119A (en) Transfer member
JPH0465189A (en) Short mending method for ceramic multilayer board
JPS62210692A (en) Manufacture of multilayer printed wiring board
US20050146839A1 (en) Forming thin layer structures by ablation
JPH0255335A (en) Thin metallic film wire
JPH0335831B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241010

R150 Certificate of patent or registration of utility model

Ref document number: 7575775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150