JP7564133B2 - Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method - Google Patents
Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP7564133B2 JP7564133B2 JP2022001317A JP2022001317A JP7564133B2 JP 7564133 B2 JP7564133 B2 JP 7564133B2 JP 2022001317 A JP2022001317 A JP 2022001317A JP 2022001317 A JP2022001317 A JP 2022001317A JP 7564133 B2 JP7564133 B2 JP 7564133B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- plating film
- steel sheet
- dip
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 116
- 239000010959 steel Substances 0.000 title claims description 116
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000007747 plating Methods 0.000 claims description 183
- 229910019018 Mg 2 Si Inorganic materials 0.000 claims description 35
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 22
- 229910052749 magnesium Inorganic materials 0.000 claims description 18
- 229910007981 Si-Mg Inorganic materials 0.000 claims description 17
- 229910008316 Si—Mg Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 238000002441 X-ray diffraction Methods 0.000 claims description 16
- 229910019752 Mg2Si Inorganic materials 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 description 69
- 238000005260 corrosion Methods 0.000 description 69
- 239000011248 coating agent Substances 0.000 description 40
- 238000000576 coating method Methods 0.000 description 40
- 239000011701 zinc Substances 0.000 description 16
- 229910018137 Al-Zn Inorganic materials 0.000 description 13
- 229910018573 Al—Zn Inorganic materials 0.000 description 13
- 230000007547 defect Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910000765 intermetallic Inorganic materials 0.000 description 8
- 229910001335 Galvanized steel Inorganic materials 0.000 description 7
- 239000008397 galvanized steel Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000005246 galvanizing Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910017708 MgZn2 Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 229910020639 Co-Al Inorganic materials 0.000 description 1
- 229910020675 Co—Al Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910017706 MgZn Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法に関するものである。 The present invention relates to a hot-dip Al-Zn-Si-Mg-plated steel sheet that has stable and excellent corrosion resistance, and a method for manufacturing the same.
55%Al-Zn系に代表される溶融Al-Zn系めっき鋼板は、Znの犠牲防食性とAlの高い耐食性とが両立できているため、溶融亜鉛めっき鋼板の中でも高い耐食性を示すことが知られている。そのため、溶融Al-Znめっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁等の建材分野、ガードレール、配線配管、防音壁等の土木建築分野を中心に使用されている。特に、大気汚染による酸性雨や、積雪地帯での道路凍結防止用融雪剤の散布、海岸地域開発等の、より厳しい使用環境下での、耐食性に優れる材料や、メンテナンスフリー材料への要求が高まっていることから、近年、溶融Al-Zn系めっき鋼板の需要は増加している。 Hot-dip Al-Zn-coated steel sheets, such as 55% Al-Zn, are known to have high corrosion resistance among hot-dip galvanized steel sheets, because they combine the sacrificial corrosion protection of Zn with the high corrosion resistance of Al. For this reason, hot-dip Al-Zn-coated steel sheets are used mainly in the field of building materials such as roofs and walls that are exposed to the outdoors for long periods of time, and in the field of civil engineering and construction such as guardrails, wiring and piping, and soundproof walls, due to their excellent corrosion resistance. In particular, the demand for materials with excellent corrosion resistance and maintenance-free materials in more severe usage environments such as acid rain caused by air pollution, the spraying of de-icing agents to prevent roads from freezing in snowy areas, and coastal area development has been increasing in recent years, and the demand for hot-dip Al-Zn-coated steel sheets has been increasing in recent years.
溶融Al-Zn系めっき鋼板のめっき皮膜は、Znを過飽和に含有したAlがデンドライト状に凝固した部分(α-Al相)と、デンドライト間隙(インターデンドライト)に存在するZn-Al共晶組織とから構成され、α-Al相がめっき皮膜の膜厚方向に複数積層した構造を有することが特徴である。このような特徴的な皮膜構造により、表面からの腐食進行経路が複雑になるため、腐食が容易に進行しにくくなり、溶融Al-Zn系めっき鋼板はめっき皮膜厚が同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を実現できることも知られている。 The coating of hot-dip Al-Zn coated steel sheets consists of areas where Al containing supersaturated Zn has solidified into dendrites (α-Al phase) and a Zn-Al eutectic structure that exists in the gaps between dendrites (interdendrites), and is characterized by a structure in which the α-Al phase is layered in the thickness direction of the coating. This characteristic coating structure makes the corrosion progression path from the surface complex, making it difficult for corrosion to progress easily, and it is also known that hot-dip Al-Zn coated steel sheets can achieve superior corrosion resistance compared to hot-dip galvanized steel sheets with the same coating thickness.
このような溶融Al-Zn系めっき鋼板に対して、さらに長寿命化を図ろうとする試みがなされており、Mgを添加した溶融Al-Zn-Si-Mg系めっき鋼板が実用化されている。
このような溶融Al-Zn-Si-Mg系めっき鋼板としては、例えば特許文献1に、めっき皮膜中にMgを含むAl-Zn-Si合金を含み、該Al-Zn-Si合金が、45~60重量%の元素アルミニウム、37~46重量%の元素亜鉛及び1.2~2.3重量%のSiを含有する合金であり、該Mgの濃度が1~5重量%である、溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
また、特許文献2には、めっき皮膜中に2~10%のMg、0.01~10%のCaの1種以上を含有させることで耐食性の向上を図るとともに、下地鋼板が露出した後の保護作用を高めることを目的とした溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
さらに、特許文献3には、質量%で、Mg:1~15%、Si:2~15%、Zn:11~25%を含有し、残部がAl及び不可避的不純物からなる被覆層を形成し、めっき皮膜中に存在するMg2Si相やMgZn2相などの金属間化合物の大きさを10μm以下とすることで、平板及び端面の耐食性の改善を図った溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
Attempts have been made to further extend the life of such hot-dip Al-Zn coated steel sheets, and hot-dip Al-Zn-Si-Mg coated steel sheets to which Mg has been added have been put to practical use.
As such a hot-dip Al-Zn-Si-Mg-plated steel sheet, for example, Patent Document 1 discloses a hot-dip Al-Zn-Si-Mg-plated steel sheet that contains an Al-Zn-Si alloy containing Mg in a plating film, the Al-Zn-Si alloy being an alloy containing 45 to 60 wt % of elemental aluminum, 37 to 46 wt % of elemental zinc, and 1.2 to 2.3 wt % of Si, and the concentration of the Mg is 1 to 5 wt %.
Furthermore, Patent Document 2 discloses a hot-dip Al-Zn-Si-Mg plated steel sheet in which the plating film contains one or more of 2-10% Mg and 0.01-10% Ca to improve corrosion resistance and to enhance protective action after the base steel sheet is exposed.
Furthermore, Patent Document 3 discloses a hot-dip Al-Zn-Si-Mg plated steel sheet in which a coating layer is formed containing, by mass%, 1-15% Mg, 2-15% Si, 11-25% Zn, with the remainder being Al and unavoidable impurities, and the size of intermetallic compounds such as Mg2Si phase and MgZn2 phase present in the plating film is set to 10 μm or less, thereby improving the corrosion resistance of the flat plate and end faces.
上述した溶融Al-Zn系めっき鋼板は、白い金属光沢のスパングル模様を有する美麗な外観であることから、塗装を施さない状態で使用されることも多く、その外観に対する要求も強いのが実状である。そのため、溶融Al-Zn系めっき鋼板の外観を改善するような技術も開発されている。
例えば特許文献4には、めっき皮膜中に0.01~10%のSrを含有させることで、しわ状の凹凸欠陥を抑制した溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
また、特許文献5にも、めっき皮膜中に500~3000ppmのSrを含有させることで、まだら欠陥を抑制した溶融Al-Zn-Si-Mg系めっき鋼板が開示されている。
The above-mentioned hot-dip Al-Zn coated steel sheet has a beautiful appearance with a spangle pattern of white metallic luster, and therefore is often used without painting, and there are strong demands for its appearance. Therefore, technologies for improving the appearance of hot-dip Al-Zn coated steel sheet have been developed.
For example, Patent Document 4 discloses a hot-dip Al-Zn-Si-Mg plated steel sheet in which the plated film contains 0.01 to 10% Sr, thereby suppressing wrinkle-like irregularity defects.
Patent Document 5 also discloses a hot-dip Al-Zn-Si-Mg plated steel sheet in which mottling defects are suppressed by including 500 to 3000 ppm of Sr in the plated film.
しかしながら、特許文献1~3に開示されたような、めっき皮膜中へMgを含有させる技術が、一意的に耐食性の向上をもたらすとは限らない。
特許文献1~3に開示された溶融Al-Zn-Si-Mg系めっき鋼板では、めっき成分にMgを含有させることのみで耐食性の向上を図っているが、上記の4元素(Al、Zn、Si、Mg)以外の成分による影響や、めっき皮膜を構成する金属相・金属間化合物相の特徴について考慮されておらず、耐食性の優劣について一律に語ることができなかった。そのため、上記の4元素成分の含有量が同等であるめっき浴組成を用いて溶融Al-Zn-Si-Mg系めっき鋼板を製造した場合でも、腐食促進試験を実施するとその耐食性にばらつきがあり、Mgを添加しないAl-Zn系めっき鋼板に対して必ずしも優位にはならない、という問題があった。
同様に、めっき外観性の改善においても、めっき皮膜中にSrを添加したのみでは、必ずしもシワ状の凹凸欠陥を消滅させることができる訳ではなく、特許文献4及び5に開示された溶融Al-Zn-Si-Mg系めっき鋼板についても、耐食性と外観を両立できていない場合があった。加えて、Mgが酸化しやすい元素であるため、めっき浴中に含有されるMgが浴面近傍に酸化物(トップドロス)を発生させたり、溶融めっきの場合、時間の経過とともにめっき浴の浴中又は底部に偏在する鉄を含んだFeAl系化合物(ボトムドロス)が発生することがあり、これらのドロスが、めっき皮膜の表面に付着して凸形状の欠陥を引き起こし、めっき皮膜表面の外観を損ねるおそれもあった。
また、溶融Al-Zn-Si浴にMgを添加した浴で鋼板にめっきを施した場合、めっき皮膜中にはα-Al相に加え、Mg2Si相、MgZn2相、Si相が析出することが知られている。しかしながら、各相の析出量や存在比率が耐食性に及ぼす影響についても明らかにはされていなかった。
However, the techniques of incorporating Mg into the plating film as disclosed in Patent Documents 1 to 3 do not necessarily uniquely improve corrosion resistance.
In the hot-dip Al-Zn-Si-Mg-plated steel sheets disclosed in Patent Documents 1 to 3, the corrosion resistance is improved only by including Mg in the plating components, but the effects of components other than the above four elements (Al, Zn, Si, Mg) and the characteristics of the metal phase and intermetallic compound phase that constitute the plating film are not taken into consideration, and it is not possible to uniformly discuss the superiority or inferiority of the corrosion resistance. Therefore, even when hot-dip Al-Zn-Si-Mg-plated steel sheets are manufactured using a plating bath composition with the same contents of the above four element components, there is a problem that the corrosion resistance varies when an accelerated corrosion test is performed, and the steel sheets are not necessarily superior to Al-Zn-plated steel sheets to which Mg is not added.
Similarly, in improving the appearance of the plating, wrinkle-like irregular defects cannot necessarily be eliminated by merely adding Sr to the plating film, and there have been cases where both corrosion resistance and appearance have not been achieved in the hot-dip Al-Zn-Si-Mg-plated steel sheets disclosed in Patent Documents 4 and 5. In addition, since Mg is an element that is easily oxidized, Mg contained in the plating bath may generate oxides (top dross) near the bath surface, and in the case of hot-dip plating, FeAl-based compounds (bottom dross) containing iron that are unevenly distributed in the bath or at the bottom of the plating bath over time may be generated, and these dross may adhere to the surface of the plating film, causing convex defects and impairing the appearance of the plating film surface.
It is also known that when a steel sheet is plated in a molten Al-Zn-Si bath with added Mg, the Mg 2 Si phase, MgZn 2 phase, and Si phase precipitate in addition to the α-Al phase in the plated film. However, the effect of the amount and abundance ratio of each phase on corrosion resistance has not been clarified.
本発明は、かかる事情に鑑み、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a hot-dip Al-Zn-Si-Mg-plated steel sheet with stable and excellent corrosion resistance, and a manufacturing method thereof.
本発明者らは、上記の課題を解決すべく検討を行った結果、溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜の組成は、Al、Zn、Si及びMgの濃度を制御するだけでなく、不純物として含まれる元素の濃度も制御することが重要であることに着目し、その中でもCoの含有量について適正な制御を行うことで耐食性の劣化を効果的に抑制できることを見出した。
また、溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜中に形成するMg2Si相及びSi相について、めっき皮膜における各成分のバランスや、めっき皮膜の形成条件によって析出量が増減し、その存在比率が変化し、組成のバランスによってはいずれかの相が析出しない場合があり、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性が、これらの相の存在比率によって変化し、特にMg2Si相やSi相に比べ、Si相が少ない場合に耐食性が安定的に向上することを究明した。ただし、これらのMg2Si相およびSi相については、一般的な手法、例えば走査型電子顕微鏡を活用し、めっき皮膜を表面または断面から二次電子像あるいは反射電子像などの観察を実施しても相の違いを判別することは非常に困難であることが知られており、透過型電子顕微鏡を用いて観察を行うことでミクロな情報を得ることは可能であるが、耐食性や外観といったマクロな情報を左右するMg2Si及びSi相の存在比率まで把握することはできなかった。
As a result of investigations aimed at solving the above-mentioned problems, the present inventors have noticed that it is important not only to control the concentrations of Al, Zn, Si, and Mg in the composition of the plating film of a hot-dip Al-Zn-Si-Mg-plated steel sheet, but also to control the concentrations of elements contained as impurities. In particular, they have found that deterioration of corrosion resistance can be effectively suppressed by appropriately controlling the Co content.
In addition, it was found that the amount of precipitation of the Mg 2 Si and Si phases formed in the plating film of hot-dip Al-Zn-Si-Mg-plated steel sheets increases or decreases, and their ratios change depending on the balance of each component in the plating film and the conditions under which the plating film is formed, and that some phases may not precipitate depending on the balance of the compositions, and that the corrosion resistance of hot-dip Al-Zn-Si-Mg-plated steel sheets changes depending on the ratios of these phases, and that the corrosion resistance is stably improved especially when the Si phase is less than the Mg 2 Si and Si phases. However, it is known that it is very difficult to distinguish the difference between the Mg 2 Si and Si phases even if the plating film is observed from the surface or cross section using a general method, such as a scanning electron microscope, to obtain secondary electron images or backscattered electron images, and although it is possible to obtain microscopic information by observation using a transmission electron microscope, it was not possible to grasp the ratios of the Mg 2 Si and Si phases, which affect macroscopic information such as corrosion resistance and appearance.
そのため、本発明者らはさらに鋭意研究を重ねた結果、X線回折法に着目し、Mg2Si相とSi相の特定の回折ピークの強度比を利用することによって、相の存在比率を定量的に規定できること、さらに、めっき皮膜中にMg2Si相とSi相が特定の存在比率を満足すると、安定的に優れた耐食性を実現できることを見出した。
加えて、本発明者らは、上述しためっき皮膜中のCo含有量やMg2Si相とSi相の存在比率を制御した上で、めっき浴中のSr濃度を制御することによって、シワ状の凹凸欠陥の発生を確実に抑え、表面外観性に優れためっき鋼板が得られることも知見した。
As a result of further intensive research, the inventors focused on X-ray diffraction method and discovered that by utilizing the intensity ratio of specific diffraction peaks of the Mg 2 Si phase and the Si phase, the phase abundance ratio can be quantitatively determined, and further, that when the Mg 2 Si phase and the Si phase satisfy a specific abundance ratio in the plating film, stable and excellent corrosion resistance can be achieved.
In addition, the inventors have discovered that by controlling the Co content and the ratio of Mg 2 Si phase to Si phase in the above-mentioned plating film, and then controlling the Sr concentration in the plating bath, it is possible to reliably suppress the occurrence of wrinkle-like uneven defects and obtain a plated steel sheet with excellent surface appearance.
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.めっき皮膜を備える溶融Al-Zn-Si-Mg系めっき鋼板であって、
前記めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
前記不可避的不純物中のCo含有量が、前記めっき皮膜の総質量に対して0.080質量%以下であり、前記めっき皮膜中のSi 及びMg2SiのX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板。
Si (111)/Mg2Si (111)≦0.8 ・・・(1)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度、
Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
1. A hot-dip Al-Zn-Si-Mg-based plated steel sheet having a plating film,
The plating film has a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the remainder being Zn and unavoidable impurities;
A hot-dip Al- Zn- Si-Mg-plated steel sheet, characterized in that the Co content in the unavoidable impurities is 0.080 mass% or less with respect to the total mass of the plating film, and the diffraction intensities of Si and Mg2Si in the plating film by an X-ray diffraction method satisfy the following relationship (1):
Si (111)/Mg 2 Si (111)≦0.8...(1)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm),
Mg 2 Si (111): Diffraction intensity of the (111) plane of Mg 2 Si (plane spacing d = 0.3668 nm)
2.前記めっき皮膜中のSiのX線回折法による回折強度が、以下の関係(2)を満足することを特徴とする、前記1に記載の溶融Al-Zn-Si-Mg系めっき鋼板。
Si (111)=0 ・・・(2)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度
2. The hot-dip Al-Zn-Si-Mg plated steel sheet according to 1 above, characterized in that the diffraction intensity of Si in the plated film, as determined by an X-ray diffraction method, satisfies the following relationship (2):
Si (111)=0...(2)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm)
3.前記めっき皮膜が、さらにSr:0.01~1.0質量%を含有することを特徴とする、前記1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板。 3. The hot-dip Al-Zn-Si-Mg-plated steel sheet according to 1 or 2, characterized in that the plating film further contains Sr: 0.01 to 1.0 mass%.
4.前記めっき皮膜中のAlの含有量が、50~60質量%であることを特徴とする、前記1~3のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 4. The hot-dip Al-Zn-Si-Mg-plated steel sheet according to any one of 1 to 3 above, characterized in that the Al content in the plating film is 50 to 60 mass %.
5.前記めっき皮膜中のSiの含有量が、1.0~3.0質量%であることを特徴とする、前記1~4のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 5. The hot-dip Al-Zn-Si-Mg-plated steel sheet according to any one of 1 to 4 above, characterized in that the Si content in the plating film is 1.0 to 3.0 mass%.
6.前記めっき皮膜中のMgの含有量が、1.0~5.0質量%であることを特徴とする、前記1~5のいずれかに記載の溶融Al-Zn-Si-Mg系めっき鋼板。 6. The hot-dip Al-Zn-Si-Mg-plated steel sheet according to any one of 1 to 5 above, characterized in that the Mg content in the plating film is 1.0 to 5.0 mass%.
7.めっき皮膜を備える溶融Al-Zn-Si-Mg系めっき鋼板の製造方法であって、
前記めっき皮膜の形成は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる溶融めっき処理工程を具え、
前記めっき浴の不可避的不純物中のCo含有量を、前記めっき浴の総質量に対して0.080質量%以下に制御することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
8.前記めっき浴が、さらにSr:0.01~1.0質量%を含有することを特徴とする、前記7に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
7. A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet having a plating film, comprising the steps of:
The formation of the plating film includes a hot-dip plating process in which a base steel sheet is immersed in a plating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet, characterized in that a Co content in unavoidable impurities in the coating bath is controlled to 0.080 mass% or less, based on a total mass of the coating bath.
8. The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet according to 7 above, characterized in that the plating bath further contains 0.01 to 1.0 mass % Sr.
本発明によれば、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板を提供できる。 The present invention provides hot-dip Al-Zn-Si-Mg-plated steel sheets that have stable and excellent corrosion resistance.
(溶融Al-Zn-Si-Mg系めっき鋼板)
本発明の溶融Al-Zn-Si-Mg系めっき鋼板は、鋼板表面にめっき皮膜を備える。そして、該めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。
(Hot-dip Al-Zn-Si-Mg plated steel sheet)
The hot-dip Al-Zn-Si-Mg plated steel sheet of the present invention has a plating film on the surface of the steel sheet, and the plating film has a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities.
前記めっき皮膜中のAl含有量は、耐食性と操業面のバランスから、45~65質量%であり、好ましくは50~60質量%である。これは、前記めっき皮膜中のAl含有量が少なくとも45質量%あれば、Alのデンドライト凝固が生じ、α-Al相のデンドライト凝固組織を主体にするめっき皮膜構造を得ることができるためである。該デンドライト凝固組織がめっき皮膜の膜厚方向に積層する構造を取ることで、腐食進行経路が複雑になり、めっき皮膜自体の耐食性が向上する。またこのα-Al相のデンドライト部分が、多く積層するほど、腐食進行経路が複雑になり、腐食が容易に下地鋼板に到達しにくくなるので、耐食性が向上するため、Alの含有量を50質量%以上とすることが好ましい。一方、前記めっき皮膜中のAl含有量が65質量%を超えると、Znの殆どがα-Al中に固溶した組織に変化し、α-Al相の溶解反応が抑制できず、Al-Zn-Si-Mg系めっきの耐食性が劣化する。このため、前記めっき皮膜中のAl含有量は65質量%以下であることを要し、好ましくは60質量%以下である。 The Al content in the plating film is 45 to 65 mass%, preferably 50 to 60 mass%, in consideration of the balance between corrosion resistance and operational aspects. This is because if the Al content in the plating film is at least 45 mass%, dendritic solidification of Al occurs, and a plating film structure mainly composed of α-Al phase dendritic solidification structure can be obtained. The dendritic solidification structure is layered in the thickness direction of the plating film, which complicates the corrosion progression path and improves the corrosion resistance of the plating film itself. In addition, the more the α-Al phase dendrite parts are layered, the more complex the corrosion progression path becomes, making it difficult for corrosion to reach the base steel sheet, and therefore the corrosion resistance improves, so it is preferable to set the Al content to 50 mass% or more. On the other hand, if the Al content in the plating film exceeds 65 mass%, most of the Zn changes to a structure in which it is solid-solved in α-Al, and the dissolution reaction of the α-Al phase cannot be suppressed, and the corrosion resistance of the Al-Zn-Si-Mg plating deteriorates. For this reason, the Al content in the plating film must be 65% by mass or less, and preferably 60% by mass or less.
前記めっき皮膜中のSiは主に下地鋼板との界面に生成するFe-Al系及び/又はFe-Al-Si系の界面合金層の成長を抑制し、めっき皮膜と鋼板の密着性を劣化させない目的で添加される。実際に、Siを含有したAl-Zn系めっき浴に鋼板を浸漬させると、鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe-Al系及び/又はFe-Al-Si系の金属間化合物層が下地鋼板/めっき皮膜界面に生成するが、このときFe-Al-Si系合金はFe-Al系合金よりも成長速度が遅いので、Fe-Al-Si系合金の比率が高いほど、界面合金層全体の成長が抑制される。そのため、前記めっき皮膜中のSi含有量は1.0質量%以上とすることを要する。一方、前記めっき皮膜中のSi含有量が4.0質量%を超えると、前述した界面合金層の成長抑制効果が飽和するだけでなく、めっき皮膜中に過剰なSi相が存在することで腐食が促進されるため、Si含有量は4.0質量%以下とする。さらに、前記めっき皮膜中のSiの含有量は、過剰なSi相の存在抑制の観点から、好ましくは3.0質量%以下とする。なお、後述するMgの含有量との関係で、後述の(1)の関係式を満たしやすい観点からも、前記Siの含有量を1.0~3.0質量%とすることが好ましい。 The Si in the plating film is added mainly to suppress the growth of the Fe-Al and/or Fe-Al-Si interfacial alloy layer formed at the interface with the base steel sheet, and to prevent the deterioration of the adhesion between the plating film and the steel sheet. In fact, when a steel sheet is immersed in an Al-Zn plating bath containing Si, the Fe on the steel sheet surface reacts with the Al and Si in the bath to form an Fe-Al and/or Fe-Al-Si intermetallic compound layer at the interface between the base steel sheet and the plating film. At this time, the growth rate of the Fe-Al-Si alloy is slower than that of the Fe-Al alloy, so the higher the ratio of the Fe-Al-Si alloy, the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the plating film must be 1.0 mass% or more. On the other hand, if the Si content in the plating film exceeds 4.0 mass%, not only will the effect of suppressing the growth of the interfacial alloy layer described above saturate, but the presence of an excess Si phase in the plating film will promote corrosion, so the Si content is set to 4.0 mass% or less. Furthermore, the Si content in the plating film is preferably 3.0 mass% or less from the viewpoint of suppressing the presence of excess Si phase. In addition, from the viewpoint of easily satisfying the relational expression (1) described later in relation to the Mg content described later, it is preferable that the Si content is 1.0 to 3.0 mass%.
前記めっき皮膜は、Mgを1.0~10.0質量%含有する。前記めっき皮膜中にMgを含有することで、上述したSiをMg2Si相の金属間化合物の形で存在させることができ、腐食の促進を抑制することができる。
また、前記めっき皮膜中にMgを含有すると、めっき皮膜中に金属間化合物であるMgZn2相も形成され、より耐食性を向上させる効果が得られる。前記めっき皮膜中のMg含有量が1.0質量%未満の場合、前記金属間化合物(Mg2Si、MgZn2)の生成よりも、主要相であるα-Al相への固溶にMgが使用されるため、十分な耐食性が確保できない。一方、前記めっき皮膜中のMg含有量が多くなると、耐食性の向上効果が飽和することに加え、α-Al相の脆弱化に伴い加工性が低下するため、含有量は10.0質量%以下とする。さらに、前記めっき皮膜中のMg含有量は、めっき形成時のドロス発生を抑制し、めっき浴管理を容易にする観点から、5.0質量%以下とすることが好ましい。なお、前記Siの含有量との関係で、後述の(1)の関係式を満たしやすい観点からは、前記Mgの含有量を3.0質量%とすることが好ましく、ドロス抑制との両立性を考慮すると、前記Mgの含有量を3.0~5.0質量%とすることがより好ましい。
The plating film contains 1.0 to 10.0 mass % of Mg. By including Mg in the plating film, the above-mentioned Si can be present in the form of an intermetallic compound of Mg2Si phase, and the promotion of corrosion can be suppressed.
In addition, when the plating film contains Mg, the MgZn2 phase, which is an intermetallic compound, is also formed in the plating film, and the effect of further improving corrosion resistance is obtained. When the Mg content in the plating film is less than 1.0 mass%, Mg is used to dissolve in the α-Al phase, which is the main phase, rather than to form the intermetallic compounds (Mg2Si, MgZn2), so sufficient corrosion resistance cannot be ensured. On the other hand, when the Mg content in the plating film is high, the effect of improving corrosion resistance is saturated, and the workability is reduced due to the weakening of the α-Al phase, so the content is 10.0 mass% or less. Furthermore, the Mg content in the plating film is preferably 5.0 mass% or less from the viewpoint of suppressing the generation of dross during plating formation and facilitating plating bath management. In addition, from the viewpoint of easily satisfying the relational expression (1) described later in relation to the Si content, the Mg content is preferably 3.0 mass%, and in consideration of compatibility with dross suppression, the Mg content is more preferably 3.0 to 5.0 mass%.
また、前記めっき皮膜は、Zn及び不可避不純物を含有する。このうち、前記不可避的不純物はFeを含有する。このFeは、鋼板や浴中機器がめっき浴中に溶出することで不可避的に含まれるものと界面合金層の形成時に下地鋼板からの拡散によって供給される結果、前記めっき皮膜中に不可避的に含まれることとなる。前記めっき皮膜中のFe含有量は、通常0.3~2.0質量%程度である。
その他の不可避的不純物としては、Cr、Ni、Cu、Co、W等が挙げられる。これらの成分は、下地鋼板やステンレス製の浴中機器や浴中機器に施したW-C系やCo-Cr-W系の溶射皮膜がめっき浴中に溶出すること、めっき浴の原料となる金属塊中に不純物として含まれていること、さらに、これらの成分を意図的に添加しためっき鋼板の製造で使用したポットや浴中機器を用いて製造することで、前記めっき皮膜中に不可避的に含まれることとなる。
The plating film also contains Zn and unavoidable impurities. Among these, the unavoidable impurities include Fe. This Fe is inevitably contained in the plating film as a result of dissolution of the steel sheet or bath-immersed equipment into the plating bath, and as a result of being supplied by diffusion from the base steel sheet during the formation of the interface alloy layer. The Fe content in the plating film is usually about 0.3 to 2.0 mass%.
Other unavoidable impurities include Cr, Ni, Cu, Co, W, etc. These elements are inevitably contained in the plating film due to the fact that they are dissolved in the plating bath from the WC-based or Co-Cr-W-based thermal spray coating applied to the base steel sheet or the bath-immersing equipment made of stainless steel, that they are contained as impurities in the metal ingots that are the raw materials for the plating bath, and that they are produced using pots or bath-immersing equipment that were used in the production of plated steel sheets to which these elements were intentionally added.
そして、本発明の溶融Al-Zn-Si-Mg系めっき鋼板は、前記不可避的不純物中のCo含有量が、前記めっき皮膜の総質量に対して0.080質量%以下であることを特徴とする。前記めっき皮膜中に含有されたCoは、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性を劣化させる場合があることから、上述しためっき皮膜中のAl、Zn、Si及びMgの含有量を適切に制御した上で、さらに不可避的不純物としてのCo含有量を抑えることで、耐食性の劣化を抑えることができる。同様の観点から、前記不可避的不純物中のCo含有量は、前記めっき皮膜の総質量に対して0.020質量%以下とすることが好ましく、0.001質量%以下とすることがより好ましく、0質量%とすることが最も好ましい。 The hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention is characterized in that the Co content in the unavoidable impurities is 0.080 mass% or less with respect to the total mass of the plating film. Since the Co contained in the plating film may deteriorate the corrosion resistance of the hot-dip Al-Zn-Si-Mg-plated steel sheet, the deterioration of the corrosion resistance can be suppressed by appropriately controlling the contents of Al, Zn, Si, and Mg in the plating film described above and further suppressing the Co content as an unavoidable impurity. From the same viewpoint, the Co content in the unavoidable impurities is preferably 0.020 mass% or less with respect to the total mass of the plating film, more preferably 0.001 mass% or less, and most preferably 0 mass%.
なお、前記めっき皮膜中に含有されたCoは、主にα-Al中への固溶元素として存在する。固溶限界を超えた濃度でCoを含む場合、地鉄-めっき界面に形成する合金層にFe-Co-Al系化合物やFe-Co-Al-Si系化合物として析出する場合もある。
また、不純物としてのCoが含有することで耐食性が劣化する機構については不確定ではあるが、Coが固溶したα-Al相のバリアー性が低下することで腐食速度が増加する機構や、Coを含有した化合物が腐食環境下でカソードとして機能し、周囲に存在する凝固組織と局部電池を形成することで、腐食速度が増加する機構を推定している。
Co contained in the plating film is mainly present as a solid solution element in α-Al. When Co is contained in a concentration exceeding the solid solubility limit, it may precipitate as Fe-Co-Al compounds or Fe-Co-Al-Si compounds in the alloy layer formed at the base steel/plating interface.
In addition, although the mechanism by which the corrosion resistance deteriorates due to the inclusion of Co as an impurity is uncertain, it is hypothesized that the corrosion rate increases due to a decrease in the barrier properties of the α-Al phase in which Co is dissolved, and that the corrosion rate increases due to compounds containing Co functioning as a cathode in a corrosive environment and forming a local battery with the surrounding solidified structure.
さらに、前記めっき皮膜中の不可避的不純物の総含有量については、特に限定はされないが、過剰に含有した場合、めっき鋼板の各種特性に影響を及ぼす可能性があるため、合計で5.0質量%以下とすることが好ましい。 Furthermore, the total content of unavoidable impurities in the plating film is not particularly limited, but if contained in excess, it may affect various properties of the plated steel sheet, so it is preferable that the total content be 5.0 mass% or less.
そして、本発明の溶融Al-Zn-Si-Mg系めっき鋼板では、前記めっき皮膜中のSi 及びMg2SiのX線回折法による回折強度が、以下の関係(1)を満足することを要する。
Si (111)/Mg2Si (111)≦0.8 ・・・(1)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度、Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度
In the hot-dip Al-Zn-Si-Mg plated steel sheet of the present invention, the diffraction intensities of Si and Mg 2 Si in the plated film, as determined by an X-ray diffraction method, are required to satisfy the following relationship (1):
Si (111)/Mg 2 Si (111)≦0.8...(1)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm), Mg 2 Si (111): Diffraction intensity of the Mg 2 Si (111) plane (plane spacing d = 0.3668 nm)
上述したように、本発明の溶融Al-Zn-Si-Mg系めっき鋼板では、前記MgとSiの含有によってめっき皮膜中に生成するMg2Si相とSi相の存在比率を、特定の割合に制御することが重要である。これらが耐食性に及ぼす影響については現在調査を継続しており不明な点も多いが、以下のようなメカニズムが推定される。 As described above, in the hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention, it is important to control the ratio of the Mg 2 Si phase and the Si phase, which are generated in the plating film due to the inclusion of Mg and Si, to a specific ratio. Although the effects of these on corrosion resistance are still under investigation and many points remain unclear, the following mechanism is presumed.
溶融Al-Zn-Si-Mg系めっき鋼板が腐食環境に曝された場合、上記の金属間化合物は、α-Al相よりも優先的に溶解する結果、形成される腐食生成物の近傍はMgが豊富な環境となる。このようなMgリッチの環境下においては、形成される腐食生成物が分解されにくく、その結果としてめっき皮膜の保護作用効果が高まると推定している。また、このめっき皮膜の保護作用向上効果は、めっき皮膜中のSiがSi相ではなくMg2Si相として存在する場合により確実に発現することから、Mg2Si相に対するSi相の存在比率を下げることが有効であると考えられる。 When hot-dip Al-Zn-Si-Mg-plated steel sheets are exposed to a corrosive environment, the above-mentioned intermetallic compounds dissolve preferentially over the α-Al phase, resulting in a Mg-rich environment in the vicinity of the formed corrosion products. It is presumed that in such a Mg-rich environment, the formed corrosion products are less likely to decompose, and as a result, the protective effect of the plating film is enhanced. In addition, the protective effect of the plating film is more reliably expressed when the Si in the plating film exists as the Mg 2 Si phase rather than the Si phase, so it is considered effective to reduce the ratio of the Si phase to the Mg 2 Si phase.
前記めっき皮膜中のSiとMg2Siとの存在比率は、X線回折法により得られた回折ピーク強度を用いて、関係(1):Si (111)/Mg2Si (111)≦0.8を満たすことを要するが、前記めっき皮膜中のSiとMg2Siとの存在比率が関係(1)を満たさない、つまり、Si (111)/Mg2Si (111)>0.8の場合には、前記めっき皮膜中に存在するSi相が多くなるため、前述したMgが豊富な環境を、腐食生成物の近傍で得ることができず、前記めっき皮膜の保護作用向上効果が得られにくくなる。同様の観点から、Mg2Siに対するSiの存在比率(Si (111)/Mg2Si (111))は、0.5以下であることが好ましく、0.3以下であるがより好ましく、0.2以下であることが特に好ましい。 The abundance ratio of Si and Mg 2 Si in the plating film must satisfy the relationship (1): Si (111)/Mg 2 Si (111)≦0.8 using the diffraction peak intensity obtained by X-ray diffraction. However, when the abundance ratio of Si and Mg 2 Si in the plating film does not satisfy the relationship (1), that is, when Si (111)/Mg 2 Si (111)>0.8, the Si phase present in the plating film increases, and the above-mentioned Mg-rich environment cannot be obtained in the vicinity of the corrosion product, and the protective effect of the plating film is difficult to obtain. From the same viewpoint, the abundance ratio of Si to Mg 2 Si (Si (111)/Mg 2 Si (111)) is preferably 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.2 or less.
ここで、前記関係(1)において、Si (111)は、Siの(111)面(面間隔d=0.3135nm)の回折強度であり、Mg2Si (111)は、Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度である。
前記X線回折によりSi (111)とMg2Si (111)を測定する方法としては、前記めっき皮膜の一部を機械的に削り出し、粉末にした状態でX線回折を行うこと(粉末X線回折測定法)で算出することができる。回折強度の測定については、面間隔d=0.3135nmに相当するSiの回折ピーク強度、面間隔d=0.3668nmに相当するMg2Siの回折ピーク強度、を測定し、これらの比率を算出することでSi (111)/Mg2Si (111)を得ることができる。
なお、粉末X線回折測定を実施する際に必要なめっき皮膜の量(めっき皮膜を削り出す量)は、精度良くSi (111)とMg2Si (111)を測定する観点から、0.1g以上あればよく、0.3g以上あることが好ましい。また、前記めっき皮膜を削り出す際に、めっき皮膜以外の鋼板成分が粉末に含まれる場合もあるが、これらの金属間化合物相はめっき皮膜のみに含まれるものであり、また前述したピーク強度に影響することはない。さらに、前記めっき皮膜を粉末にしてX線回折を行うのは、めっき鋼板に形成されためっき皮膜に対してX線回折を行うと、めっき皮膜凝固組織の面方位の影響を受け正しい相比率の計算を行うことが困難なためである。
Here, in the above relationship (1), Si(111) is the diffraction intensity of the Si(111) plane (plane spacing d=0.3135 nm), and Mg 2 Si(111) is the diffraction intensity of the Mg 2 Si(111) plane (plane spacing d=0.3668 nm).
The method for measuring Si(111) and Mg2Si (111) by X-ray diffraction involves mechanically scraping off a portion of the plating film, powdering it, and performing X-ray diffraction (powder X-ray diffraction measurement method). The diffraction intensity is measured by measuring the Si diffraction peak intensity corresponding to the interplanar spacing d = 0.3135 nm and the Mg2Si diffraction peak intensity corresponding to the interplanar spacing d = 0.3668 nm, and calculating the ratio between these to obtain Si(111)/ Mg2Si (111).
The amount of the plating film required for carrying out the powder X-ray diffraction measurement (amount of the plating film to be scraped off) is 0.1 g or more, preferably 0.3 g or more, from the viewpoint of accurately measuring Si(111) and Mg2Si (111). When the plating film is scraped off, steel sheet components other than the plating film may be contained in the powder, but these intermetallic compound phases are contained only in the plating film and do not affect the above-mentioned peak intensity. Furthermore, the plating film is powdered and X-ray diffraction is carried out because, when X-ray diffraction is carried out on the plating film formed on the plated steel sheet, it is difficult to calculate the correct phase ratio due to the influence of the plane orientation of the plating film solidification structure.
また、本発明の溶融Al-Zn-Si-Mg系めっき鋼板では、上述したAl、Zn、Si、Mg、及び不可避的不純物としてのCoの濃度を制御した上で、より安定的に耐食性を向上させることができる点から、前記めっき皮膜中のSiのX線回折法による回折強度が、以下の関係(2)を満たすことが好ましい。
Si (111)=0 ・・・(2)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度
一般的に、Al合金の水溶液中への溶解反応においては、Si相がカソードサイトとして存在することで周辺のα-Al相の溶解を促進することが知られていることから、Si相を少なくすることはα-Al相の溶解を抑制する観点でも有効であり、その中でも関係(2)のようにSi相が存在しない皮膜とすること(前記Si(111)の回折ピーク強度をゼロとすること)が耐食性の安定化のために最も優れている。
なお、X線回折によりSiの(111)面の回折ピーク強度の測定方法は、上述した通りである。
In addition, in the hot-dip Al-Zn-Si-Mg plated steel sheet of the present invention, the concentrations of Al, Zn, Si, Mg, and Co as an unavoidable impurity are controlled, and from the viewpoint of more stably improving corrosion resistance, it is preferable that the diffraction intensity of Si in the plated film, as determined by an X-ray diffraction method, satisfies the following relationship (2):
Si (111)=0...(2)
Si (111): Diffraction intensity of the Si (111) plane (planar spacing d = 0.3135 nm) It is generally known that in the dissolution reaction of an Al alloy in an aqueous solution, the presence of a Si phase as a cathode site promotes the dissolution of the surrounding α-Al phase. Therefore, reducing the amount of Si phase is also effective in terms of suppressing the dissolution of the α-Al phase. Among these, a coating without a Si phase, as shown in relationship (2) (making the diffraction peak intensity of the Si (111) zero) is the most excellent in terms of stabilizing corrosion resistance.
The method for measuring the diffraction peak intensity of the Si (111) plane by X-ray diffraction is as described above.
ここで、上述した関係(1)や関係(2)を満たすための方法については、特に限定はされない。例えば、関係(1)や関係(2)を満たすためには、前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスを調整することによって、SiとMg2Siの存在比率(Si (111)とMg2Si (111)の回折強度)を制御できる。前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスは、必ずしも一定の含有割合に設定すれば関係(1)や関係(2)を満たせる訳ではなく、例えばSiの含有量(質量%)によってMg及びAlの含有比率を変える必要がある。
また、前記めっき皮膜中のSiの含有量、Mgの含有量及びAlの含有量のバランスを調整する他にも、めっき皮膜形成時の条件(例えば、めっき後の冷却条件)を調整することによって、関係(1)や関係(2)を満たすように、Si (111)とMg2Si (111)の回折強度を制御できる。
Here, the method for satisfying the above-mentioned relationship (1) or (2) is not particularly limited. For example, in order to satisfy the relationship (1) or (2), the abundance ratio of Si and Mg 2 Si (diffraction intensity of Si(111) and Mg 2 Si(111)) can be controlled by adjusting the balance of the Si content, Mg content, and Al content in the plating film. The balance of the Si content, Mg content, and Al content in the plating film does not necessarily satisfy the relationship (1) or (2) by setting them to a constant content ratio, and it is necessary to change the content ratio of Mg and Al depending on the Si content (mass%), for example.
In addition to adjusting the balance of the Si content, Mg content, and Al content in the plating film, the diffraction intensities of Si(111) and Mg2Si (111) can be controlled so as to satisfy relationship (1) or relationship (2) by adjusting the conditions during plating film formation (e.g., cooling conditions after plating).
また、本発明の溶融Al-Zn-Si-Mg系鋼板では、前記めっき皮膜が、0.01~1.0質量%のSrを含有することが好ましい。前記めっき皮膜がSrを含有することで、シワ状の凹凸欠陥等の表面欠陥の発生をより確実に抑制することができ、良好な表面外観性を実現できる。
なお、前記シワ状欠陥とは、前記めっき皮膜の表面に形成されたシワ状の凹凸になった欠陥であり、前記めっき皮膜表面において白っぽい筋として観察される。このようなシワ状欠陥は、前記めっき皮膜中にMgを多く添加した場合に、発生しやすくなる。そのため、前記溶融めっき鋼板では、前記めっき皮膜中にSrを含有させることによって、前記めっき皮膜表層においてSrをMgよりも優先的に酸化させ、Mgの酸化反応を抑制することで、前記シワ状欠陥の発生を抑えることが可能となる。
In the hot-dip Al-Zn-Si-Mg steel sheet of the present invention, the plating film preferably contains 0.01 to 1.0 mass% Sr. By containing Sr in the plating film, the occurrence of surface defects such as wrinkle-like irregularities can be more reliably suppressed, and good surface appearance can be achieved.
The wrinkle-like defect is a wrinkle-like uneven defect formed on the surface of the plating film, and is observed as a whitish streak on the surface of the plating film. Such a wrinkle-like defect is likely to occur when a large amount of Mg is added to the plating film. Therefore, in the hot-dip plated steel sheet, by adding Sr to the plating film, Sr is oxidized preferentially over Mg in the surface layer of the plating film, and the oxidation reaction of Mg is suppressed, thereby making it possible to suppress the occurrence of the wrinkle-like defect.
また、前記めっき皮膜は、上述したMgと同様に腐食生成物の安定性を向上させ、腐食の進行を遅延させる効果を奏することができる点から、合計で0.01~10質量%の、Cr、Mn、V、Mo、Ti、Ca、Sb及びBのうちから選択される一種又は二種以上を、さらに含有することが好ましい。上述した成分の合計含有量を0.01~10質量%としたのは、十分な腐食遅延効果を得ることができるとともに、効果が飽和することもないためである。 The plating film preferably further contains one or more elements selected from Cr, Mn, V, Mo, Ti, Ca, Sb, and B in a total amount of 0.01 to 10 mass%, because these elements, like Mg, improve the stability of corrosion products and retard the progression of corrosion. The reason why the total content of the above-mentioned elements is set at 0.01 to 10 mass% is that a sufficient corrosion retardation effect can be obtained and the effect does not saturate.
なお、前記めっき皮膜の付着量は、各種特性を満足する観点から、片面あたり45~120 g/m2であることが好ましい。前記めっき皮膜の付着量が45g/m2以上の場合には、建材などの長期間耐食性が必要となる用途に対しても十分な耐食性が得られ、また、前記めっき皮膜の付着量が120g/m2以下の場合には、加工時のめっき割れ等の発生を抑えつつ、優れた耐食性を実現できるためである。同様の観点から、前記めっき皮膜の付着量は、45~100g/m2であることがより好ましい。 From the viewpoint of satisfying various characteristics, the coating weight of the plating film is preferably 45 to 120 g/ m2 per side. When the coating weight of the plating film is 45 g/ m2 or more, sufficient corrosion resistance is obtained for applications requiring long-term corrosion resistance, such as building materials, while when the coating weight of the plating film is 120 g/m2 or less , excellent corrosion resistance can be achieved while suppressing the occurrence of plating cracks during processing. From the same viewpoint, the coating weight of the plating film is more preferably 45 to 100 g/ m2 .
前記めっき皮膜の付着量については、例えば、JIS H 0401:2013年に示される塩酸とヘキサメチレンテトラミンの混合液で特定面積のめっき皮膜を溶解剥離し、剥離前後の鋼板重量差から算出する方法で導出することができる。この方法で片面あたりのめっき付着量を求めるには、非対象面のめっき表面が露出しないようにテープでシーリングしてから前述した溶解を実施することで求めることができる。 The coating weight of the plating film can be calculated, for example, by dissolving and peeling off a specific area of the plating film in a mixture of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401:2013, and calculating the difference in the weight of the steel sheet before and after peeling. To determine the coating weight per side using this method, the plating surface of the non-target side is sealed with tape so as not to be exposed, and then the dissolution described above is carried out.
また、前記めっき皮膜の成分組成は、上述したCoの含有量と同じく、めっき皮膜を塩酸等に浸漬して溶解させ、その溶液をICP発光分光分析や原子吸光分析等で確認することができる。この方法はあくまでも一例であり、めっき皮膜の成分組成を正確に定量できる方法であればどのような方法でも良く、特に限定するものではない。 The composition of the plating film can be confirmed by immersing the plating film in hydrochloric acid or the like to dissolve it, and then subjecting the solution to ICP emission spectrometry, atomic absorption spectrometry, or the like, just like the Co content described above. This method is merely one example, and any method that can accurately quantify the composition of the plating film may be used, and is not particularly limited.
なお、本発明により得られた溶融Al-Zn-Si-Mg系めっき鋼板のめっき皮膜は、全体としてはめっき浴の組成とほぼ同等となる。そのため、前記めっき皮膜の組成の制御は、めっき浴組成を制御することにより精度良く行うことができる。 The plating film of the hot-dip Al-Zn-Si-Mg-plated steel sheet obtained by the present invention has a composition that is almost equivalent to that of the plating bath as a whole. Therefore, the composition of the plating film can be controlled with high precision by controlling the plating bath composition.
また、本発明の溶融Al-Zn-Si-Mg系めっき鋼板を構成する下地鋼板については、特に限定はされず、要求される性能や規格に応じて、冷延鋼板や熱延鋼板等を適宜使用することができる。 The base steel sheet constituting the hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention is not particularly limited, and cold-rolled steel sheet, hot-rolled steel sheet, etc. can be used as appropriate depending on the required performance and standards.
さらに、前記下地鋼板を得る方法についても、特に限定はされない。例えば、前記熱延鋼板の場合、熱間圧延工程、酸洗工程を経たものを使用することができ、前記冷延鋼板の場合には、さらに冷間圧延工程を加えて製造できる。さらに、鋼板の特性を得るために溶融めっき工程の前に、再結晶焼鈍工程等を経ることも可能である。 Furthermore, there is no particular limitation on the method for obtaining the base steel sheet. For example, in the case of the hot-rolled steel sheet, one that has been subjected to a hot rolling process and a pickling process can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by adding a cold rolling process. Furthermore, in order to obtain the properties of the steel sheet, it is also possible to undergo a recrystallization annealing process, etc., before the hot-dip plating process.
(溶融Al-Zn-Si-Mg系めっき鋼板の製造方法)
本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法は、めっき皮膜を備える溶融Al-Zn-Si-Mg系めっき鋼板の製造方法であって、前記めっき皮膜の形成は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる溶融めっき処理工程を具える。
なお、前記溶融めっき処理工程については、後述するめっき浴の条件以外、特に限定はされない。例えば、連続式溶融めっき設備で、前記下地鋼板を、洗浄、加熱、めっき浴浸漬することによって製造できる。鋼板の加熱工程においては、前記下地鋼板自身の組織制御のために再結晶焼鈍などを施すとともに、鋼板の酸化を防止し且つ表面に存在する微量な酸化膜を還元するため、窒素-水素雰囲気等の還元雰囲気での加熱が有効である。
(Manufacturing method of hot-dip Al-Zn-Si-Mg-plated steel sheet)
The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention is a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet provided with a plating film, and the formation of the plating film includes a hot-dip galvanizing treatment step of immersing a base steel sheet in a plating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities.
The hot-dip galvanizing process is not particularly limited except for the conditions of the galvanizing bath described below. For example, the steel sheet can be produced by cleaning, heating, and immersing the base steel sheet in a galvanizing bath in a continuous hot-dip galvanizing facility. In the steel sheet heating process, recrystallization annealing or the like is performed to control the structure of the base steel sheet itself, and heating in a reducing atmosphere such as a nitrogen-hydrogen atmosphere is effective in preventing oxidation of the steel sheet and reducing a small amount of oxide film present on the surface.
また、前記溶融めっき処理工程に用いるめっき浴については、上述したように、前記めっき皮膜の組成が全体としてはめっき浴の組成とほぼ同等となることから、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するものを用いることができる。 As for the plating bath used in the hot-dip plating process, as described above, the composition of the plating film as a whole will be approximately the same as the composition of the plating bath, so a plating bath containing 45-65 mass% Al, 1.0-4.0 mass% Si, 1.0-10.0 mass% Mg, with the balance being Zn and unavoidable impurities can be used.
そして、本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法では、前記めっき浴の不可避的不純物中のCo含有量を、前記めっき浴の総質量に対して0.080質量%以下に制御することを特徴とする。前記めっき皮膜中に含有されるCoは、上述したように、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性を劣化させる場合があることから、めっき浴中のAl、Zn、Si及びMgの含有量を適切に制御した上で、さらに不可避的不純物としてのCo含有量を抑えることで、耐食性の劣化を抑えることができる。
また、前記めっき浴中の不可避的不純物としてのCoの含有量は、前記めっき浴の総質量に対して0.080質量%以下に制御することを要し、0.020質量%以下にすることがより好ましく、0.001質量%以下とすることがさらに好ましい。前記めっき浴中のCo含有量が0.080質量%以下であれば、製造した溶融Al-Zn-Si-Mg系めっき鋼板は十分に優れた耐食性を有することができる。また、前記めっき浴中のCo含有量が0.020質量%以下であれば、より優れた耐食性を有することができ、0.001質量%以下であれば、特に優れた耐食性を有することができる。
このように、前記めっき浴中のCo含有量が少ないほど溶融Al-Zn-Si-Mg系めっき鋼板の耐食性が優れるため、Coの含有量について、特に下限値の限定はなく、前記めっき浴中のCo含有量は0%であることが最も好ましい。
The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet according to the present invention is characterized in that the Co content in the inevitable impurities of the coating bath is controlled to 0.080 mass% or less with respect to the total mass of the coating bath. Since Co contained in the coating film may deteriorate the corrosion resistance of the hot-dip Al-Zn-Si-Mg-plated steel sheet as described above, the Al, Zn, Si and Mg contents in the coating bath are appropriately controlled, and further the Co content as an inevitable impurity is reduced, thereby preventing deterioration of the corrosion resistance.
The content of Co as an unavoidable impurity in the coating bath needs to be controlled to 0.080 mass% or less, more preferably 0.020 mass% or less, and even more preferably 0.001 mass% or less, based on the total mass of the coating bath. If the Co content in the coating bath is 0.080 mass% or less, the produced hot-dip Al-Zn-Si-Mg-plated steel sheet can have sufficiently excellent corrosion resistance. If the Co content in the coating bath is 0.020 mass% or less, the produced hot-dip Al-Zn-Si-Mg-plated steel sheet can have even better corrosion resistance, and if the Co content in the coating bath is 0.001 mass% or less, the produced hot-dip Al-Zn-Si-Mg-plated steel sheet can have particularly excellent corrosion resistance.
As described above, the lower the Co content in the coating bath, the better the corrosion resistance of the hot-dip Al-Zn-Si-Mg-coated steel sheet. Therefore, there is no particular lower limit for the Co content, and it is most preferable that the Co content in the coating bath is 0%.
ここで、前記めっき浴中のCoの含有量を低減させる手段は、特に限定はされない。
例えば浴中機器に施したCo-Cr-W系の溶射皮膜の前記めっき浴中への溶出を抑制することが有効であることから、Coを含まない溶射皮膜を適用することが好ましい。
Here, the means for reducing the Co content in the plating bath is not particularly limited.
For example, since it is effective to prevent the elution of a Co-Cr-W based thermal spray coating applied to a bath-immersed device into the plating bath, it is preferable to use a thermal spray coating that does not contain Co.
また、前記めっき浴中のCoの含有量を低減させる他の手段としては、不純物中のCoの含有量が少ない金属塊をめっき浴の原料として用いることが好ましい。
さらに、Coを意図的に添加するめっき鋼板の製造に使用したポットや浴中機器を溶融Al-Zn-Si-Mg系めっき鋼板の製造に用いないことも有効である。前記ポットや前記浴中機器に付着したCoを含有した金属塊が溶解し、めっき浴中へ混入することを抑制できるためである。
As another means for reducing the Co content in the plating bath, it is preferable to use a metal block having a low Co content among impurities as a raw material for the plating bath.
Furthermore, it is also effective not to use pots or bath-immersed equipment used in the production of plated steel sheets to which Co is intentionally added in the production of hot-dip Al-Zn-Si-Mg-plated steel sheets, because this can prevent metal lumps containing Co adhering to the pots or bath-immersed equipment from dissolving and being mixed into the plating bath.
さらに、前記めっき浴の浴温は、特に限定はされないが、(融点+20℃)~650℃の温度範囲とすることが好ましい。
前記浴温の下限を、融点+20℃としたのは、溶融めっき処理を行うためには、前記浴温を凝固点以上にすることが必要であり、融点+20℃とすることで、前記めっき浴の局所的な浴温低下による凝固を防止するためである。一方、前記浴温の上限を650℃としたのは、650℃を超えると、前記めっき皮膜の急速冷却が難しくなり,めっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれがあるためである。
Furthermore, the temperature of the plating bath is not particularly limited, but is preferably in the range of (melting point + 20°C) to 650°C.
The reason why the lower limit of the bath temperature is set to the melting point + 20° C. is that the bath temperature needs to be equal to or higher than the solidification point in order to perform hot-dip plating, and by setting the temperature to the melting point + 20° C., solidification due to a local drop in the bath temperature of the plating bath is prevented. On the other hand, the reason why the upper limit of the bath temperature is set to 650° C. is that if the bath temperature exceeds 650° C., it becomes difficult to rapidly cool the plating film, and there is a risk that the interfacial alloy layer formed between the plating film and the steel sheet will become thick.
また、めっき浴に浸入する下地鋼板の温度(浸入板温)についても、特に限定はされないが、連前記続式溶融めっき操業におけるめっき特性の確保や浴温度の変化を防ぐ観点から、前記めっき浴の温度に対して±20℃以内に制御することが好ましい。 There are also no particular limitations on the temperature of the base steel sheet immersed in the coating bath (immersion sheet temperature), but it is preferable to control it to within ±20°C of the coating bath temperature in order to ensure the coating characteristics in continuous hot-dip coating operations and to prevent changes in the bath temperature.
さらにまた、前記下地鋼板の前記めっき浴中の浸漬時間については、0.5秒以上であることが好ましい。これは0.5秒未満の場合、前記下地鋼板の表面に十分なめっき皮膜を形成できないおそれがあるためである。浸漬時間の上限については特に限定はされないが、浸漬時間を長くするとめっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれもあることから、8秒以内とすることがより好ましい。 Furthermore, it is preferable that the immersion time of the base steel sheet in the plating bath is 0.5 seconds or more. This is because if it is less than 0.5 seconds, there is a risk that a sufficient plating film will not be formed on the surface of the base steel sheet. There is no particular upper limit to the immersion time, but since a longer immersion time may result in a thicker interfacial alloy layer being formed between the plating film and the steel sheet, it is more preferable to keep it within 8 seconds.
なお、溶融Al-Zn-Si-Mg系めっき鋼板は、要求される性能に応じて、前記めっき皮膜の上に、直接又は中間層を介して、塗膜を形成することもできる。 In addition, depending on the required performance, hot-dip Al-Zn-Si-Mg plated steel sheets can also have a coating formed directly or via an intermediate layer on top of the plated film.
なお、前記塗膜を形成する方法については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等の形成方法が挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱等の手段により加熱乾燥して塗膜を形成することが可能である。 The method for forming the coating film is not particularly limited and can be appropriately selected depending on the required performance. Examples include roll coater coating, curtain flow coating, spray coating, etc. After applying a paint containing an organic resin, it is possible to form a coating film by heating and drying it using means such as hot air drying, infrared heating, and induction heating.
また、前記中間層についても、溶融めっき鋼板のめっき皮膜と前記塗膜との間に形成される層であれば特に限定はされない。 The intermediate layer is not particularly limited as long as it is a layer formed between the plating film of the hot-dip galvanized steel sheet and the coating film.
(サンプル1~55)
常法で製造した板厚0.8mmの冷延鋼板を下地鋼板として用い、(株)レスカ製の溶融めっきシミュレーターで、焼鈍処理、めっき処理を行うことで、表1に示す条件の溶融めっき鋼板のサンプル1~55を作製した。
なお、溶融めっき鋼板製造に用いためっき浴の組成については、表1に示す各サンプルのめっき皮膜の組成となるように、めっき浴の組成をAl:5~75質量%、Si:0.0~4.5質量%、Mg:0~10質量%、Co:0.000~0.120質量%の範囲で種々変化させた。また、めっき浴の浴温は、Al:5質量%の場合は450℃、Al:15質量%の場合は480℃、Al:30~60質量%の場合は590℃、Al:60質量%超の場合は630℃とし、下地鋼板のめっき浸入板温がめっき浴温と同温度となるように制御した。さらに、Al:30~60質量%の場合は、板温が520~500℃の温度域に3秒で冷却する条件でめっき処理を実施した。
また、めっき皮膜の付着量は、サンプル1~52では片面あたり85±5g/m2、サンプル53では片面あたり50±5g/m2、サンプル54では片面あたり100±5g/m2、サンプル55では片面あたり125±5g/m2となるように制御した。
(Samples 1 to 55)
A cold-rolled steel sheet having a thickness of 0.8 mm produced by a conventional method was used as a base steel sheet, and annealing and plating were performed using a hot-dip plating simulator manufactured by Rhesca Corporation to produce hot-dip plated steel sheet samples 1 to 55 under the conditions shown in Table 1.
The composition of the plating bath used in the production of hot-dip galvanized steel sheets was varied in the range of Al: 5-75 mass%, Si: 0.0-4.5 mass%, Mg: 0-10 mass%, and Co: 0.000-0.120 mass% so as to obtain the composition of the plating film of each sample shown in Table 1. The bath temperature of the plating bath was controlled to 450°C for Al: 5 mass%, 480°C for Al: 15 mass%, 590°C for Al: 30-60 mass%, and 630°C for Al: over 60 mass%, so that the plating immersion sheet temperature of the base steel sheet was the same as the plating bath temperature. Furthermore, in the case of Al: 30-60 mass%, the plating process was performed under the condition that the sheet temperature was cooled to a temperature range of 520-500°C in 3 seconds.
In addition, the coating weight of the plating film was controlled to be 85±5 g/ m2 per side for samples 1 to 52, 50±5 g/ m2 per side for sample 53, 100±5 g/ m2 per side for sample 54, and 125±5 g/ m2 per side for sample 55.
(評価)
上記のように得られた溶融めっき鋼板の各サンプルについて、以下の評価を行った。評価結果を表1に示す。
(evaluation)
The following evaluations were carried out on each sample of the hot-dip galvanized steel sheet obtained as described above. The evaluation results are shown in Table 1.
(1)めっき皮膜(組成、付着量、X線回折強度)
めっき後の各サンプルについて、100mmφを打ち抜き、非測定面をテープでシーリングした後、JIS H 0401:2013に示される塩酸とヘキサメチレンテトラミンの混合液でめっきを溶解剥離し、剥離前後のサンプルの質量差から、めっき皮膜の付着量を算出した。算出の結果、得られためっき皮膜の付着量を表1に示す。
その後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。
また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。算出の結果、得られためっき皮膜の組成を表1に示す。
加えて、各サンプルについて、100mm×100mmのサイズに剪断後、評価対象面のめっき皮膜を下地鋼板が現れるまで機械的に削り出し、得られた粉末をよく混ぜ合わせた後、0.3gを取出し、X線回折線装置(株式会社リガク製「SmartLab」)を用いて、使用X線:Cu-Kα(波長=1.54178Å)、Kβ線の除去:Niフィルター、管電圧:40kV、管電流:30mA、スキャニング・スピード:4°/min、サンプリング・インターバル:0.020°、発散スリット:2/3°、ソーラースリット:5°、検出器:高速一次元検出器(D/teX Ultra)の条件で、上記粉末の定性分析を行った。各ピーク強度からベース強度を差し引いた強度を各回折強度(cps)とし、Siの(111)面(面間隔d=0.3135nm)の回折強度とMg2Siの(111)面(面間隔d=0.3668nm)の回折強度を測定した。測定結果を、表1に示す。
(1) Plating film (composition, coating weight, X-ray diffraction intensity)
After plating, a 100 mm diameter cut was made from each sample, the non-measurement surface was sealed with tape, and the plating was dissolved and removed using a mixture of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401: 2013. The adhesion weight of the plating film was calculated from the difference in mass of the sample before and after removal. The calculated adhesion weights of the plating film obtained are shown in Table 1.
The stripper solution was then filtered, and the filtrate and solid content were analyzed. Specifically, the filtrate was analyzed by ICP atomic emission spectrometry to quantify the components other than insoluble Si.
The solids were dried and incinerated in a 650°C heating furnace, and then melted by adding sodium carbonate and sodium tetraborate. The molten material was dissolved in hydrochloric acid, and the solution was analyzed by ICP emission spectroscopy to quantify the insoluble silicon. The silicon concentration in the plating film was calculated by adding the soluble silicon concentration obtained by filtrate analysis to the insoluble silicon concentration obtained by solid content analysis. The composition of the plating film obtained as a result of the calculation is shown in Table 1.
In addition, each sample was sheared to a size of 100 mm x 100 mm, and the plating film on the surface to be evaluated was mechanically scraped off until the base steel sheet was revealed. The obtained powder was thoroughly mixed, and 0.3 g was taken out and qualitative analysis of the above powder was performed using an X-ray diffraction device (Rigaku Corporation, "SmartLab") under the following conditions: X-ray used: Cu-Kα (wavelength = 1.54178 Å), Kβ ray removal: Ni filter, tube voltage: 40 kV, tube current: 30 mA, scanning speed: 4°/min, sampling interval: 0.020°, divergence slit: 2/3°, solar slit: 5°, detector: high-speed one-dimensional detector (D/teX Ultra). The diffraction intensity (cps) was calculated by subtracting the base intensity from each peak intensity, and the diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm) and the diffraction intensity of the Mg2Si (111) plane (plane spacing d = 0.3668 nm) were measured. The measurement results are shown in Table 1.
(2)耐食性評価
得られた溶融めっき鋼板の各サンプルについて、120mm×120mmのサイズに剪断後、評価対象面の各エッジから10mmの範囲、及び、サンプルの端面と評価非対象面をテープでシーリングし、評価対象面を100mm×100mmのサイズで露出させた状態のものを、評価用サンプルとして用いた。なお、該評価用サンプルは同じものを3つ作製した。
上記のように作製した3つの評価用サンプルに対して、いずれも図1に示すサイクルで腐食促進試験を実施した。腐食促進試験を湿潤からスタートし、300サイクル後まで行った後、各サンプルの腐食減量をJIS Z 2383及びISO8407に記載の方法で測定し、下記の基準で評価した。評価結果を表1に示す。
◎:サンプル3個の腐食減量が全て45g/m2以下
○:サンプル3個の腐食減量が全て70g/m2以下
×:サンプル1個以上の腐食減量が70g/m2越え
(2) Evaluation of corrosion resistance Each sample of the obtained hot-dip galvanized steel sheet was sheared to a size of 120 mm × 120 mm, and then a range of 10 mm from each edge of the surface to be evaluated, as well as the end faces and the surface not to be evaluated, were sealed with tape to expose the surface to be evaluated in a size of 100 mm × 100 mm, which was used as a sample for evaluation. Three identical samples for evaluation were prepared.
Accelerated corrosion tests were carried out on the three evaluation samples prepared as described above, with the cycle shown in Figure 1. The accelerated corrosion tests were started from wetting and continued for 300 cycles, after which the corrosion weight loss of each sample was measured by the methods described in JIS Z 2383 and ISO 8407, and evaluated according to the following criteria. The evaluation results are shown in Table 1.
◎: The corrosion loss of all three samples is 45g/m2 or less . ○: The corrosion loss of all three samples is 70g/m2 or less. ×: The corrosion loss of one or more samples is more than 70g/ m2.
(3)表面外観性
得られた溶融めっき鋼板の各サンプルについて、目視によって、めっき皮膜の表面を観察した。
そして、観察結果を、以下の基準に従って評価した。評価結果を表1に示す。
◎:シワ状欠陥が全く観察されなかった
○:エッジから50mmの範囲のみにシワ状欠陥が観察された
×:エッジから50mmの範囲以外でシワ状欠陥が観察された
(3) Surface Appearance For each sample of the obtained hot-dip plated steel sheet, the surface of the plating film was visually observed.
The observation results were evaluated according to the following criteria. The evaluation results are shown in Table 1.
◎: No wrinkle defects were observed. ○: Wrinkle defects were observed only within the range of 50 mm from the edge. ×: Wrinkle defects were observed outside the range of 50 mm from the edge.
(4)加工性
得られた溶融めっき鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、同板厚の板を内側に8枚挟んで180°曲げの加工(8T曲げ)を施した。折り曲げ後の曲げ部外面にセロテープ(登録商標)を強く貼りつけた後、引き剥がした。曲げ部外面のめっき皮膜の表面状態、及び、使用したテープの表面におけるめっき皮膜の付着(剥離)の有無を目視で観察し、下記の基準で加工性を評価した。評価結果を表1に示す。
〇:めっき皮膜にクラックと剥離が共に認められない
△:めっき皮膜にクラックがあるが、剥離が認められない
×:めっき皮膜にクラックと剥離が共に認められる
(4) Workability Each sample of the obtained hot-dip plated steel sheet was sheared to a size of 70 mm x 150 mm, and then eight sheets of the same thickness were sandwiched inside and bent 180° (8T bend). Cellophane tape (registered trademark) was firmly attached to the outer surface of the bent part after bending, and then peeled off. The surface condition of the plating film on the outer surface of the bent part and the presence or absence of adhesion (peeling) of the plating film on the surface of the tape used were visually observed, and the workability was evaluated according to the following criteria. The evaluation results are shown in Table 1.
◯: Neither cracks nor peeling are observed in the plating film. △: There are cracks in the plating film, but no peeling is observed. ×: Both cracks and peeling are observed in the plating film.
(5)浴安定性
溶融めっき鋼板の各サンプルの製造時、めっき浴の浴面の状態を目視で確認し、溶融Al-Zn系めっき鋼板を製造する際に用いるめっき浴の浴面(Mg含有酸化物のない浴面)と比較した。評価は、以下の基準で行い、評価結果を表1に示す。
〇:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)と同程度
△:溶融Al-Zn系めっき浴(55質量%Al-残部Zn-1.6質量%浴)に比べて白色酸化物が多い
×:めっき浴中に黒色酸化物の形成が認められる
(5) Bath stability During the production of each sample of hot-dip galvanized steel sheet, the state of the bath surface of the coating bath was visually confirmed and compared with the bath surface of the coating bath used in producing hot-dip Al-Zn-coated steel sheet (bath surface free of Mg-containing oxides). Evaluation was performed according to the following criteria, and the evaluation results are shown in Table 1.
◯: The same level as the hot-dip Al-Zn coating bath (55% Al by mass, balance Zn-1.6% by mass bath) △: There is more white oxide than in the hot-dip Al-Zn coating bath (55% Al by mass, balance Zn-1.6% by mass bath) ×: Formation of black oxide is observed in the coating bath
表1の結果から、本発明例の各サンプルは、比較例の各サンプルに比べて、耐食性、表面外観性、加工性及び浴安定性のいずれについてもバランスよく優れていることがわかる。 The results in Table 1 show that the samples of the present invention are well-balanced and superior in terms of corrosion resistance, surface appearance, workability, and bath stability compared to the samples of the comparative examples.
本発明によれば、安定的に優れた耐食性を有する溶融Al-Zn-Si-Mg系めっき鋼板及びその製造方法を提供できる。 The present invention provides a hot-dip Al-Zn-Si-Mg-plated steel sheet with stable and excellent corrosion resistance, and a method for producing the same.
Claims (8)
前記めっき皮膜は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
前記不可避的不純物中のCo含有量が、前記めっき皮膜の総質量に対して0.080質量%以下であり、
前記めっき皮膜中のSi 及びMg2SiのX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板。
Si (111)/Mg2Si (111)≦0.8 ・・・(1)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度、
Mg2Si (111):Mg2Siの(111)面(面間隔d=0.3668nm)の回折強度 A hot-dip Al-Zn-Si-Mg-based plated steel sheet having a plating film,
The plating film has a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the remainder being Zn and unavoidable impurities;
The Co content in the unavoidable impurities is 0.080 mass% or less with respect to the total mass of the plating film,
A hot-dip Al-Zn-Si-Mg-plated steel sheet, characterized in that the diffraction intensities of Si and Mg 2 Si in the plating film, as determined by an X-ray diffraction method, satisfy the following relationship (1):
Si (111)/Mg 2 Si (111)≦0.8...(1)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm),
Mg 2 Si (111): Diffraction intensity of the (111) plane of Mg 2 Si (plane spacing d = 0.3668 nm)
Si (111)=0 ・・・(2)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度 2. The hot-dip Al-Zn-Si-Mg plated steel sheet according to claim 1, characterized in that a diffraction intensity of Si in the plated film, as determined by an X-ray diffraction method, satisfies the following relationship (2):
Si (111)=0...(2)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm)
前記めっき皮膜の形成は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる溶融めっき処理工程を具え、
前記めっき浴の不可避的不純物中のCo含有量を、前記めっき浴の総質量に対して0.080質量%以下に制御することで、前記めっき皮膜中のSi 及びMg 2 SiのX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
Si (111)/Mg 2 Si (111)≦0.8 ・・・(1)
Si (111):Siの(111)面(面間隔d=0.3135nm)の回折強度、
Mg 2 Si (111):Mg 2 Siの(111)面(面間隔d=0.3668nm)の回折強度 A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet having a plating film, comprising the steps of:
The formation of the plating film includes a hot-dip plating process in which a base steel sheet is immersed in a plating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet, characterized in that the Co content in unavoidable impurities in the plating bath is controlled to 0.080 mass% or less, based on the total mass of the plating bath, so that the diffraction intensities of Si and Mg2Si in the plating film, as measured by an X-ray diffraction method, satisfy the following relationship (1 ) :
Si (111)/Mg 2 Si (111)≦0.8...(1)
Si (111): Diffraction intensity of the Si (111) plane (plane spacing d = 0.3135 nm),
Mg 2 Si (111): Diffraction intensity of the (111) plane of Mg 2 Si (plane spacing d = 0.3668 nm)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022001317A JP7564133B2 (en) | 2022-01-06 | 2022-01-06 | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method |
PCT/JP2022/048682 WO2023132327A1 (en) | 2022-01-06 | 2022-12-28 | HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME |
KR1020247014268A KR20240093523A (en) | 2022-01-06 | 2022-12-28 | Hot-dip Al-Zn-Si-Mg plated steel sheet and method for manufacturing the same, surface-treated steel sheet and method for manufacturing the same, and painted steel sheet and method for manufacturing the same. |
TW112100399A TW202332787A (en) | 2022-01-06 | 2023-01-05 | Hod dipped Al-Zn-Si-Mg coated steel sheet and method for producing same, surface-treated steel sheet and method for producing same, and coated steel sheet and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022001317A JP7564133B2 (en) | 2022-01-06 | 2022-01-06 | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023100555A JP2023100555A (en) | 2023-07-19 |
JP7564133B2 true JP7564133B2 (en) | 2024-10-08 |
Family
ID=87201561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022001317A Active JP7564133B2 (en) | 2022-01-06 | 2022-01-06 | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7564133B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011514934A (en) | 2008-03-13 | 2011-05-12 | ブルースコープ・スティール・リミテッド | Metal coated steel strip |
CN105483594A (en) | 2016-01-14 | 2016-04-13 | 上海大学 | Method for plating surface of steel with Al-Zn-Mg-Si alloy plating layer in continuous hot-dipping manner |
WO2020067678A1 (en) | 2018-09-27 | 2020-04-02 | 주식회사 포스코 | Highly corrosion-resistant plated steel sheet having excellent plating adhesion and resistance to liquid metal embrittlement |
JP6715399B1 (en) | 2019-03-01 | 2020-07-01 | Jfe鋼板株式会社 | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same |
JP6715400B1 (en) | 2019-03-01 | 2020-07-01 | Jfe鋼板株式会社 | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same |
JP2021139048A (en) | 2020-03-05 | 2021-09-16 | Jfe鋼板株式会社 | Painted steel plate |
-
2022
- 2022-01-06 JP JP2022001317A patent/JP7564133B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011514934A (en) | 2008-03-13 | 2011-05-12 | ブルースコープ・スティール・リミテッド | Metal coated steel strip |
CN105483594A (en) | 2016-01-14 | 2016-04-13 | 上海大学 | Method for plating surface of steel with Al-Zn-Mg-Si alloy plating layer in continuous hot-dipping manner |
WO2020067678A1 (en) | 2018-09-27 | 2020-04-02 | 주식회사 포스코 | Highly corrosion-resistant plated steel sheet having excellent plating adhesion and resistance to liquid metal embrittlement |
JP6715399B1 (en) | 2019-03-01 | 2020-07-01 | Jfe鋼板株式会社 | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same |
JP6715400B1 (en) | 2019-03-01 | 2020-07-01 | Jfe鋼板株式会社 | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same |
JP2021139048A (en) | 2020-03-05 | 2021-09-16 | Jfe鋼板株式会社 | Painted steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP2023100555A (en) | 2023-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6368730B2 (en) | Molten Al-Zn-Mg-Si plated steel sheet and method for producing the same | |
EP2537954B1 (en) | Hot-dipped steel material and method for producing same | |
CN117026132A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
CN117987688A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
JP7445128B2 (en) | Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance | |
CN113508186A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
JP7549965B2 (en) | Hot-dip Al-Zn-Mg-Si plated steel sheet and its manufacturing method, and coated steel sheet and its manufacturing method | |
CN113631748A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
JP7356069B2 (en) | Hot-dip Zn-Al-Mg plated steel material | |
JP7091533B2 (en) | Fused Al-Zn-Si-Mg based plated steel sheet | |
JP7097488B2 (en) | Fused Al-Zn-Si-Mg based plated steel sheet | |
JP7564133B2 (en) | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method | |
JP7417103B2 (en) | Hot-dip Zn-Al-Mg plated steel material | |
JP7097489B2 (en) | Fused Al-Zn-Si-Mg-Sr based plated steel sheet | |
JP2023036982A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP2022140247A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP7499849B2 (en) | Hot-dip Al-Zn coated steel sheet and its manufacturing method | |
WO2024214328A1 (en) | Molten al-zn-based plated steel sheet and method for manufacturing same | |
JP7291860B1 (en) | Hot-dip Al-Zn-based plated steel sheet and manufacturing method thereof | |
JP7564134B2 (en) | Surface-treated steel sheet and its manufacturing method | |
WO2024214329A1 (en) | MOLTEN Al-Zn-BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME | |
JP7436840B2 (en) | Hot-dip Zn-Al-Mg plated steel | |
KR101568527B1 (en) | HOT DIP Zn-BASED ALLOY COATING BATH AND HOT DIP Zn-BASED ALLOY COATED STEEL SHEET | |
JP2023143893A (en) | HOT-DIP Al-Zn BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
WO2025027918A1 (en) | Method for producing hot-dip al-zn-si-mg-plated steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7564133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |