[go: up one dir, main page]

WO2025027918A1 - Method for producing hot-dip al-zn-si-mg-plated steel sheet - Google Patents

Method for producing hot-dip al-zn-si-mg-plated steel sheet Download PDF

Info

Publication number
WO2025027918A1
WO2025027918A1 PCT/JP2024/008324 JP2024008324W WO2025027918A1 WO 2025027918 A1 WO2025027918 A1 WO 2025027918A1 JP 2024008324 W JP2024008324 W JP 2024008324W WO 2025027918 A1 WO2025027918 A1 WO 2025027918A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
hot
steel sheet
mass
bath
Prior art date
Application number
PCT/JP2024/008324
Other languages
French (fr)
Japanese (ja)
Inventor
純久 岩野
昌浩 吉田
章一郎 平
洋平 佐藤
史嵩 菅野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2025027918A1 publication Critical patent/WO2025027918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon

Definitions

  • the present invention relates to a method for producing hot-dip Al-Zn-Si-Mg-plated steel sheets that can suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with excellent appearance.
  • Hot-dip Al-Zn-plated steel sheets such as those made of 55% Al-Zn, are known to have high corrosion resistance among various plated steel sheets because they combine the sacrificial corrosion protection of Zn with the high corrosion resistance of Al, as shown in Patent Document 1, for example. For this reason, hot-dip Al-Zn-plated steel sheets have been widely used in the building materials field as materials for roofs and walls that are exposed to the outdoors for long periods of time, due to their excellent corrosion resistance.
  • Patent Document 2 many hot-dip Al-Zn-Si-Mg-plated steel sheets have been proposed in which Mg is added to the plating to improve corrosion resistance, and these hot-dip Al-Zn-Si-Mg-plated steel sheets are expected to be applied not only in the field of building materials but also in the fields of electrical machinery and civil engineering, etc.
  • hot-dip Al-Zn-Si-Mg-plated steel sheet is manufactured by using a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and subjecting the base steel sheet to recrystallization annealing and hot-dip plating treatment in an annealing furnace of continuous hot-dip plating equipment.
  • Mg-containing dross lumpy dross containing magnesium
  • Patent Document 3 discloses a technique for sealing the upper part of the plating bath with an inert gas.
  • Patent Document 4 discloses a technique for reducing the amount of dross generated in the production of hot-dip Al-Zn-Mg coated steel sheet by dissolving Al in a molten Zn bath and then dissolving at least one selected from the group consisting of pure Mg, an Mg-Zn alloy, and an Al-Mg-Zn alloy.
  • Patent Document 4 does not disclose specific ranges for the compositions of the Mg-Zn alloy and Al-Mg-Zn alloy used, and even if this method is used in the production of hot-dip Al-Zn-Si-Mg-plated steel sheets, the effect of suppressing the generation of Mg-containing dross is not necessarily obtained, and there is still a need to improve the stable appearance.
  • the present invention aims to provide a method for producing hot-dip Al-Zn-Si-Mg-plated steel sheet that can suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheet with excellent appearance.
  • the inventors conducted research to solve the above problems, and as a result, they focused on the plating bath preparation process, which is the process most related to the generation of dross among the manufacturing processes for hot-dip Al-Zn-Si-Mg-plated steel sheets. They discovered that by properly controlling the raw materials added to the plating bath, particularly the Mg raw materials, it is possible to suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with a stable and excellent appearance.
  • a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using a continuous hot-dip galvanizing facility comprising: The method includes a hot-dip galvanizing step of immersing a base steel sheet in a coating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities;
  • the present invention makes it possible to suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with excellent appearance.
  • the method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention is a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using a continuous hot-dip plating facility.
  • the hot dip plating process there are no particular limitations on the conditions other than the composition of the plating bath and the source of Mg in the plating bath, which will be described later.
  • the base steel sheet is cleaned, heated, and then immersed in a plating bath to form a plating film.
  • recrystallization annealing is performed to control the structure of the base steel sheet itself, and heating in a reducing atmosphere such as a nitrogen-hydrogen atmosphere is effective in preventing oxidation and reducing the small amount of oxide film present on the surface.
  • the base steel sheet is not particularly limited, and a cold-rolled steel sheet, a hot-rolled steel sheet, or the like can be used as appropriate depending on the required performance and specifications.
  • the method for obtaining the base steel sheet is not particularly limited.
  • the hot-rolled steel sheet one that has been subjected to a hot rolling process and a pickling process can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold rolling process.
  • the method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention includes a hot-dip galvanizing treatment step of immersing a base steel sheet in a coating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities. This makes it possible to form a hot-dip Al-Zn-Si-Mg coating on the base steel sheet.
  • the Al content in the coating bath is 45 to 65 mass %, and preferably 50 to 60 mass %, in view of the balance between the corrosion resistance of the resulting hot-dip Al-Zn-Si-Mg coated steel sheet and operational aspects. This is because, if the Al content is at least 45 mass%, dendritic solidification of Al occurs, and the resulting plating film can form a dendritic solidification structure of the ⁇ -Al phase that improves corrosion resistance.
  • the dendritic solidification structure has a structure in which layers are stacked in the thickness direction of the plating film, and the more the number of layers increases, the more complex the corrosion progression path from the plating surface becomes, improving the corrosion resistance, so it is preferable that the Al content in the plating bath is 50 mass% or more.
  • the Al content in the coating bath exceeds 65 mass%, the coating film formed changes to a structure in which most of the Zn is dissolved in ⁇ -Al, which increases the dissolution rate during corrosion and deteriorates the corrosion resistance of the hot-dip Al-Zn-Si-Mg-coated steel sheet. Therefore, the Al content in the coating bath must be 65 mass% or less, and is preferably 60 mass% or less.
  • the Si content in the coating bath is 1.0 to 4.0 mass % and is contained in the coating bath mainly for the purpose of suppressing the growth of an Fe-Al and/or Fe-Al-Si interfacial alloy layer formed at the interface with the substrate steel sheet, and preventing deterioration of the adhesion between the resulting coating film and the steel sheet.
  • the Fe on the steel sheet surface reacts with the Al and Si in the bath to form an Fe-Al and/or Fe-Al-Si intermetallic compound layer at the interface between the base steel sheet and the coating film, but since the growth rate of the Fe-Al-Si alloy is slower than that of the Fe-Al alloy, the higher the ratio of the Fe-Al-Si alloy, the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the coating bath must be 1.0 mass% or more.
  • the Si content in the plating film exceeds 4.0 mass%, not only will the aforementioned effect of inhibiting the growth of the interfacial alloy layer be saturated, but also an excess Si phase will be formed in the obtained plating film, resulting in reduced workability. Therefore, the Si content is set to 4.0 mass% or less.
  • Mg in the plating bath is a component contained for the purpose of forming intermetallic compounds such as Mg2Si and MgZn2 in the plating film and improving the corrosion resistance of the hot-dip Al-Zn-Si-Mg-plated steel sheet. If the Mg content in the plating bath is less than 1.0% by mass, Mg is used to dissolve in the ⁇ -Al phase, which is the main phase, rather than to form the intermetallic compounds ( Mg2Si , MgZn2 ) in the plating film, and sufficient corrosion resistance cannot be ensured.
  • the Mg content in the plating bath is set to 10.0% by mass or less. Therefore, the Mg content in the coating bath must be 1.0 to 10.0 mass%, and from the viewpoint of achieving both improved corrosion resistance and suppression of dross, it is preferably 3.0 to 5.0 mass%.
  • the plating bath further contains Zn and unavoidable impurities in addition to the above-mentioned Al, Si, and Mg.
  • the unavoidable impurities include Fe.
  • This Fe is inevitably contained in the plating film as a result of dissolution of the steel sheet or bath-immersed equipment into the plating bath, and as a result of being supplied by diffusion from the base steel sheet during the formation of the interface alloy layer.
  • the Fe content in the plating bath is usually about 0.1 to 0.5 mass%.
  • Inevitable impurities other than Fe include Ni, Cu, Co, W, etc.
  • These elements may be dissolved in the plating bath from the WC-based or Co-Cr-W-based thermal spray coating applied to the base steel sheet, stainless steel bath-immersed equipment, or bath-immersed equipment, or may be contained as impurities in the metal blocks that are the raw material for the plating bath.
  • the total content of unavoidable impurities in the plating film is not particularly limited, but if contained in excess, it may affect various properties of the hot-dip Al-Zn-Si-Mg-plated steel sheet to be manufactured, so it is preferable to control the total content to 5.0 mass% or less.
  • an Al-Mg alloy containing 10 to 90 mass % of Mg is used as the Mg raw material to be charged into the coating bath, because by using an Al-Mg alloy as the Mg raw material, it is possible to suppress the generation of Mg-containing dross in the raw material melting step.
  • Mg has a high oxidizing effect
  • pure Mg or Mg-Zn alloy when pure Mg or Mg-Zn alloy is melted, the melted Mg is oxidized strongly on the bath surface of the plating bath, and a large amount of lump-shaped dross (Mg-containing dross) mainly composed of Mg oxide is formed.
  • Mg-containing dross lump-shaped dross
  • Al-Mg alloy is melted as in the present invention, a thin and dense Al oxide film is formed on the bath surface of the plating bath, which prevents the plating bath from contacting the air and suppresses the oxidation of Mg, thereby making it possible to suppress the generation of Mg-containing dross.
  • the Al-Mg alloy is a binary alloy of Al and Mg, and does not include ternary alloys such as Mg-Zn-Al alloys. This is from the viewpoint of more reliably forming a thin and dense Al oxide film on the bath surface of the plating bath described above. Note that it is sufficient to use an Al-Mg alloy as the raw material for the Mg, and a small amount of a ternary alloy such as an Mg-Zn-Al alloy can be added as a material for components other than Mg.
  • the Mg-containing dross is a top dross lump consisting mainly of Mg oxide that occurs near the surface of the plating bath, and is different from the bottom dross (bottom dross) which is made up of iron-containing oxides that are concentrated in the bath or at the bottom of the plating bath.
  • FIG. 1 shows a binary system calculation phase diagram of Al-Mg alloys (source: Binary Alloy Phase Diagrams, vol. 1 ed. by T. B. Massalski, ASM, (1986), 129.).
  • Source Binary Alloy Phase Diagrams, vol. 1 ed. by T. B. Massalski, ASM, (1986), 129.).
  • Each Al-Mg alloy of each composition is only liquid at a temperature higher than the liquidus indicated by the arrow in Figure 1, so that high solubility is obtained when the liquidus temperature is equal to or lower than the bath temperature.
  • even higher solubility can be obtained by using an alloy with a lower liquidus temperature.
  • the bath temperature is not particularly limited, but is generally in the range of 550°C to 650°C. Therefore, in the production of the hot-dip Al-Zn-Si-Mg plated steel sheet of the present invention, in order to obtain high solubility in the melting of the Al-Mg alloy, the Mg concentration in the Al-Mg alloy needs to be 10 to 90 mass%, preferably 20 to 80 mass%, and more preferably 30 to 70 mass%.
  • the raw materials of the bath components other than Mg when preparing the plating bath there are no particular limitations on the raw materials of the bath components other than Mg when preparing the plating bath.
  • pure Al, Al-Si alloy, Al-Zn alloy, and pure Zn can be used, and the composition of the plating bath can be adjusted by appropriately mixing and dissolving these together with the Al-Mg alloy.
  • the component composition of the plating bath can be confirmed by dissolving the alloy that has solidified from the plating bath in acid and performing ICP emission spectrometry, atomic absorption spectrometry, or the like.
  • the alloy solidified from the plating bath is dissolved in hydrochloric acid, the solution is filtered, and the filtrate is analyzed by ICP emission spectroscopy to quantify components other than insoluble Si.
  • the solid content is dried and incinerated in a heating furnace at 650°C, melted by adding sodium carbonate and sodium tetraborate, and the molten material is dissolved in hydrochloric acid and the solution is analyzed by ICP emission spectroscopy to quantify insoluble Si.
  • the Si concentration in the plating film can be calculated by adding the soluble Si concentration obtained by filtrate analysis to the insoluble Si concentration obtained by solid content analysis.
  • the ICP emission spectrometry is merely one example, and any method that can accurately quantify the component composition of the plating film may be used, and there is no particular limitation.
  • the plating bath may further contain, as optional components, one or more selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi in a total amount of 0.01 to 3.0 mass%.
  • B Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi in a total amount of 0.01 to 3.0 mass%.
  • the bath temperature of the plating bath is not particularly limited, but is preferably in the temperature range of (melting point + 20°C) to 650°C.
  • the reason why the lower limit of the bath temperature is set to melting point + 20°C is that in order to perform hot-dip plating, the bath temperature needs to be above the solidification point, and by setting the temperature at melting point + 20°C, solidification due to a local drop in the bath temperature of the plating bath is prevented.
  • the reason why the upper limit of the bath temperature is set to 650°C is that if the temperature exceeds 650°C, it becomes difficult to rapidly cool the plating film, and there is a risk that the interfacial alloy layer formed between the plating film and the steel sheet will become thick.
  • the temperature of the base steel sheet immersed in the coating bath is not particularly limited, but it is preferable to control it to within ⁇ 20°C of the coating bath temperature in order to ensure the coating characteristics in the continuous hot-dip coating operation and to prevent changes in the bath temperature.
  • the immersion time of the base steel sheet in the plating bath is 0.5 seconds or more. This is because if it is less than 0.5 seconds, there is a risk that a sufficient plating film will not be formed on the surface of the base steel sheet.
  • the immersion time There is no particular upper limit to the immersion time, but since a longer immersion time may result in a thicker interfacial alloy layer being formed between the plating film and the steel sheet, it is more preferable to keep it within 8 seconds.
  • Examples 1 to 26 A production test was carried out using a low carbon cold rolled steel sheet with a thickness of 0.8 mm and a width of 765 mm, produced by a conventional method, as the base steel sheet, and using a general continuous hot-dip galvanizing facility, in which (1) the coating bath was made up and (2) hot-dip galvanizing treatment was carried out continuously for 6 hours under the conditions shown in Table 1.
  • the details of (1) the coating bath making and (2) the hot-dip galvanizing treatment are as follows.
  • a plating bath having the composition shown in Table 1 was prepared in a hot-dip plating pot of a continuous hot-dip plating facility.
  • the raw materials (ingots) shown in Table 1 were used, mixed to obtain the composition shown in Table 1, and melted.
  • additional bath is made in the hot dip plating pot in the same manner as described above.
  • the composition of the prepared bath was confirmed by dissolving the alloy pieces solidified from the plating bath in hydrochloric acid, filtering the solution, and then filtering the stripping solution, and analyzing the filtrate and solids. Specifically, the filtrate was analyzed by ICP emission spectroscopy to quantify components other than insoluble Si.
  • the solids were dried and incinerated in a heating furnace at 650°C, and then melted by adding sodium carbonate and sodium tetraborate.
  • the molten material was dissolved in hydrochloric acid, and the solution was analyzed by ICP emission spectroscopy to quantify the insoluble Si.
  • the Si concentration in the plating bath was calculated by adding the soluble Si concentration obtained by the filtrate analysis to the insoluble Si concentration obtained by the solids analysis.
  • the results were compared with the plating speed when a 55 mass % Al-Zn-1.6 mass % plating bath containing no Mg (hereinafter referred to as the reference bath) was used, and the results were evaluated according to the following criteria.
  • Very high solubility, allowing operation at the same processing speed as when the reference bath is used.
  • High solubility, allowing operation at processing speeds of 90% or more compared to plating using the reference bath.
  • Low solubility, allowing operation at processing speeds of 80% or more compared to plating using the reference bath.
  • Very low solubility making it difficult to operate at processing speeds of 80% or more compared to plating using the reference bath.
  • each sample of the invention has high solubility of the Mg raw material, and is also excellent in terms of the amount of Mg-containing dross generated and the appearance of the plating film.
  • each sample of the comparative example shows a poor result in at least one evaluation item.
  • the generation of Mg-containing dross can be suppressed, and it is possible to produce a hot-dip Al-Zn-Si-Mg-plated steel sheet having excellent appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)

Abstract

The purpose of the present invention is to provide a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet, wherein the production of Mg-containing dross can be suppressed and a hot-dip Al-Zn-Si-Mg-plated steel sheet with a superior external appearance can be obtained. In order to achieve this purpose, the present invention is a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using continuous hot-dip plating equipment, and is characterized by comprising a hot-dip plating step in which a substrate steel sheet is immersed in a plating bath that has a composition including 45-65 mass% Al, 1.0-4.0 mass% Si, and 1.0-10.0 mass% Mg, the remainder consisting of Zn and unavoidable impurities, wherein an Al-Mg alloy including 10-90 mass% Mg is used as a source material for the Mg in the plating bath.

Description

溶融Al-Zn-Si-Mg系めっき鋼板の製造方法Manufacturing method of hot-dip Al-Zn-Si-Mg-plated steel sheet

 本発明は、Mg含有ドロスの発生を抑制でき、外観性に優れた溶融Al-Zn-Si-Mg系めっき鋼板を得ることができる溶融Al-Zn-Si-Mg系めっき鋼板の製造方法に関するものである。 The present invention relates to a method for producing hot-dip Al-Zn-Si-Mg-plated steel sheets that can suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with excellent appearance.

 55%Al-Zn系に代表される溶融Al-Zn系めっき鋼板は、例えば特許文献1に示すように、Znの犠牲防食性とAlの高い耐食性とが両立できているため、種々のめっき鋼板の中でも高い耐食性を示すことが知られている。そのため、溶融Al-Zn系めっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁用の材料として、建材分野で多く使用されてきた。 Hot-dip Al-Zn-plated steel sheets, such as those made of 55% Al-Zn, are known to have high corrosion resistance among various plated steel sheets because they combine the sacrificial corrosion protection of Zn with the high corrosion resistance of Al, as shown in Patent Document 1, for example. For this reason, hot-dip Al-Zn-plated steel sheets have been widely used in the building materials field as materials for roofs and walls that are exposed to the outdoors for long periods of time, due to their excellent corrosion resistance.

 また、近年の建材市場では、製品の長寿命化や沿岸地域等の厳しい腐食環境における耐食性確保を目的として、さらなる耐食性向上が望まれている。そのため、例えば特許文献2に示すように、めっき中にMgを添加することで耐食性を向上させた溶融Al-Zn-Si-Mg系めっき鋼板が多く提案されており、これら溶融Al-Zn-Si-Mg系めっき鋼板は、建材分野に留まらず電機分野や土木分野等への適用も期待されている。
一般的に、溶融Al-Zn-Si-Mg系めっき鋼板の製造は、スラブを熱間圧延若しくは冷間圧延した薄鋼板を下地鋼板として用い、該下地鋼板を連続式溶融めっき設備の焼鈍炉にて再結晶焼鈍及び溶融めっき処理を施す手法で行われる。
Moreover, in recent years, the building materials market has been demanding further improvement in corrosion resistance in order to extend the life of products and ensure corrosion resistance in severe corrosive environments such as coastal regions, etc. For this reason, as shown in, for example, Patent Document 2, many hot-dip Al-Zn-Si-Mg-plated steel sheets have been proposed in which Mg is added to the plating to improve corrosion resistance, and these hot-dip Al-Zn-Si-Mg-plated steel sheets are expected to be applied not only in the field of building materials but also in the fields of electrical machinery and civil engineering, etc.
In general, hot-dip Al-Zn-Si-Mg-plated steel sheet is manufactured by using a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and subjecting the base steel sheet to recrystallization annealing and hot-dip plating treatment in an annealing furnace of continuous hot-dip plating equipment.

 ただし、上記のような連続式溶融めっき設備で溶融めっき処理を施す方法では、高い酸化作用を有するMgの添加によって、めっき浴の表層近傍に、Mgを含有する塊状のドロス(以後、「Mg含有ドロス」という。)が発生し、従来の溶融Al-Zn系めっき鋼板の製造に比べて発生量が多くなるという問題があった。このMg含有ドロスが増加すると、鋼板にドロスが付着し、不めっき欠陥や凹凸欠陥等の外観不良を引き起こし、外観性が悪化する。 However, in the method of performing hot-dip plating using continuous hot-dip plating equipment as described above, the addition of magnesium, which has a high oxidizing effect, generates lumpy dross containing magnesium (hereinafter referred to as "Mg-containing dross") near the surface of the plating bath, and there is a problem in that the amount generated is greater than in the conventional production of hot-dip Al-Zn-plated steel sheets. When the amount of this Mg-containing dross increases, it adheres to the steel sheet, causing appearance defects such as unplated defects and uneven defects, and deteriorating the appearance.

 そのため、Mg添加におけるドロス対策技術として、特許文献3には、めっき浴の上方を不活性ガスでシールする技術が開示されている。
 また、特許文献4には、溶融Zn浴中に、Alを溶解した後に、純Mg、Mg-Zn合金及びAl-Mg-Zn合金から成る群から選択した少なくとも1種を溶解することにより、溶融Al-Zn-Mg系めっき鋼板の製造におけるドロスの発生量を低減する技術が開示されている。
Therefore, as a technique for preventing dross when adding Mg, Patent Document 3 discloses a technique for sealing the upper part of the plating bath with an inert gas.
Furthermore, Patent Document 4 discloses a technique for reducing the amount of dross generated in the production of hot-dip Al-Zn-Mg coated steel sheet by dissolving Al in a molten Zn bath and then dissolving at least one selected from the group consisting of pure Mg, an Mg-Zn alloy, and an Al-Mg-Zn alloy.

特公昭46-7161号公報Special Publication No. 46-7161 特開2001-316791号公報JP 2001-316791 A 特公昭61-33070号公報Special Publication No. 61-33070 特開平11-193452号公報Japanese Patent Application Publication No. 11-193452

 しかしながら、特許文献3に開示された技術では、設備及びその維持コストが高く、容易に適用することができず、またこの技術を、溶融Al-Zn-Si-Mg系めっき鋼板の製造、特にMg濃度が高い浴を用いた製造に用いても、十分にMg含有ドロスの発生を抑制することはできず、安定的に優れた外観を得ることはできなかった。
 また、特許文献4の技術では、使用するMg-Zn合金やAl-Mg-Zn合金の組成について具体的な範囲は開示されておらず、この方法を溶融Al-Zn-Si-Mg系めっき鋼板の製造に用いたとしても、必ずしもMg含有ドロスの発生を抑制する効果は得られず、安定的な外観性の点では依然として改善の必要があった。さらに、融点が高い合金を用いた場合では、溶解に時間を要し、建浴時間が増加するだけでなく、短時間での成分調整が難しくなるため、浴組成を常時モニタリングして微調整を行っている連続式溶融めっき設備を用いた溶融Al-Zn-Si-Mg系めっき鋼板の製造には適用が困難であった。
However, the technology disclosed in Patent Document 3 requires high equipment and maintenance costs and cannot be easily applied. Furthermore, even if this technology is used in the production of hot-dip Al-Zn-Si-Mg-plated steel sheets, particularly in the production using a bath with a high Mg concentration, it is not possible to sufficiently suppress the generation of Mg-containing dross and it is not possible to stably obtain an excellent appearance.
In addition, the technique of Patent Document 4 does not disclose specific ranges for the compositions of the Mg-Zn alloy and Al-Mg-Zn alloy used, and even if this method is used in the production of hot-dip Al-Zn-Si-Mg-plated steel sheets, the effect of suppressing the generation of Mg-containing dross is not necessarily obtained, and there is still a need to improve the stable appearance. Furthermore, when an alloy with a high melting point is used, it takes time to melt, which not only increases the time required for bath construction but also makes it difficult to adjust the components in a short time, making it difficult to apply this to the production of hot-dip Al-Zn-Si-Mg-plated steel sheets using continuous hot-dip plating equipment in which the bath composition is constantly monitored and finely adjusted.

 本発明はかかる事情に鑑み、Mg含有ドロスの発生を抑制でき、外観性に優れた溶融Al-Zn-Si-Mg系めっき鋼板を得ることができる溶融Al-Zn-Si-Mg系めっき鋼板の製造方法を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a method for producing hot-dip Al-Zn-Si-Mg-plated steel sheet that can suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheet with excellent appearance.

 本発明者らは、上記の課題を解決すべく検討を行った結果、溶融Al-Zn-Si-Mg系めっき鋼板の製造工程の中でも最もドロスの発生に関係するめっき浴の調製工程に着目し、めっき浴に投入する原料のうち、特にMgの原料について適正な制御を行うことで、Mg含有ドロスの発生を抑制し、安定的に優れた外観を有する溶融Al-Zn-Si-Mg系めっき鋼板が製造できることを見出した。 The inventors conducted research to solve the above problems, and as a result, they focused on the plating bath preparation process, which is the process most related to the generation of dross among the manufacturing processes for hot-dip Al-Zn-Si-Mg-plated steel sheets. They discovered that by properly controlling the raw materials added to the plating bath, particularly the Mg raw materials, it is possible to suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with a stable and excellent appearance.

 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである
1.連続式溶融めっき設備を用いた溶融Al-Zn-Si-Mg系めっき鋼板の製造方法であって、
Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる、溶融めっき処理工程を具え、
 前記めっき浴中のMgの原料として、Mgを10~90質量%含んだAl-Mg合金を用いることを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
2.前記めっき浴が、さらに、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce及びBiのうちから選択される一種又は二種以上を、合計で0.01~3.0質量%含有することを特徴とする、前記1に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
3.前記Al-Mg合金が、Mgを20~80質量%含むことを特徴とする、前記1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
4.前記Al-Mg合金が、Mgを30~70質量%含むことを特徴とする、前記1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
The present invention has been made based on the above findings, and the gist of the present invention is as follows: 1. A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using a continuous hot-dip galvanizing facility, comprising:
The method includes a hot-dip galvanizing step of immersing a base steel sheet in a coating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet, characterized in that an Al-Mg alloy containing 10 to 90 mass % of Mg is used as a source of Mg in the plating bath.
2. The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet according to 1 above, characterized in that the coating bath further contains 0.01 to 3.0 mass% in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce and Bi.
3. The method for producing a hot-dip Al-Zn-Si-Mg plated steel sheet according to 1 or 2 above, characterized in that the Al-Mg alloy contains 20 to 80 mass % of Mg.
4. The method for producing a hot-dip Al-Zn-Si-Mg plated steel sheet according to 1 or 2 above, characterized in that the Al-Mg alloy contains 30 to 70 mass % Mg.

 本発明によれば、Mg含有ドロスの発生を抑制でき、外観性に優れた溶融Al-Zn-Si-Mg系めっき鋼板の製造が可能となる。 The present invention makes it possible to suppress the generation of Mg-containing dross and produce hot-dip Al-Zn-Si-Mg-plated steel sheets with excellent appearance.

Al-Mg合金の二元系計算状態図である。This is a binary calculated phase diagram of an Al-Mg alloy.

 本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法は、連続式溶融めっき設備を用いた溶融Al-Zn-Si-Mg系めっき鋼板の製造方法である。
 なお、前記溶融めっき処理工程については、後述するめっき浴の組成及びめっき浴中のMgの原料以外の条件は、特に限定はされない。
The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention is a method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using a continuous hot-dip plating facility.
Regarding the hot dip plating process, there are no particular limitations on the conditions other than the composition of the plating bath and the source of Mg in the plating bath, which will be described later.

 例えば、連続式溶融めっき設備で、下地鋼板を、洗浄、加熱した後、めっき浴に浸漬することによってめっき皮膜を形成できる。前記下地鋼板の加熱工程においては、下地鋼板自身の組織制御のために再結晶焼鈍などを施すとともに、酸化を防止し且つ表面に存在する微量な酸化膜を還元するため、窒素-水素雰囲気等の還元雰囲気での加熱が有効である。 For example, in continuous hot-dip plating equipment, the base steel sheet is cleaned, heated, and then immersed in a plating bath to form a plating film. In the heating process of the base steel sheet, recrystallization annealing is performed to control the structure of the base steel sheet itself, and heating in a reducing atmosphere such as a nitrogen-hydrogen atmosphere is effective in preventing oxidation and reducing the small amount of oxide film present on the surface.

 前記下地鋼板については、特に限定はされず、要求される性能や規格に応じて、冷延鋼板や熱延鋼板等を適宜使用することができる。
 さらに、前記下地鋼板を得る方法についても、特に限定はされない。例えば、前記熱延鋼板の場合、熱間圧延工程、酸洗工程を経たものを使用することができ、前記冷延鋼板の場合には、さらに冷間圧延工程を加えて製造できる。さらに、鋼板の特性を得るために溶融めっき工程の前に、プレめっき工程や再結晶焼鈍工程等を経ることも可能である。
The base steel sheet is not particularly limited, and a cold-rolled steel sheet, a hot-rolled steel sheet, or the like can be used as appropriate depending on the required performance and specifications.
Furthermore, the method for obtaining the base steel sheet is not particularly limited. For example, in the case of the hot-rolled steel sheet, one that has been subjected to a hot rolling process and a pickling process can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold rolling process. Furthermore, in order to obtain the properties of the steel sheet, it is also possible to go through a pre-plating process, a recrystallization annealing process, etc. before the hot-dip plating process.

 本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法は、Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる、溶融めっき処理工程を具える。
 これによって、前記下地鋼板上に溶融Al-Zn-Si-Mg系めっきを形成することができる。
The method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention includes a hot-dip galvanizing treatment step of immersing a base steel sheet in a coating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities.
This makes it possible to form a hot-dip Al-Zn-Si-Mg coating on the base steel sheet.

 前記めっき浴中のAl含有量は、得られる溶融Al-Zn-Si-Mg系めっき鋼板の耐食性と操業面のバランスから、45~65質量%であり、好ましくは50~60質量%である。
 これは、Al含有量が少なくとも45質量%あれば、Alのデンドライト凝固が生じ、得られるめっき皮膜に耐食性を向上させるα-Al相のデンドライト凝固組織を形成させることができるためである。加えて、前記デンドライト凝固組織は、めっき皮膜の膜厚方向に積層する構造を取るが、積層数が多くなるほどめっき表面からの腐食進行経路が複雑になり耐食性が向上するため、めっき浴中のAlの含有量を50質量%以上とすることが好ましい。
 一方、前記めっき浴中のAl含有量が65質量%を超えると、形成されるめっき皮膜がZnの殆どをα-Al中に固溶した組織に変化することで、腐食時の溶解速度が大きくなり、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性が劣化する。このため、前記めっき浴中のAl含有量は、65質量%以下であることを要し、好ましくは60質量%以下である。
The Al content in the coating bath is 45 to 65 mass %, and preferably 50 to 60 mass %, in view of the balance between the corrosion resistance of the resulting hot-dip Al-Zn-Si-Mg coated steel sheet and operational aspects.
This is because, if the Al content is at least 45 mass%, dendritic solidification of Al occurs, and the resulting plating film can form a dendritic solidification structure of the α-Al phase that improves corrosion resistance. In addition, the dendritic solidification structure has a structure in which layers are stacked in the thickness direction of the plating film, and the more the number of layers increases, the more complex the corrosion progression path from the plating surface becomes, improving the corrosion resistance, so it is preferable that the Al content in the plating bath is 50 mass% or more.
On the other hand, if the Al content in the coating bath exceeds 65 mass%, the coating film formed changes to a structure in which most of the Zn is dissolved in α-Al, which increases the dissolution rate during corrosion and deteriorates the corrosion resistance of the hot-dip Al-Zn-Si-Mg-coated steel sheet. Therefore, the Al content in the coating bath must be 65 mass% or less, and is preferably 60 mass% or less.

 また、前記めっき浴中のSiは、主に下地鋼板との界面に生成するFe-Al系及び/又はFe-Al-Si系の界面合金層の成長を抑制し、得られるめっき皮膜と鋼板の密着性を劣化させない目的で含有される成分である。前記めっき浴中のSi含有量は、1.0~4.0質量%とする。
 実際に、Siを含有したAl-Zn-Si-Mg系めっき浴に鋼板を浸漬させると、鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe-Al系及び/又はFe-Al-Si系の金属間化合物層が下地鋼板/めっき皮膜界面に生成するが、このときFe-Al-Si系合金はFe-Al系合金よりも成長速度が遅いので、Fe-Al-Si系合金の比率が高いほど、界面合金層全体の成長が抑制される。そのため、前記めっき浴中のSi含有量は1.0質量%以上とすることを要する。
 一方、前記めっき皮膜中のSi含有量が4.0質量%を超えると、前述した界面合金層の成長抑制効果が飽和するだけでなく、得られるめっき皮膜中に過剰なSi相が形成することで加工性が低下するため、Si含有量は4.0質量%以下とする。
The Si content in the coating bath is 1.0 to 4.0 mass % and is contained in the coating bath mainly for the purpose of suppressing the growth of an Fe-Al and/or Fe-Al-Si interfacial alloy layer formed at the interface with the substrate steel sheet, and preventing deterioration of the adhesion between the resulting coating film and the steel sheet.
In fact, when a steel sheet is immersed in an Al-Zn-Si-Mg-based coating bath containing Si, the Fe on the steel sheet surface reacts with the Al and Si in the bath to form an Fe-Al and/or Fe-Al-Si intermetallic compound layer at the interface between the base steel sheet and the coating film, but since the growth rate of the Fe-Al-Si alloy is slower than that of the Fe-Al alloy, the higher the ratio of the Fe-Al-Si alloy, the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the coating bath must be 1.0 mass% or more.
On the other hand, if the Si content in the plating film exceeds 4.0 mass%, not only will the aforementioned effect of inhibiting the growth of the interfacial alloy layer be saturated, but also an excess Si phase will be formed in the obtained plating film, resulting in reduced workability. Therefore, the Si content is set to 4.0 mass% or less.

 さらに、前記めっき浴中のMgは、めっき皮膜中にMg2SiやMgZn2等の金属間化合物を形成させ、溶融Al-Zn-Si-Mg系めっき鋼板の耐食性を向上させる目的で含有される成分である。
 前記めっき浴中のMg含有量が1.0質量%未満の場合、めっき皮膜中で前記金属間化合物(Mg2Si、MgZn2)の生成よりも、主要相であるα-Al相への固溶にMgが使用されるため、十分な耐食性が確保できない。一方、前記めっき浴中のMg含有量が多くなると、耐食性の向上効果が飽和することに加え、α-Al相の脆弱化に伴い加工性が低下し、さらにドロスの発生量が増加するため、Mg含有量は10.0質量%以下とする。
 そのため、前記めっき浴中のMg含有量は、1.0~10.0質量%とすることを要し、耐食性の向上とドロスの抑制を両立する観点からは、3.0~5.0質量%とすることが好ましい。
Furthermore, Mg in the plating bath is a component contained for the purpose of forming intermetallic compounds such as Mg2Si and MgZn2 in the plating film and improving the corrosion resistance of the hot-dip Al-Zn-Si-Mg-plated steel sheet.
If the Mg content in the plating bath is less than 1.0% by mass, Mg is used to dissolve in the α-Al phase, which is the main phase, rather than to form the intermetallic compounds ( Mg2Si , MgZn2 ) in the plating film, and sufficient corrosion resistance cannot be ensured. On the other hand, if the Mg content in the plating bath is too high, the effect of improving corrosion resistance is saturated, and the α-Al phase becomes brittle, which reduces workability and increases the amount of dross generated. Therefore, the Mg content is set to 10.0% by mass or less.
Therefore, the Mg content in the coating bath must be 1.0 to 10.0 mass%, and from the viewpoint of achieving both improved corrosion resistance and suppression of dross, it is preferably 3.0 to 5.0 mass%.

 また、前記めっき浴は、上述したAl、Si及びMgの他に、Zn及び不可避的不純物を含有する。
 このうち、前記不可避的不純物については、Feを含有する。このFeは、鋼板や浴中機器がめっき浴中に溶出することで不可避的に含まれるものと界面合金層の形成時に下地鋼板からの拡散によって供給される結果、前記めっき皮膜中に不可避的に含まれることとなる。前記めっき浴中のFe含有量は、通常0.1~0.5質量%程度である。
 Fe以外の不可避的不純物としては、Ni、Cu、Co、W等が挙げられる。これらの成分は、下地鋼板やステンレス製の浴中機器や浴中機器に施したW-C系やCo-Cr-W系の溶射皮膜がめっき浴中に溶出すること、めっき浴の原料となる金属塊中に不純物として含まれる場合がある。
The plating bath further contains Zn and unavoidable impurities in addition to the above-mentioned Al, Si, and Mg.
Among these, the unavoidable impurities include Fe. This Fe is inevitably contained in the plating film as a result of dissolution of the steel sheet or bath-immersed equipment into the plating bath, and as a result of being supplied by diffusion from the base steel sheet during the formation of the interface alloy layer. The Fe content in the plating bath is usually about 0.1 to 0.5 mass%.
Inevitable impurities other than Fe include Ni, Cu, Co, W, etc. These elements may be dissolved in the plating bath from the WC-based or Co-Cr-W-based thermal spray coating applied to the base steel sheet, stainless steel bath-immersed equipment, or bath-immersed equipment, or may be contained as impurities in the metal blocks that are the raw material for the plating bath.

 なお、前記めっき皮膜中の不可避的不純物の総含有量については、特に限定はされないが、過剰に含有した場合、製造する溶融Al-Zn-Si-Mg系めっき鋼板の各種特性に影響を及ぼす可能性があるため、合計で5.0質量%以下に制御することが好ましい。 The total content of unavoidable impurities in the plating film is not particularly limited, but if contained in excess, it may affect various properties of the hot-dip Al-Zn-Si-Mg-plated steel sheet to be manufactured, so it is preferable to control the total content to 5.0 mass% or less.

 次に、本発明で最も重要なMgの原料について説明する。
 本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法では、前記めっき浴中に投入するMgの原料として、Mgを10~90質量%を含んだAl-Mg合金を用いる。前記Mgの原料としてAl-Mg合金を用いることによって、原料の溶解工程におけるMg含有ドロスの発生を抑制することが可能となるためである。
 Mgは高い酸化作用を有するため、純MgやMg-Zn合金を溶解した場合、めっき浴の浴面で溶解したMgが激しく酸化し、Mg酸化物を主体とした塊状のドロス(Mg含有ドロス)が多量に形成されることとなる。しかしながら、本願発明のように、Al-Mg合金を溶解させた場合には、めっき浴の浴面に薄く緻密なAl酸化膜が形成するため、めっき浴と大気との接触を阻害し、Mgの酸化を抑制できる結果、Mg含有ドロスの発生を抑えることが可能となる。このMg含有ドロスの抑制効果を得るためには、Al-Mg合金中のAl濃度を少なくとも10質量%以上、すなわちMg濃度を90質量%以下とすることを要する。
Next, the raw material of Mg, which is the most important element in the present invention, will be described.
In the method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention, an Al-Mg alloy containing 10 to 90 mass % of Mg is used as the Mg raw material to be charged into the coating bath, because by using an Al-Mg alloy as the Mg raw material, it is possible to suppress the generation of Mg-containing dross in the raw material melting step.
Since Mg has a high oxidizing effect, when pure Mg or Mg-Zn alloy is melted, the melted Mg is oxidized strongly on the bath surface of the plating bath, and a large amount of lump-shaped dross (Mg-containing dross) mainly composed of Mg oxide is formed. However, when an Al-Mg alloy is melted as in the present invention, a thin and dense Al oxide film is formed on the bath surface of the plating bath, which prevents the plating bath from contacting the air and suppresses the oxidation of Mg, thereby making it possible to suppress the generation of Mg-containing dross. In order to obtain this effect of suppressing Mg-containing dross, it is necessary to make the Al concentration in the Al-Mg alloy at least 10 mass% or more, that is, the Mg concentration at most 90 mass%.

 ここで、前記Al-Mg合金については、AlとMgの二元系合金であり、Mg-Zn-Al合金等の三元系合金は含まれない。上述しためっき浴の浴面に薄く緻密なAl酸化膜をより確実に形成する観点からである。なお、前記Mgの原料としてAl-Mg合金を用いていればよく、Mg以外の成分の材料としてMg-Zn-Al合金等の三元系合金を少量添加することもできる。 The Al-Mg alloy is a binary alloy of Al and Mg, and does not include ternary alloys such as Mg-Zn-Al alloys. This is from the viewpoint of more reliably forming a thin and dense Al oxide film on the bath surface of the plating bath described above. Note that it is sufficient to use an Al-Mg alloy as the raw material for the Mg, and a small amount of a ternary alloy such as an Mg-Zn-Al alloy can be added as a material for components other than Mg.

 なお、前記Mg含有ドロスは、めっき浴の表層近傍に発生する、Mg酸化物を主体とした塊状のトップドロスのことであり、前記めっき浴の浴中又は底部に偏在する鉄を含んだ酸化物(ボトムドロス)とは異なるものである。 The Mg-containing dross is a top dross lump consisting mainly of Mg oxide that occurs near the surface of the plating bath, and is different from the bottom dross (bottom dross) which is made up of iron-containing oxides that are concentrated in the bath or at the bottom of the plating bath.

 さらに、連続的な操業を行う観点から、前記めっき浴中に投入されるAl-Mg合金は、高い溶解性を有する必要がある。図1は、Al-Mg合金の二元系計算状態図(出典:Binary Alloy Phase Diagrams, vol. 1 ed. by T. B. Massalski, A.S.M., (1986), 129.)を示したものであるが、各組成のAl-Mg合金は、それぞれ図1中に矢印で指した液相線よりも高温側で液相のみとなるため、液相線の温度が浴温以下となる場合に高い溶解性が得られる。また、同浴温の場合、液相線温度がより低い合金を使用することで、さらに高い溶解性が得られる。上述したように、本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造では、浴温は特に限定されないが、一般的に550℃~650℃の範囲となる。
 そのため、本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造では、Al-Mg合金の溶解で高い溶解性を得るために、Al-Mg合金中のMg濃度が10~90質量%であることを要し、好ましくは20~80質量%であり、より好ましくは30~70質量%である。
Furthermore, from the viewpoint of continuous operation, the Al-Mg alloy to be added to the coating bath must have high solubility. Figure 1 shows a binary system calculation phase diagram of Al-Mg alloys (source: Binary Alloy Phase Diagrams, vol. 1 ed. by T. B. Massalski, ASM, (1986), 129.). Each Al-Mg alloy of each composition is only liquid at a temperature higher than the liquidus indicated by the arrow in Figure 1, so that high solubility is obtained when the liquidus temperature is equal to or lower than the bath temperature. In addition, for the same bath temperature, even higher solubility can be obtained by using an alloy with a lower liquidus temperature. As described above, in the production of the hot-dip Al-Zn-Si-Mg-coated steel sheet of the present invention, the bath temperature is not particularly limited, but is generally in the range of 550°C to 650°C.
Therefore, in the production of the hot-dip Al-Zn-Si-Mg plated steel sheet of the present invention, in order to obtain high solubility in the melting of the Al-Mg alloy, the Mg concentration in the Al-Mg alloy needs to be 10 to 90 mass%, preferably 20 to 80 mass%, and more preferably 30 to 70 mass%.

 また、前記めっき浴を調製する際のMg以外の浴成分の原料については、特に限定されない。例えば、純Al、Al-Si合金、Al-Zn合金、純Znを用いることができ、これらを前記Al-Mg合金とともに適宜調合し、溶解することでめっき浴の成分組成を調整することができる。 In addition, there are no particular limitations on the raw materials of the bath components other than Mg when preparing the plating bath. For example, pure Al, Al-Si alloy, Al-Zn alloy, and pure Zn can be used, and the composition of the plating bath can be adjusted by appropriately mixing and dissolving these together with the Al-Mg alloy.

 なお、めっき浴の成分組成は、めっき浴を凝固させた合金を酸で溶解し、ICP発光分光分析や原子吸光分析等で確認することができる。
 具体的な一例として、めっき浴を凝固させた合金を塩酸で溶解させ、溶液をろ過した後、ろ液をICP発光分光分析することで、不溶Si以外の成分が定量できる。さらに、固形分を650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させ、その融解物を塩酸で溶解し、溶解液をICP発光分光分析することで、不溶Siが定量できる。この場合、めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算した値とすればよい。
 ただし、前記ICP発光分光分析はあくまでも一例であり、めっき皮膜の成分組成を正確に定量できる方法であればどのような方法でも良く、特に限定するものではない。
The component composition of the plating bath can be confirmed by dissolving the alloy that has solidified from the plating bath in acid and performing ICP emission spectrometry, atomic absorption spectrometry, or the like.
As a specific example, the alloy solidified from the plating bath is dissolved in hydrochloric acid, the solution is filtered, and the filtrate is analyzed by ICP emission spectroscopy to quantify components other than insoluble Si. Furthermore, the solid content is dried and incinerated in a heating furnace at 650°C, melted by adding sodium carbonate and sodium tetraborate, and the molten material is dissolved in hydrochloric acid and the solution is analyzed by ICP emission spectroscopy to quantify insoluble Si. In this case, the Si concentration in the plating film can be calculated by adding the soluble Si concentration obtained by filtrate analysis to the insoluble Si concentration obtained by solid content analysis.
However, the ICP emission spectrometry is merely one example, and any method that can accurately quantify the component composition of the plating film may be used, and there is no particular limitation.

 また、前記めっき浴は、任意成分として、さらに、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce及びBiのうちから選択される一種又は二種以上を、合計で0.01~3.0質量%含有することもできる。これらの元素は、形成されためっき皮膜が腐食する際に腐食生成物の安定性を向上させて腐食の進行を遅延させる効果や、めっき表面のスパングルサイズを安定化させて表面外観を良好にする効果を付与することができる。 The plating bath may further contain, as optional components, one or more selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi in a total amount of 0.01 to 3.0 mass%. These elements can improve the stability of the corrosion products when the formed plating film corrodes, slowing the progress of corrosion, and can stabilize the spangle size on the plating surface, improving the surface appearance.

 さらに、前記めっき浴の浴温は、特に限定はされないが、(融点+20℃)~650℃の温度範囲とすることが好ましい。前記浴温の下限を、融点+20℃としたのは、溶融めっき処理を行うためには、前記浴温を凝固点以上にすることが必要であり、融点+20℃とすることで、前記めっき浴の局所的な浴温低下による凝固を防止するためである。一方、前記浴温の上限を650℃としたのは、650℃を超えると、めっき皮膜の急速冷却が難しくなり,めっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれがあるためである。 Furthermore, the bath temperature of the plating bath is not particularly limited, but is preferably in the temperature range of (melting point + 20°C) to 650°C. The reason why the lower limit of the bath temperature is set to melting point + 20°C is that in order to perform hot-dip plating, the bath temperature needs to be above the solidification point, and by setting the temperature at melting point + 20°C, solidification due to a local drop in the bath temperature of the plating bath is prevented. On the other hand, the reason why the upper limit of the bath temperature is set to 650°C is that if the temperature exceeds 650°C, it becomes difficult to rapidly cool the plating film, and there is a risk that the interfacial alloy layer formed between the plating film and the steel sheet will become thick.

 また、前記めっき浴に浸入する下地鋼板の温度(浸入板温)についても、特に限定はされないが、前記連続式溶融めっき操業におけるめっき特性の確保や、浴温度の変化を防ぐ観点から、前記めっき浴の温度に対して±20℃以内に制御することが好ましい。 The temperature of the base steel sheet immersed in the coating bath (immersion sheet temperature) is not particularly limited, but it is preferable to control it to within ±20°C of the coating bath temperature in order to ensure the coating characteristics in the continuous hot-dip coating operation and to prevent changes in the bath temperature.

 さらにまた、前記下地鋼板の前記めっき浴中の浸漬時間については、0.5秒以上であることが好ましい。これは0.5秒未満の場合、前記下地鋼板の表面に十分なめっき皮膜を形成できないおそれがあるためである。浸漬時間の上限については特に限定はされないが、浸漬時間を長くするとめっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれもあることから、8秒以内とすることがより好ましい。 Furthermore, it is preferable that the immersion time of the base steel sheet in the plating bath is 0.5 seconds or more. This is because if it is less than 0.5 seconds, there is a risk that a sufficient plating film will not be formed on the surface of the base steel sheet. There is no particular upper limit to the immersion time, but since a longer immersion time may result in a thicker interfacial alloy layer being formed between the plating film and the steel sheet, it is more preferable to keep it within 8 seconds.

 なお、本発明の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法では、上述した溶融めっき処理工程以外の工程について、特に限定はなく、通常の溶融めっき鋼板の製造で用いられる工程を、適宜実施することが可能である。 In addition, in the manufacturing method of the hot-dip Al-Zn-Si-Mg-plated steel sheet of the present invention, there are no particular limitations on the processes other than the hot-dip plating process described above, and it is possible to carry out any of the processes used in the manufacture of ordinary hot-dip plated steel sheets as appropriate.

[サンプル1~26]
 常法で製造した、板厚が0.8mm、板巾が765mmの低炭素鋼の冷延鋼板を、下地鋼板として用い、一般的な連続式溶融めっき設備を使用し、表1に示す条件で、(1)めっき浴の建浴を行い、連続6時間の(2)溶融めっき処理を行う製造試験を行った。(1)めっき浴の建浴及び(2)溶融めっき処理の詳細は、以下の通りである。
[Samples 1 to 26]
A production test was carried out using a low carbon cold rolled steel sheet with a thickness of 0.8 mm and a width of 765 mm, produced by a conventional method, as the base steel sheet, and using a general continuous hot-dip galvanizing facility, in which (1) the coating bath was made up and (2) hot-dip galvanizing treatment was carried out continuously for 6 hours under the conditions shown in Table 1. The details of (1) the coating bath making and (2) the hot-dip galvanizing treatment are as follows.

(1)めっき浴の建浴
 連続式溶融めっき設備の溶融めっき用ポットで、表1に示す組成のめっき浴を建浴した。建浴には、表1に示す各原料(インゴット)を用いて、表1の組成となるように調合し、溶解を行った。
 なお、めっき処理中に減少しためっき浴を補填するため、前記同様に溶融めっき用ポットで追加浴の建浴を行っている。
 また、調製した浴組成の確認は、めっき浴を凝固させた合金片を塩酸に溶解させ、溶液をろ過した後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき浴中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。
(1) Preparation of plating bath A plating bath having the composition shown in Table 1 was prepared in a hot-dip plating pot of a continuous hot-dip plating facility. For the preparation of the bath, the raw materials (ingots) shown in Table 1 were used, mixed to obtain the composition shown in Table 1, and melted.
In order to replenish the plating bath that is lost during the plating process, additional bath is made in the hot dip plating pot in the same manner as described above.
The composition of the prepared bath was confirmed by dissolving the alloy pieces solidified from the plating bath in hydrochloric acid, filtering the solution, and then filtering the stripping solution, and analyzing the filtrate and solids. Specifically, the filtrate was analyzed by ICP emission spectroscopy to quantify components other than insoluble Si. The solids were dried and incinerated in a heating furnace at 650°C, and then melted by adding sodium carbonate and sodium tetraborate. The molten material was dissolved in hydrochloric acid, and the solution was analyzed by ICP emission spectroscopy to quantify the insoluble Si. The Si concentration in the plating bath was calculated by adding the soluble Si concentration obtained by the filtrate analysis to the insoluble Si concentration obtained by the solids analysis.

(2)溶融めっき処理
 また、めっき浴の建浴後、一般的な連続式溶融めっき設備を用いてめっき処理で行った。下地鋼板のストリップを、溶接し、連続的に脱脂、焼鈍、冷却及びめっき処理を施した。
 なお、めっき浴温は全ての水準において600℃に制御した。また、めっきの付着量は、ガスワイピングによって、片面あたり82±0.5g/m2となるように制御した。
(2) Hot-dip galvanizing treatment After the preparation of the galvanizing bath, a galvanizing treatment was carried out using a general continuous galvanizing equipment. The strip of the base steel sheet was welded, and was continuously degreased, annealed, cooled, and galvanized.
The plating bath temperature was controlled at 600°C for all levels. The plating weight was controlled by gas wiping to be 82±0.5g/ m2 per side.

<評価>
 上述した製造試験で得られた溶融Al-Zn-Si-Mg系めっき鋼板の各サンプルについて、以下の通り評価を行った。評価結果は、表1に示す。
(1)Mg原料の溶解性
 各製造試験におけるMg原料の溶解性は、建浴速度、つまり、めっき処理速度に影響を与える。そのため、各Mg原料の溶解性は、該Mg原料を用いて建浴しためっき浴によるめっき処理における処理速度(能力)で判定した。
 具体的には、Mgを含まない55質量%Al-Zn-1.6質量%めっき浴(:以下、基準浴と呼ぶ)を用いた場合におけるめっき処理速度と比較した結果を、以下の基準に従って判定した。
◎:溶解性が非常に高く、基準浴を用いた場合と同等の処理速度で操業が可能
○:溶解性が高く、基準浴を用いためっき処理に対し、処理速度が90%以上で操業が可能
△:溶解性が低いが、基準浴を用いためっき処理に対し、処理速度が80%以上で操業が可能
×:溶解性が非常に低く、基準浴を用いためっき処理に対し、処理速度が80%以上での操業が困難
<Evaluation>
Each sample of the hot-dip Al-Zn-Si-Mg-plated steel sheet obtained in the above-mentioned production test was evaluated as follows. The evaluation results are shown in Table 1.
(1) Solubility of Mg raw materials The solubility of the Mg raw materials in each production test affects the bath make-up speed, i.e., the plating treatment speed. Therefore, the solubility of each Mg raw material was judged based on the treatment speed (capacity) in the plating treatment using a plating bath made using the Mg raw material.
Specifically, the results were compared with the plating speed when a 55 mass % Al-Zn-1.6 mass % plating bath containing no Mg (hereinafter referred to as the reference bath) was used, and the results were evaluated according to the following criteria.
◎: Very high solubility, allowing operation at the same processing speed as when the reference bath is used. ○: High solubility, allowing operation at processing speeds of 90% or more compared to plating using the reference bath. △: Low solubility, allowing operation at processing speeds of 80% or more compared to plating using the reference bath. ×: Very low solubility, making it difficult to operate at processing speeds of 80% or more compared to plating using the reference bath.

(2)Mg含有ドロスの発生量
 各製造試験において、めっき処理中の浴面を目視で確認し、黒色ドロス(Mg含有ドロス)の発生量を確認し、以下の基準に従って評価した。
○:めっき浴面に黒色ドロスの存在が認められる
×:めっき浴面に黒色ドロスの存在が認められない
(2) Amount of Mg-containing dross generated In each production test, the bath surface during the plating process was visually observed to check the amount of black dross (Mg-containing dross) generated, and evaluated according to the following criteria.
○: Black dross is observed on the surface of the plating bath. ×: Black dross is not observed on the surface of the plating bath.

(3)めっき皮膜の外観
 製造した溶融Al-Zn-Si-Mg系めっき鋼板の各サンプルについて、ドロス欠陥の発生有無を確認し、下記の基準に従って、外観性を評価した。
○:粒状ドロスの付着が認められない
×:粒状ドロスの付着が認められる
(3) Appearance of plating film For each sample of the produced hot-dip Al-Zn-Si-Mg plated steel sheet, the occurrence of dross defects was confirmed, and the appearance was evaluated according to the following criteria.
○: No adhesion of granular dross was observed. ×: Adhesion of granular dross was observed.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1の結果、本発明例の各サンプルは、Mg原料の溶解性が高く、Mg含有ドロスの発生量及びめっき皮膜の外観性にも優れることがわかる。一方、比較例の各サンプルは、少なくとも1の評価項目で、不良の結果を示すことがわかる。 The results in Table 1 show that each sample of the invention has high solubility of the Mg raw material, and is also excellent in terms of the amount of Mg-containing dross generated and the appearance of the plating film. On the other hand, each sample of the comparative example shows a poor result in at least one evaluation item.

 本発明によれば、Mg含有ドロスの発生を抑制でき、外観性に優れた溶融Al-Zn-Si-Mg系めっき鋼板の製造が可能となる。
 
According to the present invention, the generation of Mg-containing dross can be suppressed, and it is possible to produce a hot-dip Al-Zn-Si-Mg-plated steel sheet having excellent appearance.

Claims (4)

 連続式溶融めっき設備を用いた溶融Al-Zn-Si-Mg系めっき鋼板の製造方法であって、
 Al:45~65質量%、Si:1.0~4.0質量%及びMg:1.0~10.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴中に、下地鋼板を浸漬させる、溶融めっき処理工程を具え、
 前記めっき浴中のMgの原料として、Mgを10~90質量%含んだAl-Mg合金を用いることを特徴とする、溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet using a continuous hot-dip plating facility, comprising:
The method includes a hot-dip galvanizing step of immersing a base steel sheet in a coating bath having a composition containing 45 to 65 mass% Al, 1.0 to 4.0 mass% Si, and 1.0 to 10.0 mass% Mg, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn-Si-Mg-plated steel sheet, characterized in that an Al-Mg alloy containing 10 to 90 mass % of Mg is used as a source of Mg in the plating bath.
 前記めっき浴が、さらに、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce及びBiのうちから選択される一種又は二種以上を、合計で0.01~3.0質量%含有することを特徴とする、請求項1に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。 The method for producing hot-dip Al-Zn-Si-Mg-plated steel sheet according to claim 1, characterized in that the plating bath further contains one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce and Bi in a total amount of 0.01 to 3.0 mass%.  前記Al-Mg合金が、Mgを20~80質量%含むことを特徴とする、請求項1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。 The method for producing hot-dip Al-Zn-Si-Mg-plated steel sheet according to claim 1 or 2, characterized in that the Al-Mg alloy contains 20 to 80 mass % Mg.  前記Al-Mg合金が、Mgを30~70質量%含むことを特徴とする、請求項1又は2に記載の溶融Al-Zn-Si-Mg系めっき鋼板の製造方法。
 
3. The method for producing a hot-dip Al-Zn-Si-Mg plated steel sheet according to claim 1, wherein the Al-Mg alloy contains 30 to 70 mass % of Mg.
PCT/JP2024/008324 2023-07-31 2024-03-05 Method for producing hot-dip al-zn-si-mg-plated steel sheet WO2025027918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023125061A JP2025021251A (en) 2023-07-31 2023-07-31 Manufacturing method of hot-dip Al-Zn-Si-Mg-plated steel sheet
JP2023-125061 2023-07-31

Publications (1)

Publication Number Publication Date
WO2025027918A1 true WO2025027918A1 (en) 2025-02-06

Family

ID=94395003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008324 WO2025027918A1 (en) 2023-07-31 2024-03-05 Method for producing hot-dip al-zn-si-mg-plated steel sheet

Country Status (2)

Country Link
JP (1) JP2025021251A (en)
WO (1) WO2025027918A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164986A (en) * 2019-03-26 2020-10-08 Jfe鋼板株式会社 MOLTEN Al-Zn-Mg-Si-BASED PLATED STEEL SHEET, ITS MANUFACTURING METHOD, PAINTED STEEL SHEET AND ITS MANUFACTURING METHOD
JP2021181630A (en) * 2019-04-17 2021-11-25 日本製鉄株式会社 Galvanized steel sheet
WO2022091851A1 (en) * 2020-10-30 2022-05-05 Jfeスチール株式会社 HOT DIPPED Al-Zn-Si-Mg-Sr COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
WO2023132327A1 (en) * 2022-01-06 2023-07-13 Jfeスチール株式会社 HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164986A (en) * 2019-03-26 2020-10-08 Jfe鋼板株式会社 MOLTEN Al-Zn-Mg-Si-BASED PLATED STEEL SHEET, ITS MANUFACTURING METHOD, PAINTED STEEL SHEET AND ITS MANUFACTURING METHOD
JP2021181630A (en) * 2019-04-17 2021-11-25 日本製鉄株式会社 Galvanized steel sheet
WO2022091851A1 (en) * 2020-10-30 2022-05-05 Jfeスチール株式会社 HOT DIPPED Al-Zn-Si-Mg-Sr COATED STEEL SHEET, SURFACE-TREATED STEEL SHEET, AND COATED STEEL SHEET
WO2023132327A1 (en) * 2022-01-06 2023-07-13 Jfeスチール株式会社 HOD DIPPED Al-Zn-Si-Mg COATED STEEL SHEET AND METHOD FOR PRODUCING SAME, SURFACE-TREATED STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Also Published As

Publication number Publication date
JP2025021251A (en) 2025-02-13

Similar Documents

Publication Publication Date Title
TWI431156B (en) Magnesium-based alloy plating steel
TWI392764B (en) High corrosion resistance of molten zinc coated steel
CN117987688A (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
JP2001295015A (en) HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP7445128B2 (en) Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance
KR101568508B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH COMPRISING CALCIUM OXIDE, HOT DIP Zn-BASED ALLOY COATED STEEL SHEET AND METHOD FOR PREPARING THE SAME
WO2025027918A1 (en) Method for producing hot-dip al-zn-si-mg-plated steel sheet
US20230295775A1 (en) Plated steel sheet
JP2001081539A (en) Hot-dip aluminized steel sheet excellent in high-temperature corrosion resistance and method for producing the same
JPH0874018A (en) Hot dip galvanized steel sheet
TW202507026A (en) Method for producing molten Al-Zn-Si-Mg plated steel sheet
KR101168730B1 (en) Mg-BASED ALLOY PLATED STEEL MATERIAL
JP7291860B1 (en) Hot-dip Al-Zn-based plated steel sheet and manufacturing method thereof
KR101629260B1 (en) Composition for hot dipping bath
JP7499849B2 (en) Hot-dip Al-Zn coated steel sheet and its manufacturing method
KR101568527B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH AND HOT DIP Zn-BASED ALLOY COATED STEEL SHEET
JP7564133B2 (en) Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
WO2024214329A1 (en) MOLTEN Al-Zn-BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME
JP2023143893A (en) HOT-DIP Al-Zn BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP2765078B2 (en) Alloyed hot-dip coated steel sheet and method for producing the same
TW202442889A (en) Melt-plated steel
JPH03260043A (en) Hot-dip galvanized steel sheet with excellent blackening resistance and its manufacturing method
JP2025005266A (en) Hot-dip Zn-Al-plated steel sheet and its manufacturing method
JPH07233458A (en) Production of zn-al alloy plated steel