[go: up one dir, main page]

JP2011137918A - Method for manufacturing metal sealed electronic element - Google Patents

Method for manufacturing metal sealed electronic element Download PDF

Info

Publication number
JP2011137918A
JP2011137918A JP2009296962A JP2009296962A JP2011137918A JP 2011137918 A JP2011137918 A JP 2011137918A JP 2009296962 A JP2009296962 A JP 2009296962A JP 2009296962 A JP2009296962 A JP 2009296962A JP 2011137918 A JP2011137918 A JP 2011137918A
Authority
JP
Japan
Prior art keywords
metal layer
melting point
layer
low melting
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009296962A
Other languages
Japanese (ja)
Inventor
Shinichi Shimozu
臣一 下津
Tatsuya Yoshihiro
達矢 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009296962A priority Critical patent/JP2011137918A/en
Publication of JP2011137918A publication Critical patent/JP2011137918A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】金属封止電子素子を封止プロセスの時間を短縮して製造効率を上げることが可能であって、電子素子の劣化などの悪影響を最小限に抑えて製造する。
【解決手段】一方の基板1に電子素子2が形成された、一対の基板1,7のそれぞれの周縁部に下地金属層4、4’を設け、この下地金属層4、4’の上にレーザに対して吸収率が高い光吸収層5,5’を設け、光吸収層5の上に電子素子2を封止するための低融点金属層6を設ける。この低融点金属層6に電流を流して低融点金属層6を予熱し、基板7および下地金属層4’を通してレーザを光吸収層5,5’に照射して低融点金属層6を加熱、融解させ、低融点金属層6と光吸収層5’とを接合して電子素子2を封止する。
【選択図】 図1
A metal-encapsulated electronic device can be manufactured by shortening the sealing process time and increasing the production efficiency, while minimizing adverse effects such as deterioration of the electronic device.
A base metal layer (4, 4 ') is provided on each peripheral edge of a pair of substrates (1, 7) on which an electronic element (2) is formed on one substrate (1), on the base metal layer (4, 4'). Light absorption layers 5 and 5 ′ having a high absorption rate for the laser are provided, and a low melting point metal layer 6 for sealing the electronic element 2 is provided on the light absorption layer 5. A current is passed through the low melting point metal layer 6 to preheat the low melting point metal layer 6, and the low melting point metal layer 6 is heated by irradiating the light absorption layers 5, 5 ′ through the substrate 7 and the base metal layer 4 ′. The electronic element 2 is sealed by melting and joining the low melting point metal layer 6 and the light absorption layer 5 ′.
[Selection] Figure 1

Description

本発明は、液晶等の表示媒体、有機EL等の発光媒体に代表される電子素子を封止した金属封止電子素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a metal-encapsulated electronic element in which an electronic element typified by a display medium such as a liquid crystal or a light-emitting medium such as an organic EL is encapsulated.

近年、携帯電話機や音楽プレーヤーといった電子機器や家電機器には有機EL素子等の発光媒体が用いられ、典型的には一対の基板の間に電子素子が封入された構造を持っている。有機EL素子は水分や酸化に弱く、その稼動時間を延ばすためには、製造過程において素子を空気中の酸素や水分から隔離して封止を行い、製造後においては水分等に起因する劣化を抑制するために十分な防湿性を確保する必要がある。   2. Description of the Related Art In recent years, light emitting media such as organic EL elements have been used in electronic devices such as mobile phones and music players, and home appliances, and typically have a structure in which electronic devices are sealed between a pair of substrates. Organic EL elements are vulnerable to moisture and oxidation, and in order to extend their operating time, the elements are sealed off from oxygen and moisture in the air during the manufacturing process, and deterioration due to moisture etc. occurs after manufacturing. In order to suppress it, it is necessary to ensure sufficient moisture resistance.

例えば、特許文献1には有機EL素子の上にSiOで形成された無機保護膜を設け、封止樹脂により被覆する方法が記載されている。しかし、ここで用いられている封止樹脂は長期の経時によって水分を透過させるものであるため、有機EL素子の寿命の減衰を本質的に避けることができるものではない。   For example, Patent Document 1 describes a method in which an inorganic protective film made of SiO is provided on an organic EL element and covered with a sealing resin. However, since the sealing resin used here allows moisture to permeate over a long period of time, the lifetime of the organic EL element cannot be essentially prevented from being attenuated.

出願人は、樹脂基板間に設けられた有機EL素子等の電子素子の防湿性を向上させることができ、電子素子の水分等に起因する劣化を抑制することができるとともに、樹脂基板や電子素子に影響を与えることなく電子デバイスを製造する方法として、ロウ材として低融点金属を用いるとともに光吸収層を設けることにより、レーザ加熱を利用して電子素子の封止を行う方法を提案している(特許文献2)。   The applicant can improve the moisture resistance of an electronic element such as an organic EL element provided between the resin substrates, can suppress deterioration due to moisture or the like of the electronic element, and can also suppress the resin substrate or the electronic element. As a method of manufacturing an electronic device without affecting the process, a method of sealing an electronic element using laser heating by using a low melting point metal as a brazing material and providing a light absorption layer is proposed. (Patent Document 2).

特許第3354444号公報Japanese Patent No. 3354444 特開2008−251242号公報JP 2008-251242 A

上記特許文献2に記載されている方法は、長期の経時によっても水分の透過を遮断することができるため、有機EL素子の劣化を効果的に抑制することが可能である。しかし、低融点金属を融解させるための熱を全てレーザ光で与えているために、プロセスの速度は2mm/秒程度であるため、製造効率上は改善が期待される。単純に、封止プロセスの速度を速くすれば製造効率を上げることはできるが、封止精度は低下する。一方、封止精度を現状のままとして封止プロセス速度を上昇させるためには、レーザの照射パワーを上げる等の方法が考えられるが、耐熱性が高くない電子素子を封止する場合、これには限界がある。   Since the method described in Patent Document 2 can block moisture permeation over a long period of time, it is possible to effectively suppress deterioration of the organic EL element. However, since all the heat for melting the low melting point metal is given by the laser light, the process speed is about 2 mm / second, so that improvement in manufacturing efficiency is expected. Simply increasing the speed of the sealing process can increase manufacturing efficiency but reduces sealing accuracy. On the other hand, in order to increase the sealing process speed while maintaining the sealing accuracy as it is, a method such as increasing the laser irradiation power is conceivable. There are limits.

本発明は上記事情に鑑みなされたものであり、封止プロセスの時間を短縮して製造効率を上げることが可能であって、電子素子の劣化などの悪影響を最小限に抑えることが可能な金属封止電子素子の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and is capable of shortening the sealing process time to increase manufacturing efficiency and minimizing adverse effects such as deterioration of electronic elements. It aims at providing the manufacturing method of a sealing electronic element.

本発明の金属封止電子素子の製造方法は、一方の基板に電子素子が形成された一対の基板のそれぞれの周縁部に下地金属層を設け、該下地金属層の少なくとも一方の上にレーザに対して吸収率が高い光吸収層を設け、該光吸収層の上に前記電子素子を封止するための低融点金属層を設け、少なくとも該低融点金属層に電流を流して該低融点金属層を予熱し、少なくとも一方の前記基板および前記下地金属層を通してレーザを前記光吸収層に照射して前記低融点金属層を加熱、融解させ、前記低融点金属層と前記光吸収層とを接合して前記電子素子を封止することを特徴とするものである。   According to the method for manufacturing a metal-encapsulated electronic element of the present invention, a base metal layer is provided on each peripheral portion of a pair of substrates on which an electronic element is formed on one substrate, and a laser is provided on at least one of the base metal layers. On the other hand, a light absorption layer having a high absorptance is provided, a low melting point metal layer for sealing the electronic device is provided on the light absorption layer, and a current is passed through at least the low melting point metal layer so that the low melting point metal is provided. Preheating the layer, irradiating the light absorption layer with laser through at least one of the substrate and the base metal layer to heat and melt the low melting point metal layer, and bonding the low melting point metal layer and the light absorption layer Then, the electronic element is sealed.

前記低融点金属層は、前記下地金属層のいずれか一方に前記光吸収層が設けられている場合にはその光吸収層の上に、前記下地金属層の両方に前記光吸収層が設けられている場合には、いずれか一方の光吸収層の上に設けられる。   When the light absorption layer is provided on one of the base metal layers, the low melting point metal layer is provided with the light absorption layer on both the base metal layer and the light absorption layer. If it is, it is provided on one of the light absorption layers.

前記低融点金属層に電流を流す際には、前記低融点金属層の温度測定結果に基づいて、前記下地金属層に電流を流すことが好ましい。
前記基板を冷却しながら、前記予熱および/または前記加熱を行うことがより好ましい。
When passing an electric current through the low melting point metal layer, it is preferable to pass an electric current through the base metal layer based on a temperature measurement result of the low melting point metal layer.
More preferably, the preheating and / or the heating is performed while cooling the substrate.

本発明の金属封止電子素子の製造方法は、一方の基板に電子素子が形成された一対の基板のそれぞれの周縁部に下地金属層を設け、この下地金属層の少なくとも一方の上にレーザに対して吸収率が高い光吸収層を設け、この光吸収層の上に電子素子を封止するための低融点金属層を設け、少なくともこの低融点金属層に電流を流して低融点金属層を予熱し、少なくとも一方の基板および下地金属層を通してレーザを光吸収層に照射して低融点金属層を加熱、融解させ、低融点金属層と光吸収層とを接合して電子素子を封止するので、レーザのみで低融点金属層を加熱、溶融する場合に比べて、低融点金属層が予め加熱されているため、低融点金属層を加熱、融解させるためのレーザの必要供給熱量が減少するので、レーザ光の照射プロセス時間を短縮することができる。   According to the method for manufacturing a metal-encapsulated electronic element of the present invention, a base metal layer is provided on each peripheral portion of a pair of substrates having an electronic element formed on one substrate, and a laser is provided on at least one of the base metal layers. On the other hand, a light absorption layer having a high absorptance is provided, a low melting point metal layer for sealing an electronic device is provided on the light absorption layer, and at least a current is passed through the low melting point metal layer to form a low melting point metal layer. Preheating, irradiating the light absorption layer with laser through at least one substrate and the base metal layer, heating and melting the low melting point metal layer, bonding the low melting point metal layer and the light absorption layer, and sealing the electronic device Therefore, compared with the case where the low melting point metal layer is heated and melted only by the laser, the low melting point metal layer is preheated, so that the required amount of heat supplied by the laser for heating and melting the low melting point metal layer is reduced. So during the laser irradiation process It is possible to shorten the.

本発明の第一の実施形態による有機EL素子の製造過程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the organic EL element by 1st embodiment of this invention. 図1(c)の平面図である。It is a top view of FIG.1 (c). 図1(c)の斜視図である。FIG. 2 is a perspective view of FIG. 本発明の別の実施形態による有機EL素子の製造過程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the organic EL element by another embodiment of this invention.

以下、図面を参照して本発明の金属封止電子素子の製造方法を、有機EL素子を例にとって説明する。図1は、本発明の第一の実施形態による有機EL素子の製造過程を示す模式図である。まず、有機EL素子2が形成された素子形成基板1に、有機EL素子2に電流を供給するための有機EL用配線8を形成するとともに、後に素子形成基板1の周縁部に形成される下地金属層4、光吸収層5および低融点金属層6(以下、下地金属層4と光吸収層5と低融点金属層6をまとめて封止層3ともいう)によって短絡されないように有機EL用配線8を絶縁層9によって覆う(図1(a))。絶縁層9は有機EL素子用配線8が形成されている部分にのみ設けてもよいし、素子形成基板1の周縁部の全周に亘って設けてもよい。   Hereinafter, the method for producing a metal-encapsulated electronic device of the present invention will be described with reference to the drawings, taking an organic EL device as an example. FIG. 1 is a schematic diagram showing a manufacturing process of an organic EL element according to the first embodiment of the present invention. First, an organic EL wiring 8 for supplying a current to the organic EL element 2 is formed on the element forming substrate 1 on which the organic EL element 2 is formed, and a base formed later on the peripheral portion of the element forming substrate 1 For organic EL so as not to be short-circuited by the metal layer 4, the light absorption layer 5 and the low melting point metal layer 6 (hereinafter, the base metal layer 4, the light absorption layer 5 and the low melting point metal layer 6 are collectively referred to as the sealing layer 3). The wiring 8 is covered with an insulating layer 9 (FIG. 1 (a)). The insulating layer 9 may be provided only in a portion where the organic EL element wiring 8 is formed, or may be provided over the entire periphery of the peripheral portion of the element forming substrate 1.

素子形成基板1は後述する封止基板7と同素材のものを用いることができ、具体的には、ガラス、水分透過防止処理を行ったPEN、PET、PES、PC等の樹脂を用いることができる。本実施の形態においては、素子形成基板1は、21インチ液晶ディスプレイ用として、447mm×340mm×0.7mmのガラス基板を用い、封止基板7は素子形成基板1よりも全体的に5mm程度小さいものを用いている(なお、図面では説明のために大きさは実際の大きさの相違よりも大きく示している)。   The element forming substrate 1 can be made of the same material as the sealing substrate 7 to be described later, and specifically, glass, a resin such as PEN, PET, PES, or PC that has been subjected to moisture permeation prevention treatment. it can. In the present embodiment, the element forming substrate 1 is a 447 mm × 340 mm × 0.7 mm glass substrate for a 21-inch liquid crystal display, and the sealing substrate 7 is generally about 5 mm smaller than the element forming substrate 1. (In the drawings, the size is shown larger than the actual size difference for the sake of explanation).

絶縁層9は、例えばSiO2,SiON,SiOx,SiO,CeO2,アルミナ等の絶縁性酸化物、窒化物等が好ましくあげられ、本実施の形態においては1μm厚のSiO2層をプラズマCVD法により設けている。 The insulating layer 9 is preferably made of, for example, an insulating oxide such as SiO 2 , SiON, SiOx, SiO, CeO 2 , or alumina, or nitride. In this embodiment, a 1 μm thick SiO 2 layer is formed by plasma CVD. Is provided.

素子が熱に弱い場合には素子形成基板1および封止基板7は冷却しながら下記工程(電流による予熱、レーザによる加熱)を行うことが好ましく、例えば本実施の形態で説明する有機EL素子の場合、素子形成基板1および封止基板7は80℃以下の温度となるように冷却しながら行うことが好ましい。なお、基板の冷却は絶縁層を設ける工程以降、全ての工程で行ってもよい。   When the element is vulnerable to heat, it is preferable to perform the following steps (preheating with current, heating with laser) while cooling the element formation substrate 1 and the sealing substrate 7, for example, the organic EL element described in this embodiment In this case, it is preferable that the element formation substrate 1 and the sealing substrate 7 are cooled while being cooled to a temperature of 80 ° C. or lower. Note that the substrate may be cooled in all steps after the step of providing the insulating layer.

次いで、絶縁層9上に下地金属層4を形成し、形成した下地金属層4上に光吸収層5を、さらにその上に低融点金属層6を形成する(図1(b))。同様に、素子形成基板1の封止層3を設けた位置に対向させて、封止基板7上にも下地金属層4’および光吸収層5’を順に形成する。なお、図1(b)では、素子形成基板1の封止層3に光吸収層5が、封止基板7側にも光吸収層5’がそれぞれ設けられている態様を示しているが、素子形成基板1の封止層3、封止基板7のいずれか一方に光吸収層が設けられた態様としてもよい。いずれか一方に光吸収層を設ける場合には、低融点金属層6は設けられた光吸収層上に設けられる。   Next, the base metal layer 4 is formed on the insulating layer 9, the light absorption layer 5 is formed on the formed base metal layer 4, and the low melting point metal layer 6 is further formed thereon (FIG. 1B). Similarly, the base metal layer 4 ′ and the light absorption layer 5 ′ are sequentially formed on the sealing substrate 7 so as to face the position where the sealing layer 3 of the element formation substrate 1 is provided. 1B shows a mode in which the light absorption layer 5 is provided on the sealing layer 3 of the element formation substrate 1 and the light absorption layer 5 ′ is provided on the sealing substrate 7 side. It is good also as an aspect by which the light absorption layer was provided in any one of the sealing layer 3 of the element formation board | substrate 1, and the sealing board | substrate 7. FIG. When providing a light absorption layer in any one, the low melting-point metal layer 6 is provided on the provided light absorption layer.

下地金属層4および4’は素子形成基板1(絶縁層9が周縁部全周に設けられている場合には絶縁層9)との密着性を高めて接合するための層であり、基板の材質にもよるが、例えばCr,Ti, Ni等が好ましくあげられ、本実施の形態においては幅0.5mm、厚さ5nmのCr膜とし、真空蒸着で設けている。なお、下地金属層の形成方法は真空蒸着に限らず、レーザ転写法やイオンスパッタ法を用いてもよい。   The base metal layers 4 and 4 ′ are layers for bonding with increasing adhesion to the element formation substrate 1 (the insulating layer 9 when the insulating layer 9 is provided all around the periphery). Although depending on the material, for example, Cr, Ti, Ni, etc. are preferable. In this embodiment, a Cr film having a width of 0.5 mm and a thickness of 5 nm is provided by vacuum deposition. Note that the formation method of the base metal layer is not limited to vacuum deposition, and a laser transfer method or an ion sputtering method may be used.

光吸収層5および5’は、素子形成基板1及び封止基板7の温度上昇を低く抑えながら光吸収層の温度を、予熱された低融点金属層が融解する程度にまで高めるために、照射するレーザ光の波長に対して吸収率が充分高い層(レーザの波長に対して極大吸収を有する層)であって、例えばAu,Ni,Cu、Cr、Mo、W等が好ましくあげられ、本実施の形態においては幅0.5mm、厚さ200nmでAu膜を真空蒸着により設けている。   The light absorption layers 5 and 5 ′ are irradiated to increase the temperature of the light absorption layer to such an extent that the preheated low melting point metal layer is melted while keeping the temperature rise of the element formation substrate 1 and the sealing substrate 7 low. A layer having a sufficiently high absorption rate with respect to the wavelength of the laser beam (a layer having a maximum absorption with respect to the wavelength of the laser), such as Au, Ni, Cu, Cr, Mo, W, etc. In the embodiment, an Au film having a width of 0.5 mm and a thickness of 200 nm is provided by vacuum deposition.

低融点金属層6は電流を通す金属であって、低融点(250℃以下の融点のもの)の金属(合金を含む)からなる層であって、例えば、In、Sn,In・Sn合金、Sn・Bi・Ag合金、Sn・Ag合金、Sn・Ag・Cu合金、Sn・Ag・Cu・Bi合金等の低融点金属が好ましくあげられ、本実施の形態においては2μm厚のIn層を真空蒸着により設けている。封止プロセスとの兼ね合いにより、低融点金属層の厚さは最大10μm厚程度になる可能性もある。   The low melting point metal layer 6 is a metal that conducts current and is a layer made of a metal (including an alloy) having a low melting point (having a melting point of 250 ° C. or lower), for example, In, Sn, In—Sn alloy, Low melting point metals such as Sn / Bi / Ag alloy, Sn / Ag alloy, Sn / Ag / Cu alloy, Sn / Ag / Cu / Bi alloy are preferred. In this embodiment, the In layer having a thickness of 2 μm is vacuumed. It is provided by vapor deposition. Depending on the balance with the sealing process, the thickness of the low melting point metal layer may be about 10 μm at the maximum.

続いて、封止層3の上面、低融点金属層6に電流が流れるようにプローブ状の電極10を接触させて電圧を印加して、封止層3に電流を流して低融点金属層6の予熱を行う(図1(c))。なお、図1(c)では、素子形成基板1の低融点金属層6と、封止基板7上の光吸収層5’を重ね合わせる前に電流を流している態様を示しているが、素子形成基板1の低融点金属層6と、封止基板7上の光吸収層5’を重ね合わせた状態(図1(d)に示す状態)にしてから、電流を流してもよい。   Subsequently, the probe-like electrode 10 is brought into contact with the upper surface of the sealing layer 3 and the low melting point metal layer 6 so that a voltage is applied, and a current is passed through the sealing layer 3 to cause the low melting point metal layer 6 to flow. Is preheated (FIG. 1 (c)). FIG. 1C shows a mode in which a current is passed before the low melting point metal layer 6 of the element formation substrate 1 and the light absorption layer 5 ′ on the sealing substrate 7 are overlapped. After the low melting point metal layer 6 of the formation substrate 1 and the light absorption layer 5 ′ on the sealing substrate 7 are overlapped (state shown in FIG. 1 (d)), the current may flow.

この電極10を接触させた状態の平面図を図2に、斜視図を図3に示す。なお、図2および図3では封止層3の位置(パターン)を破線で示している。図2および図3に示すように封止層3は一筆書き状のパターンで形成する。このとき、図2に示すように封止層3のパターンの両端に電圧を印加した際に、封止層3に予熱されない部分ができないようにするため、パターンの隙間を最小となるように、電極に接続する部分にスペースを取りながら封止層3のパターンにくびれを設け、最もパターン間隔が小さいところで0.3mmとなるようにしている。   FIG. 2 shows a plan view of the electrode 10 in contact with it, and FIG. 3 shows a perspective view thereof. 2 and 3, the position (pattern) of the sealing layer 3 is indicated by a broken line. As shown in FIGS. 2 and 3, the sealing layer 3 is formed in a one-stroke pattern. At this time, as shown in FIG. 2, when a voltage is applied to both ends of the pattern of the sealing layer 3, in order to prevent a portion that is not preheated from the sealing layer 3, the pattern gap is minimized. A constriction is provided in the pattern of the sealing layer 3 while taking a space in a portion connected to the electrode so that the distance between the patterns is 0.3 mm.

電流による予熱はレーザ加熱プロセスの待ち時間を利用することによって、電子素子封止プロセス全体のタクトタイムを短縮することができる。なお、時間当たりの発熱効率は予熱温度、素子温度、配線の抵抗値、冷却条件により変動するが、電流による予熱の発熱効率は後述するレーザによる加熱に比べて、発熱効率が高いことが好ましい。電極10は、低融点金属層6の温度を測定することが可能な、例えば非接触温度計のような温度測定装置に接続され、ここで測定された温度測定結果に基づいて封止層3に流す電流量を制御する電流制御装置に接続されている。これにより低融点金属層6の温度が低い場合には電流制御装置により電流量が増量され、低融点金属層6の温度が高い場合には電流量が減量されるといった制御がなされる。   The preheating by the current can reduce the takt time of the entire electronic device sealing process by utilizing the waiting time of the laser heating process. The heat generation efficiency per time varies depending on the preheating temperature, element temperature, wiring resistance, and cooling conditions, but it is preferable that the heat generation efficiency of preheating by current is higher than that by laser heating described later. The electrode 10 is connected to a temperature measuring device such as a non-contact thermometer capable of measuring the temperature of the low melting point metal layer 6, and is applied to the sealing layer 3 based on the temperature measurement result measured here. It is connected to a current control device that controls the amount of current to flow. Thereby, when the temperature of the low melting point metal layer 6 is low, the current amount is increased by the current control device, and when the temperature of the low melting point metal layer 6 is high, the current amount is decreased.

封止層3は素子形成基板1の周縁部に設けられているので、有機EL素子2が形成された部分の加熱を避けて予熱を行うことが可能である。基板の断熱性能と放熱性能が高ければ、封止層3の温度を有機EL素子2の破壊温度以上にまで予熱することも可能である。また、上記で説明したように素子形成基板1および封止基板7を冷却すれば、さらに低融点金属層6の温度を高くすることもできる。   Since the sealing layer 3 is provided in the peripheral part of the element formation board | substrate 1, it can avoid preheating the part in which the organic EL element 2 was formed, and can preheat. If the heat insulation performance and heat dissipation performance of the substrate are high, the temperature of the sealing layer 3 can be preheated to a temperature higher than the breakdown temperature of the organic EL element 2. Moreover, if the element formation substrate 1 and the sealing substrate 7 are cooled as described above, the temperature of the low melting point metal layer 6 can be further increased.

次ぎに、素子形成基板1の低融点金属層6と、封止基板7上の光吸収層5’を重ね合わせてレーザを照射する(図1(d))。なお、上述した電流は、この段階で止めてもよいし、光吸収層5’と低融点金属層6とのレーザによる封止が終了するまで流し続けてもよい。低融点金属層6は電流を流すことによって予熱されているため、低融点金属層6の融解までの時間はレーザのみの加熱に比べて短縮することができる。   Next, the low melting point metal layer 6 of the element formation substrate 1 and the light absorption layer 5 'on the sealing substrate 7 are overlapped and irradiated with laser (FIG. 1 (d)). The above-described current may be stopped at this stage, or may continue to flow until the light absorption layer 5 ′ and the low melting point metal layer 6 are sealed by the laser. Since the low-melting point metal layer 6 is preheated by passing an electric current, the time until the low-melting point metal layer 6 is melted can be shortened as compared with heating only by the laser.

レーザの照射は例えば特開2008−251242号の図3に記載されているような照射装置を用いて行うことができ、封止基板7及び下地金属層4’を通してレーザを周縁部の光吸収層5および5’を走査するように照射する。このように、レーザを周縁部の光吸収層に照射することにより、有機EL素子2が配置されている部分の加熱を避けることができる。なお、レーザの照射は素子形成基板1側から下地金属層4を通して行ってもよい。   The laser irradiation can be performed using an irradiation apparatus as described in FIG. 3 of Japanese Patent Application Laid-Open No. 2008-251242, for example, and the laser is transmitted through the sealing substrate 7 and the base metal layer 4 ′ to the light absorption layer at the peripheral portion. Irradiate to scan 5 and 5 '. In this manner, by irradiating the light absorption layer at the peripheral portion with the laser, heating of the portion where the organic EL element 2 is disposed can be avoided. Note that laser irradiation may be performed through the base metal layer 4 from the element formation substrate 1 side.

レーザの波長は光吸収層の材質にもよるが、封止基板を透過し、光吸収層で吸収されるような波長が好ましく、例えば封止基板がガラスで光吸収層がAuの場合には405nm、封止基板がSiで光吸収層がCrの場合には1550nmの波長を有するレーザを用いる。これによって上記電流を流すことによって予熱されている低融点金属層6を加熱、融解させることができ、低融点金属層6と光吸収層5’を接合して有機EL素子2を封止することができる。   Although the wavelength of the laser depends on the material of the light absorption layer, a wavelength that transmits through the sealing substrate and is absorbed by the light absorption layer is preferable. For example, when the sealing substrate is glass and the light absorption layer is Au When the sealing substrate is 405 nm and the light absorption layer is Cr, a laser having a wavelength of 1550 nm is used. Accordingly, the low melting point metal layer 6 preheated by flowing the current can be heated and melted, and the organic EL element 2 is sealed by joining the low melting point metal layer 6 and the light absorption layer 5 ′. Can do.

以上のような本発明の金属封止電子素子の製造によれば、低融点金属層をレーザのみで加熱、溶融する場合に比べて、低融点金属層が予め加熱されているため、低融点金属層を加熱、融解させるためのレーザの必要供給熱量を減少させて、レーザ光の照射プロセス時間を短縮することができる。   According to the manufacture of the metal-encapsulated electronic device of the present invention as described above, the low melting point metal layer is preheated as compared with the case where the low melting point metal layer is heated and melted only with a laser. The necessary heat supply amount of the laser for heating and melting the layer can be reduced, and the irradiation process time of the laser beam can be shortened.

なお、本発明の金属封止電子素子の製造は、低融点金属層に電流を流して低融点金属層を予熱してからレーザで低融点金属層を加熱、溶融するものであるが、電流を流す手段を低融点金属層を加熱する主たる手段とし、レーザを予備的な加熱として使用する場合には(つまり本発明とは逆)、電子素子部分の温度が上昇してしまうという問題が生じることが懸念されるが、レーザ加熱は与えた熱が熱拡散する前に多くの熱を与えることができるので、電流加熱だけでは素子部分の温度が上がってしまうような状況でも、本発明のように電流を予熱手段、レーザを加熱溶融手段とすることにより、素子部分の温度を上げることなしに低融点金属層の温度を融点以上まで上げることができる。   In the manufacture of the metal-encapsulated electronic device of the present invention, a current is passed through the low melting point metal layer to preheat the low melting point metal layer, and then the low melting point metal layer is heated and melted with a laser. When the flow means is the main means for heating the low-melting point metal layer and the laser is used for preliminary heating (that is, contrary to the present invention), the temperature of the electronic element portion will rise. However, since laser heating can give a lot of heat before the applied heat spreads, even in a situation where the temperature of the element part rises only by current heating, as in the present invention By using the current as the preheating means and the laser as the heating and melting means, the temperature of the low melting point metal layer can be raised to the melting point or higher without raising the temperature of the element portion.

具体的に説明する。上記第一の実施の形態に示す製造工程において、図2に示すように封止層を形成したパターンの抵抗値は95Ωとなる。この封止層のパターンに400mAの電流を流すと、15Wの発熱をする。ここで、ガラスの熱伝導率を0.9W/m・K、ガラスと空気の熱伝達率を4W/m2・Kとすると、低融点金属層が80℃の状態では、空気への熱伝達による放熱は9Wであるため、多くとも400mAの電流を流せば十分に予熱が可能である。このとき電流値の制御は温度測定装置で低融点金属層の温度を測定し、望みの温度、ここでは80℃となるように行う。封止層のパターンから5mm離れた点の温度は62℃であり、例えば封止層のパターンから10mm離れた点の温度は50℃である。従って、封止層のパターンから少なくとも5mmの範囲を下地金属層のハンダ付けスペースとして封止層を形成すれば、有機EL素子の耐熱温度を上回ることなく封止層のパターンの予熱を行うことができる。 This will be specifically described. In the manufacturing process shown in the first embodiment, the resistance value of the pattern in which the sealing layer is formed as shown in FIG. When a current of 400 mA is passed through the sealing layer pattern, heat is generated by 15 W. Here, assuming that the thermal conductivity of glass is 0.9 W / m · K, and the heat transfer coefficient between glass and air is 4 W / m 2 · K, heat transfer to air is performed when the low melting point metal layer is at 80 ° C. Since the heat radiation by is 9 W, it is possible to sufficiently preheat if a current of at most 400 mA flows. At this time, the current value is controlled by measuring the temperature of the low-melting point metal layer with a temperature measuring device so that the desired temperature, here 80 ° C., is obtained. The temperature at a point 5 mm away from the pattern of the sealing layer is 62 ° C., for example, the temperature at a point 10 mm away from the pattern of the sealing layer is 50 ° C. Therefore, if the sealing layer is formed by using a space of at least 5 mm from the pattern of the sealing layer as a soldering space for the base metal layer, the pattern of the sealing layer can be preheated without exceeding the heat resistance temperature of the organic EL element. it can.

そして、上記で例示した低融点金属層Inの融点は156.3℃であるので、80℃まで予熱を行った場合、低融点金属層の融点までレーザで加熱するのに必要な熱量は、予熱を行わない場合に比べて1/2となる。従ってレーザ照射の時間を短縮でき、封止プロセス速度は4mm/分、つまりレーザ加熱のみの場合の2倍の速さにすることができる。2mm/分の速度でレーザ加熱のみの場合のプロセス時間は、21インチ液晶ディスプレイ用の場合13分であるから、予熱を行えばプロセス時間を6分30秒にまで短縮することが可能である。   Since the melting point of the low melting point metal layer In exemplified above is 156.3 ° C., when the preheating is performed up to 80 ° C., the amount of heat necessary for heating with the laser to the melting point of the low melting point metal layer is the preheating. It becomes 1/2 compared with the case where it does not perform. Therefore, the laser irradiation time can be shortened, and the sealing process speed can be 4 mm / min, that is, twice as fast as the case of only laser heating. The process time when only laser heating is performed at a speed of 2 mm / min is 13 minutes for a 21-inch liquid crystal display. Therefore, if preheating is performed, the process time can be reduced to 6 minutes and 30 seconds.

図4に第一の実施形態において、電極の位置を変えた別の実施形態による製造工程の一部を平面図にして示す。図4は電極の接続位置を対角線上に設けた態様を示しており、対角にプローブ状の電極を接触させることで電圧を印加するようにパターンをとった以外は上記第一の実施形態で説明したものと同じ構成である。このように形成した配線パターンの抵抗値は20Ωとなる。このパターンに例えば1Aの電流を流すと、20Wの発熱をする。ガラスの熱伝導率を0.9W/m・K、25℃の空気を送風してガラスと空気の熱伝達率を20W/m2・Kとなるようにすると、低融点金属層が80℃の状態では空気への熱伝達による放熱は15Wとなるため、多くとも1Aの電流を流せば十分である。電流値の制御は上記の同様に、温度測定装置で低融点金属層の温度を測定し、望みの温度、ここでは80℃となるように行えばよい。封止層のパターンから3mm離れた点の温度は55℃であり、封止層のパターンから5mm離れた点の温度は45℃である。従って、封止層のパターンから少なくとも3mmの範囲を下地金属層のハンダ付けスペースとして封止層を形成すれば、有機EL素子の耐熱温度を上回ることなくパターンの予熱を行うことができる。 FIG. 4 is a plan view showing a part of a manufacturing process according to another embodiment in which the positions of the electrodes are changed in the first embodiment. FIG. 4 shows a mode in which electrode connection positions are provided on a diagonal line. In the first embodiment, except that a pattern is applied so that a voltage is applied by contacting a probe-like electrode diagonally. The configuration is the same as described. The resistance value of the wiring pattern formed in this way is 20Ω. For example, when a current of 1 A is passed through this pattern, heat is generated by 20 W. When the heat conductivity of the glass is 0.9 W / m · K and air at 25 ° C. is blown so that the heat transfer coefficient between the glass and air is 20 W / m 2 · K, the low melting point metal layer is 80 ° C. In the state, heat dissipation by heat transfer to the air is 15 W, so it is sufficient to flow a current of 1 A at most. Similarly to the above, the current value is controlled by measuring the temperature of the low-melting point metal layer with a temperature measuring device so that the desired temperature, in this case 80 ° C., is obtained. The temperature at a point 3 mm away from the pattern of the sealing layer is 55 ° C., and the temperature at a point 5 mm away from the pattern of the sealing layer is 45 ° C. Therefore, if the sealing layer is formed by using a space of at least 3 mm from the pattern of the sealing layer as a soldering space for the base metal layer, the pattern can be preheated without exceeding the heat resistance temperature of the organic EL element.

上述のように低融点金属層Inの融点は156.3℃であるので、80℃まで予熱を行った場合、低融点金属層の融点までレーザで加熱するのに必要な熱量は、予熱を行わない場合に比べて1/2となる。従ってレーザ照射の時間を短縮でき封止プロセス速度は4mm/分、つまりレーザ加熱のみの場合の2倍の速さにすることができ、21インチ液晶ディスプレイ用の場合、レーザ加熱のみのプロセス時間13分を、6分30秒にまで短縮することが可能である。   As described above, since the melting point of the low melting point metal layer In is 156.3 ° C., when preheating is performed up to 80 ° C., the amount of heat necessary for heating with the laser up to the melting point of the low melting point metal layer is preheated. It becomes 1/2 compared with the case where there is no. Accordingly, the laser irradiation time can be shortened, and the sealing process speed can be 4 mm / min, that is, twice as fast as the case of only laser heating. For a 21-inch liquid crystal display, the process time of only laser heating 13 Minutes can be reduced to 6 minutes 30 seconds.

1 素子形成基板
2 有機EL素子
3 封止層
4,4’ 下地金属層
5,5’ 光吸収層
6 低融点金属層
7 封止基板
8 有機EL素子用配線
9 絶縁層
10 電極
DESCRIPTION OF SYMBOLS 1 Element formation board | substrate 2 Organic EL element 3 Sealing layer 4,4 'Base metal layer 5,5' Light absorption layer 6 Low melting point metal layer 7 Sealing substrate 8 Organic EL element wiring 9 Insulating layer 10 Electrode

Claims (3)

一方の基板に電子素子が形成された一対の基板のそれぞれの周縁部に下地金属層を設け、該下地金属層の少なくとも一方の上にレーザに対して吸収率が高い光吸収層を設け、該光吸収層の上に前記電子素子を封止するための低融点金属層を設け、少なくとも該低融点金属層に電流を流して該低融点金属層を予熱し、少なくとも一方の前記基板および前記下地金属層を通してレーザを前記光吸収層に照射して前記低融点金属層を加熱、融解させ、前記低融点金属層と前記光吸収層とを接合して前記電子素子を封止することを特徴とする金属封止電子素子の製造方法。   A base metal layer is provided on each peripheral portion of a pair of substrates on which electronic elements are formed on one substrate, a light absorption layer having a high absorption rate for a laser is provided on at least one of the base metal layers, A low melting point metal layer for sealing the electronic element is provided on the light absorption layer, and at least one of the substrate and the base is preheated by flowing a current through the low melting point metal layer. The light absorption layer is irradiated with a laser through a metal layer to heat and melt the low melting point metal layer, and the electronic device is sealed by joining the low melting point metal layer and the light absorption layer. A method for manufacturing a metal-encapsulated electronic device. 前記低融点金属層の温度測定結果に基づいて、前記低融点金属層に電流を流すことを特徴とする請求項1記載の金属封止電子素子の製造方法。   2. The method of manufacturing a metal-encapsulated electronic device according to claim 1, wherein a current is passed through the low-melting-point metal layer based on a temperature measurement result of the low-melting-point metal layer. 前記基板を冷却しながら、前記予熱および/または前記加熱を行うことを特徴とする請求項1または2記載の金属封止電子素子の製造方法。   3. The method of manufacturing a metal-encapsulated electronic device according to claim 1, wherein the preheating and / or the heating is performed while cooling the substrate.
JP2009296962A 2009-12-28 2009-12-28 Method for manufacturing metal sealed electronic element Withdrawn JP2011137918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296962A JP2011137918A (en) 2009-12-28 2009-12-28 Method for manufacturing metal sealed electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296962A JP2011137918A (en) 2009-12-28 2009-12-28 Method for manufacturing metal sealed electronic element

Publications (1)

Publication Number Publication Date
JP2011137918A true JP2011137918A (en) 2011-07-14

Family

ID=44349421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296962A Withdrawn JP2011137918A (en) 2009-12-28 2009-12-28 Method for manufacturing metal sealed electronic element

Country Status (1)

Country Link
JP (1) JP2011137918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125764A (en) * 2011-12-13 2013-06-24 Toshiba Corp Semiconductor device and method of manufacturing the same
KR101780385B1 (en) * 2015-08-31 2017-09-21 호서대학교 산학협력단 Oled encapsulation structure and manufacturing method thereof
WO2018096995A1 (en) * 2016-11-25 2018-05-31 株式会社ブイ・テクノロジー Flexible display apparatus and sealing method for flexible display apparatus
WO2018235596A1 (en) * 2017-06-19 2018-12-27 株式会社ブイ・テクノロジー Display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125764A (en) * 2011-12-13 2013-06-24 Toshiba Corp Semiconductor device and method of manufacturing the same
US8859307B2 (en) 2011-12-13 2014-10-14 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
KR101780385B1 (en) * 2015-08-31 2017-09-21 호서대학교 산학협력단 Oled encapsulation structure and manufacturing method thereof
WO2018096995A1 (en) * 2016-11-25 2018-05-31 株式会社ブイ・テクノロジー Flexible display apparatus and sealing method for flexible display apparatus
WO2018235596A1 (en) * 2017-06-19 2018-12-27 株式会社ブイ・テクノロジー Display device

Similar Documents

Publication Publication Date Title
US8067883B2 (en) Frit sealing of large device
JP6410247B1 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
TWI455638B (en) Glass frit sealing device using direct resistance heating
JP2008249839A (en) Organic EL panel and manufacturing method thereof
US20100123162A1 (en) Optical semiconductor apparatus and method for producing the same
JP6588125B2 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
JP2011137918A (en) Method for manufacturing metal sealed electronic element
KR20070092457A (en) Thin Film Transistor and Manufacturing Method Thereof
CN108231976A (en) A kind of UV LED and packaging method
JP2009105266A (en) Manufacturing method of semiconductor device
CN102792773B (en) Electric device and manufacture method thereof
JP4542926B2 (en) Joining method
JP4776556B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
JP2012033589A (en) Compound semiconductor manufacturing method
WO2011096188A1 (en) Method for manufacturing electronic device
JP2005216887A (en) Method of manufacturing thin film device, thin film device, liquid crystal display device and electroluminescence display device
JP5644439B2 (en) Electrical equipment
JP6069960B2 (en) Manufacturing method of semiconductor package
JP4905019B2 (en) Power module substrate manufacturing method, power module substrate, and power module
JP2003224070A5 (en)
JP7561969B2 (en) Semiconductor device and method for manufacturing the same
JP7575775B2 (en) Manufacturing method of conductive part, manufacturing method of electronic component including conductive part, manufacturing method of product assembled with electronic components including conductive part, conductive part, electronic component having conductive part, product incorporating electronic component including conductive part
JP2005026476A (en) Wiring substrate and manufacturing method thereof
JP2005129835A (en) ELECTRONIC ELEMENT MOUNTING METHOD, BOARD BONDED BODY AND ITS MANUFACTURING METHOD, WIRING BOARD AND ELECTRO-OPTICAL DEVICE
KR20040061189A (en) crystallizing method of silicon layer and manufacturing method of polycrystalline silicon thin film transistor using the same

Legal Events

Date Code Title Description
RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20110426

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305