WO2024214328A1 - Molten al-zn-based plated steel sheet and method for manufacturing same - Google Patents
Molten al-zn-based plated steel sheet and method for manufacturing same Download PDFInfo
- Publication number
- WO2024214328A1 WO2024214328A1 PCT/JP2023/040986 JP2023040986W WO2024214328A1 WO 2024214328 A1 WO2024214328 A1 WO 2024214328A1 JP 2023040986 W JP2023040986 W JP 2023040986W WO 2024214328 A1 WO2024214328 A1 WO 2024214328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- plating film
- dip
- mass
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 126
- 239000010959 steel Substances 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000007747 plating Methods 0.000 claims abstract description 162
- 239000012535 impurity Substances 0.000 claims abstract description 47
- 229910018137 Al-Zn Inorganic materials 0.000 claims abstract description 34
- 229910018573 Al—Zn Inorganic materials 0.000 claims abstract description 34
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 44
- 150000001875 compounds Chemical class 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 22
- 229910017706 MgZn Inorganic materials 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 abstract description 56
- 238000005260 corrosion Methods 0.000 abstract description 56
- 239000010410 layer Substances 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 229910001335 Galvanized steel Inorganic materials 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000008397 galvanized steel Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000007739 conversion coating Methods 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910018134 Al-Mg Inorganic materials 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018467 Al—Mg Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910019805 Mg2Zn11 Inorganic materials 0.000 description 3
- 229910017708 MgZn2 Inorganic materials 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 2
- 229910007981 Si-Mg Inorganic materials 0.000 description 2
- 229910008316 Si—Mg Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 101100309487 Mus musculus Samhd1 gene Proteins 0.000 description 1
- 101100369237 Mus musculus Tgtp1 gene Proteins 0.000 description 1
- 101100369238 Mus musculus Tgtp2 gene Proteins 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
Definitions
- the present invention relates to hot-dip Al-Zn-plated steel sheets that have stable and excellent workability and corrosion resistance in processed areas, and to a method for manufacturing the same.
- Hot-dip Al-Zn-plated steel sheets typified by 55% Al-Zn, are known to exhibit high corrosion resistance among hot-dip galvanized steel sheets because they combine the sacrificial corrosion protection properties of Zn with the high corrosion resistance of Al, as disclosed in Patent Document 1, for example.
- hot-dip Al-Zn coated steel sheets are mainly used in the field of building materials such as roofs and walls that are exposed outdoors for long periods of time, and in the field of civil engineering and construction such as guardrails, wiring and piping, soundproof walls, etc.
- the coating of hot-dip Al-Zn-plated steel sheets is composed of areas where Al containing supersaturated Zn has solidified into dendrites ( ⁇ -Al phase) and a Zn-Al eutectic structure that exists in the gaps between dendrites (interdendrites), and is characterized by a structure in which the ⁇ -Al phase is layered in the thickness direction of the coating.
- This characteristic coating structure makes the corrosion progression path from the surface complex, making it difficult for corrosion to progress easily, and it is also known that hot-dip Al-Zn-plated steel sheets can achieve superior corrosion resistance compared to hot-dip galvanized steel sheets with the same coating thickness.
- hot-dip Al-Zn plated steel sheet is produced by using a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and subjecting the base steel sheet to recrystallization annealing and hot-dip plating treatment in an annealing furnace of a continuous hot-dip plating facility.
- Si is usually added to the coating bath to suppress the excessive growth of the interfacial alloy layer that forms at the interface between the base steel (base steel sheet) and the coating.
- This action of Si makes it possible to control the thickness of the interfacial alloy layer of hot-dip Al-Zn coated steel sheets to about 1 to 5 ⁇ m. For a given coating thickness, the thinner the interfacial alloy layer, the thicker the main layer that exhibits high corrosion resistance will be. Therefore, it is known that suppressing the growth of the interfacial alloy layer leads to improved corrosion resistance.
- hot-dip plating In the manufacture of hot-dip plating, it is generally known that impurities inevitably get mixed into the plating bath, and hot-dip Al-Zn plating is no exception. Impurities that get mixed into the plating film include impurities contained in the plating raw materials, and Fe, Cr, Ni, Cu, Co, W, Mg, Ca, etc. that get mixed in due to elution from the base steel sheet or bath-immersed equipment, and these components are inevitably included in the plating film.
- the production volume of hot-dip Zn-Al-Mg coated steel sheets and hot-dip Al-Zn-Si-Mg coated steel sheets, which have high corrosion resistance has increased in recent years.
- Mg is often mixed into the coating bath as an impurity, and ultimately into the coating film.
- unavoidable impurities in the plating film may cause deterioration of the properties of the hot-dip plated steel sheet, such as the appearance, corrosion resistance, and workability, and the presence or absence of the effect of impurities often depends on the composition of the plating film and the impurity concentration.
- impurities of the same composition may be harmful to the properties of the plated steel sheet in some cases and harmless in other cases.
- the effect of impurities on the properties of each hot-dip plated steel sheet is investigated, and technologies for controlling the impurity concentration have been developed to stably obtain the required properties.
- Patent Document 2 discloses a hot-dip galvanized steel sheet having excellent appearance, which contains, in mass %, 0.10 to 0.6% Al, 0.03 to 0.3% Bi, and the balance being Zn and unavoidable impurities, with the contents of each of Pb, Sn, and Cd as the unavoidable impurities being controlled to 0.002%.
- Patent Document 3 discloses a hot-dip Zn-Al-Mg plated steel sheet having excellent corrosion resistance, which contains 4.4 to 5.6% Al, 0.3 to 0.56% Mg, with the balance being Zn and unavoidable impurities, and in which the content of Ni as one of the unavoidable impurities is controlled so as not to be contained.
- Patent Documents 2 and 3 focus on improving corrosion resistance, and do not fully consider the effects of unavoidable impurities on formability and corrosion resistance of worked parts in Mg-free hot-dip Zn-Al-plated steel sheets or hot-dip Al-Zn-plated steel sheets with a high Al concentration.
- a technique that can more reliably and stably achieve excellent formability and corrosion resistance of worked parts in the manufacture of hot-dip galvanized steel sheets, not just Al-Zn-galvanized steel sheets, most impurity control is limited to concentration control, and no technology has been established to control the shape, such as size.
- the present invention aims to provide a hot-dip Al-Zn-plated steel sheet that reliably and stably has excellent workability and corrosion resistance in processed areas, and a manufacturing method thereof.
- a hot-dip Al-Zn-plated steel sheet having a plating film has a composition containing 45 to 65 mass% Al, 1.0 to 3.0 mass% Si, and the remainder being Zn and unavoidable impurities
- a hot-dip Al-Zn plated steel sheet characterized in that the Mg content in the unavoidable impurities is less than 0.5 mass% with respect to a total mass of the plating film.
- the hot-dip Al-Zn-plated steel sheet according to 1 above characterized in that the plating film contains Mg-Zn-based compounds, and the major axis of the Mg-Zn-based compounds is less than 10 ⁇ m.
- a method for producing a hot-dip Al-Zn-plated steel sheet having a plating film comprising the steps of:
- the formation of the plating film includes a step of forming the plating film on a base steel sheet using a plating bath having a composition containing 45 to 65 mass% Al and 1.0 to 3.0 mass% Si, with the balance being Zn and unavoidable impurities;
- a method for producing a hot-dip Al-Zn plated steel sheet comprising controlling a Mg content in unavoidable impurities in the plating bath to less than 0.5 mass% based on a total mass of the plating bath. 7.
- the present invention provides a hot-dip Al-Zn-plated steel sheet and its manufacturing method that has reliable and stable excellent workability and corrosion resistance in the processed area.
- FIG. 1 is an enlarged schematic view of a cross section of a hot-dip Al-Zn plated steel sheet according to an embodiment of the present invention.
- the hot-dip Al-Zn plated steel sheet of the present invention has a plating film 20 on the surface of a base steel sheet 10 .
- the plating film 20 has a composition containing 45 to 65 mass % Al, 1.0 to 3.0 mass % Si, and the remainder being Zn and unavoidable impurities.
- the Al content in the plating film is 45 to 65 mass%, preferably 50 to 60 mass%, in consideration of the balance between corrosion resistance and operational aspects. This is because if the Al content in the plating film is at least 45 mass%, dendritic solidification of Al occurs, and a plating film structure mainly composed of ⁇ -Al phase dendritic solidification structure can be obtained.
- the dendritic solidification structure has a structure in which it is layered in the thickness direction of the plating film, which complicates the corrosion progression path and improves the corrosion resistance of the plating film itself.
- the more the ⁇ -Al phase dendrite parts are layered the more complex the corrosion progression path becomes, making it difficult for corrosion to reach the base steel sheet, and improving the corrosion resistance.
- the Al content in the plating film is 50 mass% or more.
- the Al content in the plating film exceeds 65 mass%, most of the Zn changes to a structure in which it is solid-solved in ⁇ -Al, and the dissolution reaction of the ⁇ -Al phase cannot be suppressed, and the corrosion resistance of the hot-dip Al-Zn plating deteriorates.
- the Al content in the plating film must be 65% by mass or less, and preferably 60% by mass or less.
- the Si in the plating film is added mainly to suppress the growth of the Fe-Al and/or Fe-Al-Si interfacial alloy layer that forms at the interface with the base steel sheet, and to prevent the deterioration of the adhesion between the plating film and the steel sheet.
- an alloying reaction occurs between the Fe on the steel sheet surface and the Al and Si in the bath, and an Fe-Al and/or Fe-Al-Si intermetallic compound layer forms at the interface between the base steel sheet and the plating film.
- the Si content in the plating film must be 1.0 mass% or more.
- the Si content in the plating film exceeds 3.0 mass%, not only will the aforementioned effect of inhibiting the growth of the interfacial alloy layer saturate, but the presence of excess Si phase in the plating film will also reduce workability, so the Si content should be 3.0% or less.
- the plating film contains Zn and unavoidable impurities.
- the unavoidable impurities contain Fe. This Fe is inevitably contained in the plating film as a result of dissolution of the steel sheet or bath-immersed equipment into the plating bath, and as a result of being supplied by diffusion from the base steel sheet during the formation of the interface alloy layer.
- the Fe content in the plating film is usually about 0.3 to 2.0 mass%.
- Other unavoidable impurities include Cr, Ni, Cu, Co, W, Mg, Ca, etc.
- the hot-dip Al-Zn-plated steel sheet of the present invention is characterized in that the Mg content in the unavoidable impurities is less than 0.5 mass% with respect to the total mass of the plating film. Since Mg contained in the plating film may deteriorate the workability and corrosion resistance of the processed part of the hot-dip Al-Zn-plated steel sheet, the deterioration of the workability and corrosion resistance of the processed part can be suppressed by appropriately controlling the Al, Zn, and Si contents in the plating film described above and further suppressing the Mg content as an unavoidable impurity.
- the Mg content in the unavoidable impurities is preferably 0.3 mass% or less with respect to the total mass of the plating film, and more preferably 0.1 mass% or less.
- the lower the Mg content in the plating film the better the corrosion resistance of the hot-dip Al-Zn-plated steel sheet of the present invention is, so there is no particular lower limit.
- the lower limit of the Mg content in the plating film is essentially about 0.001% by mass.
- Mg-Zn compounds may be contained as impurities in the coating of the hot-dip Al-Zn plated steel sheet.
- the Mg-Zn compounds are MgZn2 , but they are not particularly limited and may include other binary intermetallic compounds such as Mg2Zn11 , and ternary intermetallic compounds such as Mg21 (Al,Zn) 17 and Mg32 (Al,Zn) 49 . From the viewpoint of realizing better workability and corrosion resistance of the worked portion, it is preferable that the plating film does not contain these Mg-Zn based compounds.
- the presence of Mg-Zn compounds in the plating film can be confirmed, for example, by using a scanning electron microscope to observe the plating film from the surface or cross section using secondary electron images or backscattered electron images, and analyzing it using energy dispersive X-ray spectroscopy (EDS).
- EDS energy dispersive X-ray spectroscopy
- 5 to 10 locations on a 100 ⁇ m plating cross section can be arbitrarily selected, and observation and element mapping analysis can be performed at an accelerating voltage of 5 kv or less, and further point analysis can be performed on the areas where Mg is detected to confirm the composition of Mg-Zn inclusions.
- This method is merely one example, and any method that can confirm the presence of Mg-Zn compounds can be used, and is not particularly limited.
- the plating film contains an Mg-Zn based compound
- the major axis of the Mg-Zn based compound is small. Since the Mg-Zn compounds present in the plating film are hard and brittle, they may become the starting point of cracks when subjected to severe bending or stretching, which may cause deterioration of workability and corrosion resistance of the processed part. In particular, when coarse Mg-Zn compounds are present in the plating film, the workability and corrosion resistance of the processed part of the hot-dip Al-Zn-plated steel sheet may be significantly reduced.
- the major axis of the Mg-Zn compounds is less than 10 ⁇ m. From the same viewpoint, it is preferable that the major axis of the Mg-Zn compounds is as small as possible.
- the major axis of the Mg-Zn-based compound can be measured, for example, by observing a cross-section of the plating film using a scanning electron microscope to obtain a backscattered electron image, confirming that the compound is an Mg-Zn-based compound using EDS, and then observing a backscattered electron image with an enlarged observation field that includes the Mg-Zn-based compound.
- the long diameter of the Mg-Zn based compounds is defined as the average of the top five long diameters of all the Mg-Zn based compounds observed in a continuous cross section of the plating film having a length of 5 mm in a direction parallel to the surface of the base steel sheet.
- the diffraction intensity of MgZn 2 in the plated film by an X-ray diffraction method satisfies the following relationship (1).
- MgZn 2 (100) 0...(1)
- MgZn 2 (100): Diffraction intensity of the (100) plane of MgZn 2 (plane spacing d 0.4510 nm)
- the method for measuring MgZn 2 (100) by X-ray diffraction can be calculated by mechanically scraping off a part of the plating film, powdering it, and then subjecting it to X-ray diffraction (powder X-ray diffraction measurement method).
- the amount of the plating film required for performing the powder X-ray diffraction measurement is 0.1 g or more, preferably 0.3 g or more, from the viewpoint of measuring MgZn 2 (100) with high accuracy.
- steel sheet components other than the plating film may be contained in the powder, but these intermetallic compound phases are contained only in the plating film and do not affect the above-mentioned peak intensity.
- the plating film is powdered and X-ray diffraction is performed because, when X-ray diffraction is performed on the plating film formed on the plated steel sheet, it is affected by the plane orientation of the plating film solidification structure, making it difficult to evaluate the amount of substance present from the diffraction intensity of a specific interplanar spacing.
- the method for satisfying the above-mentioned relationship (1) is not particularly limited.
- the amount of MgZn2 and Mg2Zn11 (diffraction intensity of MgZn2(100) and Mg2Zn11(321)) can be controlled to be low by controlling the Mg content in the plating film to be low and reducing the ratio of the Mg content to the Zn content (for example , Mg / Zn to be 0.008 or less, preferably 0.006 or less).
- the Mg content in the plating film can be controlled to a specific value and then the conditions for forming the plating film (e.g., cooling conditions after plating) can be adjusted to satisfy the above relationship (1).
- the Mg content relative to the Fe content (Mg/Fe) of the unavoidable impurities in the plating film is 1.0 or less. This reduces the amount of Mg dissolved in the Fe-Al and/or Fe-Al-Si interface alloy layers, suppressing the increase in hardness of the interface alloy layers due to solid solution strengthening, thereby achieving better workability and corrosion resistance of the processed parts. From the same perspective, it is more preferable that the Mg/Fe ratio is 0.6 or less.
- the plating film may further contain 0.01 to 3.0 mass% in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi. These elements have the effect of improving the stability of the corrosion products when the plating film corrodes, thereby delaying the progress of corrosion, and the effect of stabilizing the spangle size on the plating surface, thereby improving the surface appearance.
- the coating weight of the plating film is preferably 45 to 120 g/ m2 per side.
- the coating weight of the plating film is 45 g/ m2 or more, sufficient corrosion resistance is obtained for applications requiring long-term corrosion resistance, such as building materials, and when the coating weight of the plating film is 120 g/m2 or less , excellent corrosion resistance can be achieved while suppressing the occurrence of plating cracks during processing.
- the coating weight of the plating film is more preferably 45 to 100 g/ m2 .
- the coating weight of the plating film can be derived, for example, by a method in which a specific area of the plating film is dissolved and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401: 2013, and the coating weight is calculated from the difference in the weight of the steel sheet before and after peeling. To determine the coating weight per side using this method, the plating surface of the non-target side is sealed with tape so as not to be exposed, and then the above-mentioned dissolution is carried out.
- the composition of the plating film can be confirmed by immersing the plating film in a hydrochloric acid solution or the like to dissolve it, and subjecting the solution to ICP emission spectrometry, atomic absorption spectrometry, etc.
- This method is merely one example, and any method that can accurately quantify the composition of the plating film may be used, and is not particularly limited.
- the plating film of the hot-dip Al-Zn plated steel sheet obtained by the present invention has a composition that is almost equivalent to that of the plating bath as a whole. Therefore, the composition of the plating film can be controlled with high precision by controlling the plating bath composition.
- the base steel sheet constituting the hot-dip Al-Zn-plated steel sheet of the present invention is not particularly limited, and cold-rolled steel sheet, hot-rolled steel sheet, etc. can be used as appropriate depending on the required performance and standards.
- the method for obtaining the base steel sheet is not particularly limited.
- the hot-rolled steel sheet one that has been subjected to a hot rolling process and a pickling process can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold rolling process.
- the hot-dip Al-Zn plated steel sheet of the present invention has a plating film 20 formed on a base steel sheet 10, but an intermediate layer or a coating film can also be further formed on the plating film, if necessary.
- the type of the coating film and the method for forming the coating film are not particularly limited and can be appropriately selected depending on the required performance.
- the coating film can be formed by a method such as roll coater coating, curtain flow coating, spray coating, etc. After coating the coating material containing an organic resin, the coating film can be formed by heating and drying the coating film by means of hot air drying, infrared heating, induction heating, etc.
- the intermediate layer is not particularly limited as long as it is a layer formed between the plating film of the hot-dip Al-Zn-plated steel sheet and the coating film.
- examples include a chemical conversion coating film and a primer such as an adhesive layer.
- the chemical conversion coating film can be formed, for example, by a chromate treatment or a chromium-free chemical conversion treatment in which a chromate treatment liquid or a chromium-free chemical conversion coating liquid is applied, and then dried at a steel sheet temperature of 80 to 300°C without rinsing with water.
- These chemical conversion coating films may be single-layered or multi-layered, and in the case of multi-layered films, multiple chemical conversion treatments may be performed sequentially.
- the method for producing a hot-dip Al-Zn plated steel sheet of the present invention is a method for producing a hot-dip Al-Zn plated steel sheet provided with a plating film.
- the manufacturing method of the hot-dip Al-Zn-plated steel sheet of the present invention includes a step of forming the plating film on the base steel sheet using a plating bath having a composition containing 45-65 mass% Al and 1.0-3.0 mass% Si, with the remainder being Zn and unavoidable impurities.
- the step of forming the plating film is not particularly limited except for the plating bath conditions described below.
- the steel sheet can be produced by cleaning, heating, and immersing the base steel sheet in a coating bath in a continuous hot-dip galvanizing facility.
- recrystallization annealing or the like is performed to control the structure of the base steel sheet itself, and heating in a reducing atmosphere such as a nitrogen-hydrogen atmosphere is effective in preventing oxidation of the steel sheet and reducing a small amount of oxide film present on the surface.
- the plating bath used in the process of forming the plating film contains 45-65 mass% Al and 1.0-3.0 mass% Si, with the remainder consisting of Zn and unavoidable impurities. As mentioned above, this is because the composition of the plating film as a whole is almost the same as the composition of the plating bath.
- the method for producing a hot-dip Al-Zn plated steel sheet of the present invention is characterized in that the Mg content in the unavoidable impurities in the coating bath is controlled to less than 0.5 mass % with respect to the total mass of the coating bath.
- Mg contained in the plating film may deteriorate the workability and corrosion resistance of worked portions of the hot-dip Al-Zn plated steel sheet. Therefore, by appropriately controlling the contents of Al, Zn, and Si in the plating bath and further reducing the content of Mg as an unavoidable impurity, deterioration of the workability and corrosion resistance of worked portions can be suppressed.
- the content of Mg as an unavoidable impurity in the plating bath must be controlled to 0.5 mass% or less, preferably 0.2 mass% or less, based on the total mass of the plating bath. If the Mg content in the plating bath is less than 0.5 mass%, the produced hot-dip Al-Zn-plated steel sheet can have sufficiently excellent workability and corrosion resistance of the processed part, and if it is 0.2 mass% or less, even better workability and corrosion resistance of the processed part can be realized. Thus, the lower the Mg content in the plating bath, the better the corrosion resistance of the hot-dip Al-Zn-plated steel sheet, so there is no particular lower limit for the Mg content. However, since it is technically difficult to make the Mg content in the plating bath completely 0.000 mass%, the lower limit of the Mg content in the plating is substantially about 0.001 mass%.
- the means for reducing the Mg content in the coating bath is not particularly limited. For example, it is effective not to intentionally add Mg to the coating bath, or not to use pots or bath-immersed equipment used in the manufacture of coated steel sheets to which Mg is intentionally added, such as Zn-Al-Mg-based coated steel sheets or Al-Zn-Si-Mg-based coated steel sheets, in the manufacture of hot-dip Al-Zn-based coated steel sheets. This is because it is possible to prevent Mg-containing metal lumps adhering to the pots or bath-immersed equipment from dissolving and being mixed into the coating bath.
- a metal block having a low Mg content among impurities as a raw material for the plating bath.
- the temperature of the plating bath is not particularly limited, but is preferably in the range of (melting point + 20°C) to 650°C.
- the reason why the lower limit of the bath temperature is set to the melting point + 20° C. is that the bath temperature needs to be equal to or higher than the solidification point in order to perform hot-dip plating, and by setting the temperature to the melting point + 20° C., solidification due to a local drop in the bath temperature of the plating bath is prevented.
- the reason why the upper limit of the bath temperature is set to 650° C. is that if the bath temperature exceeds 650° C., rapid cooling of the plating film becomes difficult, and there is a risk that the interfacial alloy layer formed between the plating film and the steel sheet becomes thick.
- the temperature of the base steel sheet immersed in the coating bath is not particularly limited, but it is preferable to control it to within ⁇ 20°C of the coating bath temperature in order to ensure the coating characteristics in the continuous hot-dip coating operation and to prevent changes in the bath temperature.
- the immersion time of the base steel sheet in the plating bath is 0.5 seconds or more. This is because if it is less than 0.5 seconds, there is a risk that a sufficient plating film will not be formed on the surface of the base steel sheet.
- the immersion time There is no particular upper limit to the immersion time, but since a longer immersion time may result in a thicker interfacial alloy layer being formed between the plating film and the steel sheet, it is more preferable to keep it within 8 seconds.
- Examples 1 to 32 A cold-rolled steel sheet having a thickness of 0.8 mm produced by a conventional method was used as a base steel sheet, and annealing and plating were performed using a hot-dip plating simulator manufactured by Rhesca Corporation to produce hot-dip plated steel sheet samples 1 to 32 under the conditions shown in Table 1.
- composition of the plating bath used in producing the hot-dip plated steel sheets was changed in various ranges within the ranges of Al: 0.2 to 70 mass%, Si: 0.0 to 3.2 mass%, B: 0.00 to 0.02 mass%, Ca: 0.0 to 1.0 mass%, Ti: 0.0 to 0.1 mass%, V: 0.1 to 0.1 mass%, Cr: 0.0 to 0.2 mass%, Mn: 0.0 to 0.1 mass%, Sr: 0.0 to 0.1 mass%, Mo: 0.0 to 0.1 mass%, In: 0.0 to 0.5 mass%, Sn: 0.0 to 0.5 mass%, Sb: 0.0 to 0.1 mass%, Ce: 0.0 to 1.0 mass%, and Bi: 0.00 to 0.05 mass% so as to obtain the composition of the plating film of each sample shown in Table 1.
- the bath temperature of the coating bath was controlled to be 460°C when Al was 0.2-5% by mass, 600°C when Al was 35-55% by mass, and 660°C when Al was over 60% by mass, so that the temperature of the base steel sheet entering the coating was the same as the coating bath temperature. Furthermore, when Al was 35-65% by mass, the coating process was carried out under the condition that the sheet temperature was cooled to a temperature range of 520-500°C in 3 seconds.
- the coating weight of the plating film was controlled to be 85 ⁇ 5 g/ m2 per side for samples 1 to 29, 50 ⁇ 5 g/ m2 per side for sample 30, 100 ⁇ 5 g/ m2 per side for sample 31, and 125 ⁇ 5 g/ m2 per side for sample 32.
- Plating film composition, coating amount, Mg-based compounds
- a 100 mm diameter sample was punched out from each of the prepared plated steel sheets, the non-measurement surfaces were sealed with tape, and the plating was then dissolved and stripped off using a mixture of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401: 2013, and the adhesion weight of the plating film was calculated from the difference in mass of the sample before and after stripping.
- the calculated adhesion weights of the plating film obtained are shown in Table 1.
- the stripper solution was then filtered, and the filtrate and solid content were analyzed. Specifically, the filtrate was analyzed by ICP atomic emission spectrometry to quantify the components other than insoluble Si.
- the solids were dried and incinerated in a 650°C heating furnace, and then melted by adding sodium carbonate and sodium tetraborate.
- the molten material was dissolved in hydrochloric acid, and the solution was analyzed by ICP emission spectroscopy to quantify the insoluble silicon.
- the silicon concentration in the plating film was calculated by adding the soluble silicon concentration obtained by filtrate analysis to the insoluble silicon concentration obtained by solid content analysis.
- the composition of the plating film obtained as a result of the calculation is shown in Table 1. Furthermore, after each sample was sheared to a size of 15 mm x 15 mm, the steel sheet was embedded in a conductive resin so that the cross section of the steel sheet could be observed, and mechanical polishing was performed.
- Table 1 show that the samples of the present invention have a good balance of workability and corrosion resistance of the processed parts compared to the samples of the comparative examples.
- the present invention provides a hot-dip Al-Zn-plated steel sheet and its manufacturing method that has reliable and stable excellent workability and corrosion resistance in the processed area.
- Base steel sheet 20
- Plating film 21
- Main layer 22
- Interface alloy layer 211
- Dendrite 212
- Interdendrite 212
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本発明は、安定的に優れた加工性及び加工部耐食性を有する溶融Al-Zn系めっき鋼板及びその製造方法に関するものである。 The present invention relates to hot-dip Al-Zn-plated steel sheets that have stable and excellent workability and corrosion resistance in processed areas, and to a method for manufacturing the same.
55%Al-Zn系に代表される溶融Al-Zn系めっき鋼板は、例えば特許文献1に示すように、Znの犠牲防食性とAlの高い耐食性とが両立できているため、溶融亜鉛めっき鋼板の中でも高い耐食性を示すことが知られている。
そのため、溶融Al-Znめっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁等の建材分野、ガードレール、配線配管、防音壁等の土木建築分野を中心に使用されている。特に、大気汚染による酸性雨や、積雪地帯での道路凍結防止用融雪剤の散布、海岸地域開発等、のより厳しい使用環境下での耐食性に優れる材料や、メンテナンスフリー材料への要求が高まっていることから、近年、溶融Al-Zn系めっき鋼板の需要は増加している。
Hot-dip Al-Zn-plated steel sheets, typified by 55% Al-Zn, are known to exhibit high corrosion resistance among hot-dip galvanized steel sheets because they combine the sacrificial corrosion protection properties of Zn with the high corrosion resistance of Al, as disclosed in Patent Document 1, for example.
For this reason, due to its excellent corrosion resistance, hot-dip Al-Zn coated steel sheets are mainly used in the field of building materials such as roofs and walls that are exposed outdoors for long periods of time, and in the field of civil engineering and construction such as guardrails, wiring and piping, soundproof walls, etc. In particular, the demand for materials with excellent corrosion resistance under harsher usage environments such as acid rain caused by air pollution, the spraying of de-icing agents to prevent roads from freezing in snowy areas, and coastal area development, and maintenance-free materials, has been increasing in recent years, and thus the demand for hot-dip Al-Zn coated steel sheets has been increasing in recent years.
溶融Al-Zn系めっき鋼板のめっき皮膜は、Znを過飽和に含有したAlがデンドライト状に凝固した部分(α-Al相)と、デンドライト間隙(インターデンドライト)に存在するZn-Al共晶組織とから構成され、α-Al相がめっき皮膜の膜厚方向に複数積層した構造を有することが特徴である。このような特徴的な皮膜構造により、表面からの腐食進行経路が複雑になるため、腐食が容易に進行しにくくなり、溶融Al-Zn系めっき鋼板はめっき皮膜厚が同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を実現できることも知られている。 The coating of hot-dip Al-Zn-plated steel sheets is composed of areas where Al containing supersaturated Zn has solidified into dendrites (α-Al phase) and a Zn-Al eutectic structure that exists in the gaps between dendrites (interdendrites), and is characterized by a structure in which the α-Al phase is layered in the thickness direction of the coating. This characteristic coating structure makes the corrosion progression path from the surface complex, making it difficult for corrosion to progress easily, and it is also known that hot-dip Al-Zn-plated steel sheets can achieve superior corrosion resistance compared to hot-dip galvanized steel sheets with the same coating thickness.
一般的に、溶融Al-Zn系めっき鋼板は、スラブを熱間圧延若しくは冷間圧延した薄鋼板を下地鋼板として用い、該下地鋼板を連続式溶融めっき設備の焼鈍炉にて再結晶焼鈍及び溶融めっき処理を行うことによって製造される。
なお、めっき浴には、所定濃度のAlやZnに加え、地鉄(下地鋼板)-めっき界面に形成する界面合金層の過度な成長を抑制するためにSiが添加されることが通常である。このSiの働きにより、溶融Al-Zn系めっき鋼板の界面合金層の厚さは約1~5μm程度に制御することができる。めっき皮膜厚が同一ならば、界面合金層が薄いほど高耐食を発現する主層が厚くなるため、界面合金層の成長を抑制することは耐食性の向上に繋がると知られている。
In general, hot-dip Al-Zn plated steel sheet is produced by using a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and subjecting the base steel sheet to recrystallization annealing and hot-dip plating treatment in an annealing furnace of a continuous hot-dip plating facility.
In addition to the specified concentrations of Al and Zn, Si is usually added to the coating bath to suppress the excessive growth of the interfacial alloy layer that forms at the interface between the base steel (base steel sheet) and the coating. This action of Si makes it possible to control the thickness of the interfacial alloy layer of hot-dip Al-Zn coated steel sheets to about 1 to 5 μm. For a given coating thickness, the thinner the interfacial alloy layer, the thicker the main layer that exhibits high corrosion resistance will be. Therefore, it is known that suppressing the growth of the interfacial alloy layer leads to improved corrosion resistance.
ただし、溶融Al-Zn系めっき鋼板に折り曲げ等の加工を施した場合、その加工の程度(加工度)によって被加工部のめっき皮膜にクラックが生じることが知られている。溶融Al-Zn系めっき鋼板では、前記の厚い界面合金層がクラックの起点となり、また、めっき皮膜のデンドライト間隙部がクラックの伝播経路になることから、加工度が同じ曲げ加工を施した場合でも、同一めっき皮膜厚の溶融亜鉛めっき鋼板に比べてクラックが比較的大きく開口する傾向がある。そのため、加工度が大きい用途では、肉眼で確認できる大きなクラックが発生することで外観が損なわれるという問題や、下地鋼板が露出したクラック部は、クラックのない部分に比べ耐食性が顕著に低下(加工部耐食性が低下)するという問題もあった。 However, it is known that when hot-dip Al-Zn-plated steel sheets are processed, such as by bending, cracks can occur in the plating film in the processed area depending on the degree of processing (degree of processing). In hot-dip Al-Zn-plated steel sheets, the thick interfacial alloy layer mentioned above is the starting point of the cracks, and the dendrite gaps in the plating film become the crack propagation path. Therefore, even when the same degree of processing is performed by bending, the cracks tend to open relatively large compared to hot-dip galvanized steel sheets with the same plating film thickness. Therefore, in applications with a large degree of processing, there are problems such as the appearance being marred by the occurrence of large cracks visible to the naked eye, and the corrosion resistance of the cracked areas where the base steel sheet is exposed is significantly reduced compared to areas without cracks (decreased corrosion resistance of processed areas).
溶融めっきの製造では、一般的にめっき浴中に不可避的に不純物が混入することが知られており、溶融Al-Zn系めっきも例外ではない。めっき皮膜中に混入される不純物としては、めっき原料中に含む不純物や下地鋼板や浴中機器からの溶出などによって混入するFe、Cr、Ni、Cu、Co、W、Mg、Ca等が挙げられ、これらの成分がめっき皮膜中に不可避的に含まれることになる。
特に、近年では高耐食を有する溶融Zn-Al-Mg系めっき鋼板や溶融Al-Zn-Si-Mg系めっき鋼板の製造量が増加しており、その製造時に発生するドロスの再生処理によって造られる高濃度のMgを含有したZn原料の流通拡大によって、めっき浴中ひいてはめっき皮膜中にMgが不純物として混入することが少なくない。
In the manufacture of hot-dip plating, it is generally known that impurities inevitably get mixed into the plating bath, and hot-dip Al-Zn plating is no exception. Impurities that get mixed into the plating film include impurities contained in the plating raw materials, and Fe, Cr, Ni, Cu, Co, W, Mg, Ca, etc. that get mixed in due to elution from the base steel sheet or bath-immersed equipment, and these components are inevitably included in the plating film.
In particular, the production volume of hot-dip Zn-Al-Mg coated steel sheets and hot-dip Al-Zn-Si-Mg coated steel sheets, which have high corrosion resistance, has increased in recent years. As a result of the expanded distribution of Zn raw materials containing high concentrations of Mg, which are produced by recycling dross generated during the production of these steel sheets, Mg is often mixed into the coating bath as an impurity, and ultimately into the coating film.
上述したように、めっき皮膜中の不可避的不純物は、溶融めっき鋼板の外観、耐食性、加工性などの特性の劣化を引き起こす場合があり、不純物の影響の有無は、めっき皮膜の組成と不純物濃度によって決まることが多い。つまり、同じ成分の不純物であっても、めっき鋼板の特性に対して有害となる場合と無害となる場合が存在する。そのため、各溶融めっき鋼板において、特性に及ぼす不純物の影響が調査され、安定的に必要特性を得るために不純物濃度を制御する技術が開発されている。
例えば、特許文献2には、質量%で、Al:0.10~0.6%、Bi:0.03~0.3%、残部がZn及び不可避的不純物からなり、前記不可避的不純物としてのPb、Sn、及びCdの各含有量を0.002%に制御した外観に優れる溶融亜鉛めっき鋼板が開示されている。
また、特許文献3には、Al:4.4~5.6%、Mg:0.3~0.56%、残部がZn及び不可避的不純物からなり、前記不可避的不純物としてのNiが含まれないように制御した耐食性に優れる溶融Zn-Al-Mg系めっき鋼板が開示されている。
As described above, unavoidable impurities in the plating film may cause deterioration of the properties of the hot-dip plated steel sheet, such as the appearance, corrosion resistance, and workability, and the presence or absence of the effect of impurities often depends on the composition of the plating film and the impurity concentration. In other words, even impurities of the same composition may be harmful to the properties of the plated steel sheet in some cases and harmless in other cases. For this reason, the effect of impurities on the properties of each hot-dip plated steel sheet is investigated, and technologies for controlling the impurity concentration have been developed to stably obtain the required properties.
For example, Patent Document 2 discloses a hot-dip galvanized steel sheet having excellent appearance, which contains, in mass %, 0.10 to 0.6% Al, 0.03 to 0.3% Bi, and the balance being Zn and unavoidable impurities, with the contents of each of Pb, Sn, and Cd as the unavoidable impurities being controlled to 0.002%.
Furthermore, Patent Document 3 discloses a hot-dip Zn-Al-Mg plated steel sheet having excellent corrosion resistance, which contains 4.4 to 5.6% Al, 0.3 to 0.56% Mg, with the balance being Zn and unavoidable impurities, and in which the content of Ni as one of the unavoidable impurities is controlled so as not to be contained.
しかしながら、特許文献2や3に開示された技術は、耐食性の向上に着目されたものであり、Mgを含有しない溶融Zn-Al系めっき鋼板や、Al濃度が高い溶融Al-Zn系めっき鋼板について、加工性や加工部耐食性に及ぼす不可避的不純物の影響は十分考慮されておらず、より確実且つ安定的に、優れた加工性及び加工部耐食性を実現できる技術の開発が望まれていた。
加えて、溶融Al-Zn系めっき鋼板に限らず、溶融めっき鋼板の製造における不純物の制御は、多くが濃度制御のみに留まり、サイズなどの形態制御する技術は確立されておらず、より安定的に優れた加工性及び加工部耐食性を実現できる技術の開発が望まれていた。
However, the techniques disclosed in Patent Documents 2 and 3 focus on improving corrosion resistance, and do not fully consider the effects of unavoidable impurities on formability and corrosion resistance of worked parts in Mg-free hot-dip Zn-Al-plated steel sheets or hot-dip Al-Zn-plated steel sheets with a high Al concentration. Thus, there has been a demand for the development of a technique that can more reliably and stably achieve excellent formability and corrosion resistance of worked parts.
In addition, in the manufacture of hot-dip galvanized steel sheets, not just Al-Zn-galvanized steel sheets, most impurity control is limited to concentration control, and no technology has been established to control the shape, such as size. There has been a demand for the development of technology that can achieve more stable and excellent workability and corrosion resistance in processed areas.
本発明は、かかる事情に鑑み、確実且つ安定的に優れた加工性及び加工部耐食性を有する溶融Al-Zn系めっき鋼板及びその製造方法を提供することを目的とする。 In view of these circumstances, the present invention aims to provide a hot-dip Al-Zn-plated steel sheet that reliably and stably has excellent workability and corrosion resistance in processed areas, and a manufacturing method thereof.
本発明者らは、上記の課題を解決すべく検討を行った結果、溶融Al-Zn系めっき鋼板について、溶融Al-Znめっき皮膜の組成は、Al、Zn、及びSi の濃度を制御するだけでなく、不純物として含まれる元素の濃度も制御することが重要であることに着目し、その中でもMgの含有量について適正な制御を行うことで耐食性の劣化を効果的に抑制できること、さらに、前記めっき皮膜中に不純物として存在するMg-Zn系化合物のサイズについて適切な制御を行うことで、加工性と加工部耐食性の劣化をより効果的に抑制できることを見出した。 As a result of investigations conducted by the inventors to solve the above problems, they have noticed that for hot-dip Al-Zn plated steel sheets, it is important not only to control the concentrations of Al, Zn, and Si in the composition of the hot-dip Al-Zn plated film, but also to control the concentrations of elements contained as impurities. In particular, they have found that by properly controlling the Mg content, deterioration of corrosion resistance can be effectively suppressed, and further that by properly controlling the size of Mg-Zn compounds present as impurities in the plated film, deterioration of workability and corrosion resistance of processed parts can be more effectively suppressed.
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.めっき皮膜を備える溶融Al-Zn系めっき鋼板であって、
前記めっき皮膜は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
前記不可避的不純物中のMg含有量が、前記めっき皮膜の総質量に対して0.5質量%未満であることを特徴とする、溶融Al-Zn系めっき鋼板。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
1. A hot-dip Al-Zn-plated steel sheet having a plating film,
The plating film has a composition containing 45 to 65 mass% Al, 1.0 to 3.0 mass% Si, and the remainder being Zn and unavoidable impurities,
A hot-dip Al-Zn plated steel sheet, characterized in that the Mg content in the unavoidable impurities is less than 0.5 mass% with respect to a total mass of the plating film.
2.前記めっき皮膜中にMg-Zn系化合物を含み、該Mg-Zn系化合物の長径が10μm未満であることを特徴とする、上記1に記載の溶融Al-Zn系めっき鋼板。 2. The hot-dip Al-Zn-plated steel sheet according to 1 above, characterized in that the plating film contains Mg-Zn-based compounds, and the major axis of the Mg-Zn-based compounds is less than 10 μm.
3.前記めっき皮膜中にMg-Zn系化合物を含まないことを特徴とする、上記1に記載の溶融Al-Zn系めっき鋼板。 3. The hot-dip Al-Zn-plated steel sheet according to 1 above, characterized in that the plating film does not contain any Mg-Zn-based compounds.
4.前記めっき皮膜が、さらに、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce、及びBiのうちから選択される一種又は二種以上を、合計で0.01~3.0質量%含有することを特徴とする上記1~3のいずれかに記載の溶融Al-Zn系めっき鋼板。
5.前記めっき皮膜中のMgZn2のX線回折法による回折強度が、以下の関係(1)を満足することを特徴とする、上記1~4のいずれかに記載の溶融Al-Zn系めっき鋼板。
MgZn2 (100)=0 ・・・(1)
MgZn2 (100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度
4. The hot-dip Al-Zn plated steel sheet according to any one of 1 to 3 above, wherein the plating film further contains 0.01 to 3.0 mass% in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi.
5. The hot-dip Al-Zn plated steel sheet according to any one of 1 to 4 above, characterized in that the diffraction intensity of MgZn 2 in the plated film by X-ray diffraction method satisfies the following relationship (1):
MgZn 2 (100)=0...(1)
MgZn 2 (100): Diffraction intensity of the (100) plane of MgZn 2 (plane spacing d = 0.4510 nm)
6.めっき皮膜を備える溶融Al-Zn系めっき鋼板の製造方法であって、
前記めっき皮膜の形成は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴を用いて、下地鋼板に前記めっき皮膜を形成する工程を含み、
前記めっき浴の不可避的不純物中のMg含有量を、前記めっき浴の総質量に対して0.5質量%未満に制御することを特徴とする、溶融Al-Zn系めっき鋼板の製造方法。
7.前記めっき浴が、さらに、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce、及びBiのうちから選択される一種又は二種以上を合計で0.01~3.0質量%含有することを特徴とする、上記6に記載の溶融Al-Zn系めっき鋼板の製造方法。
6. A method for producing a hot-dip Al-Zn-plated steel sheet having a plating film, comprising the steps of:
The formation of the plating film includes a step of forming the plating film on a base steel sheet using a plating bath having a composition containing 45 to 65 mass% Al and 1.0 to 3.0 mass% Si, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn plated steel sheet, comprising controlling a Mg content in unavoidable impurities in the plating bath to less than 0.5 mass% based on a total mass of the plating bath.
7. The method for producing a hot-dip Al-Zn coated steel sheet according to 6 above, characterized in that the coating bath further contains 0.01 to 3.0 mass % in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi.
本発明によれば、確実且つ安定的に優れた加工性及び加工部耐食性を有する溶融Al-Zn系めっき鋼板及びその製造方法を提供できる。 The present invention provides a hot-dip Al-Zn-plated steel sheet and its manufacturing method that has reliable and stable excellent workability and corrosion resistance in the processed area.
(溶融Al-Zn系めっき鋼板)
本発明の溶融Al-Zn系めっき鋼板は、図1に示すように、素地鋼板10の表面に、めっき皮膜20を備える。
そして、前記めっき皮膜20は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。
(Hot-dip Al-Zn coated steel sheet)
As shown in FIG. 1 , the hot-dip Al-Zn plated steel sheet of the present invention has a
The plating
前記めっき皮膜中のAl含有量は、耐食性と操業面のバランスから、45~65質量%であり、好ましくは50~60質量%である。これは、前記めっき皮膜中のAl含有量が少なくとも45質量%あれば、Alのデンドライト凝固が生じ、α-Al相のデンドライト凝固組織を主体にするめっき皮膜構造を得ることができるためである。該デンドライト凝固組織がめっき皮膜の膜厚方向に積層する構造を取ることで、腐食進行経路が複雑になり、めっき皮膜自体の耐食性が向上する。また、このα-Al相のデンドライト部分は、多く積層するほど腐食進行経路が複雑になり、腐食が容易に下地鋼板に到達しにくくなるため、耐食性が向上する。そのため、前記めっき皮膜中のAlの含有量は50質量%以上であることが好ましい。一方、前記めっき皮膜中のAl含有量が65質量%を超えると、Znの殆どがα-Al中に固溶した組織に変化し、α-Al相の溶解反応が抑制できず、溶融Al-Zn系めっきの耐食性が劣化する。このため、前記めっき皮膜中のAl含有量は、65質量%以下であることを要し、好ましくは60質量%以下である。 The Al content in the plating film is 45 to 65 mass%, preferably 50 to 60 mass%, in consideration of the balance between corrosion resistance and operational aspects. This is because if the Al content in the plating film is at least 45 mass%, dendritic solidification of Al occurs, and a plating film structure mainly composed of α-Al phase dendritic solidification structure can be obtained. The dendritic solidification structure has a structure in which it is layered in the thickness direction of the plating film, which complicates the corrosion progression path and improves the corrosion resistance of the plating film itself. In addition, the more the α-Al phase dendrite parts are layered, the more complex the corrosion progression path becomes, making it difficult for corrosion to reach the base steel sheet, and improving the corrosion resistance. Therefore, it is preferable that the Al content in the plating film is 50 mass% or more. On the other hand, if the Al content in the plating film exceeds 65 mass%, most of the Zn changes to a structure in which it is solid-solved in α-Al, and the dissolution reaction of the α-Al phase cannot be suppressed, and the corrosion resistance of the hot-dip Al-Zn plating deteriorates. For this reason, the Al content in the plating film must be 65% by mass or less, and preferably 60% by mass or less.
また、前記めっき皮膜中のSiは、主に下地鋼板との界面に生成するFe-Al系及び/又はFe-Al-Si系の界面合金層の成長を抑制し、めっき皮膜と鋼板の密着性を劣化させない目的で添加される。実際に、Siを含有したAl-Zn系めっき浴に鋼板を浸漬させると、鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe-Al系及び/又はFe-Al-Si系の金属間化合物層が下地鋼板/めっき皮膜界面に生成するが、このときFe-Al-Si系合金はFe-Al系合金よりも成長速度が遅いので、Fe-Al-Si系合金の比率が高いほど、界面合金層全体の成長が抑制される。そのため、前記めっき皮膜中のSi含有量は1.0質量%以上とすることを要する。一方、前記めっき皮膜中のSi含有量が3.0質量%を超えると、前述した界面合金層の成長抑制効果が飽和するだけでなく、めっき皮膜中に過剰なSi相が存在することで加工性が低下するため、Si含有量は3.0%以下とする。 Also, the Si in the plating film is added mainly to suppress the growth of the Fe-Al and/or Fe-Al-Si interfacial alloy layer that forms at the interface with the base steel sheet, and to prevent the deterioration of the adhesion between the plating film and the steel sheet. In fact, when a steel sheet is immersed in an Al-Zn plating bath containing Si, an alloying reaction occurs between the Fe on the steel sheet surface and the Al and Si in the bath, and an Fe-Al and/or Fe-Al-Si intermetallic compound layer forms at the interface between the base steel sheet and the plating film. At this time, the growth rate of the Fe-Al-Si alloy is slower than that of the Fe-Al alloy, so the higher the ratio of the Fe-Al-Si alloy, the more the growth of the entire interfacial alloy layer is suppressed. Therefore, the Si content in the plating film must be 1.0 mass% or more. On the other hand, if the Si content in the plating film exceeds 3.0 mass%, not only will the aforementioned effect of inhibiting the growth of the interfacial alloy layer saturate, but the presence of excess Si phase in the plating film will also reduce workability, so the Si content should be 3.0% or less.
なお、前記めっき皮膜は、Zn及び不可避不純物を含有する。このうち、前記不可避的不純物はFeを含有する。このFeは、鋼板や浴中機器がめっき浴中に溶出することで不可避的に含まれるものと界面合金層の形成時に下地鋼板からの拡散によって供給される結果、前記めっき皮膜中に不可避的に含まれることとなる。前記めっき皮膜中のFe含有量は、通常0.3~2.0質量%程度である。
その他の不可避的不純物としては、Cr、Ni、Cu、Co、W、Mg、Ca等が挙げられる。これらの成分は、下地鋼板やステンレス製の浴中機器や浴中機器に施したW-C系やCo-Cr-W系の溶射皮膜がめっき浴中に溶出すること、めっき浴の原料となる金属塊中に不純物として含まれていること、さらに、これらの成分を意図的に添加しためっき鋼板の製造で使用したポットや浴中機器を用いて製造することで、前記めっき皮膜中に不可避的に含まれることとなる。
The plating film contains Zn and unavoidable impurities. Among these, the unavoidable impurities contain Fe. This Fe is inevitably contained in the plating film as a result of dissolution of the steel sheet or bath-immersed equipment into the plating bath, and as a result of being supplied by diffusion from the base steel sheet during the formation of the interface alloy layer. The Fe content in the plating film is usually about 0.3 to 2.0 mass%.
Other unavoidable impurities include Cr, Ni, Cu, Co, W, Mg, Ca, etc. These elements are inevitably contained in the plating film due to the fact that they are dissolved in the plating bath from the base steel sheet, the bath equipment made of stainless steel, or the WC-based or Co-Cr-W-based thermal spray coating applied to the bath equipment, that they are contained as impurities in the metal ingots that are the raw materials for the plating bath, and that they are produced using pots or bath equipment that were used in the production of plated steel sheets to which these elements were intentionally added.
そして、本発明の溶融Al-Zn系めっき鋼板は、前記不可避的不純物中のMg含有量が、前記めっき皮膜の総質量に対して0.5質量%未満であることを特徴とする。前記めっき皮膜中に含有されたMgは、溶融Al-Zn系めっき鋼板の加工性及び加工部耐食性を劣化させる場合があることから、上述しためっき皮膜中のAl、Zn及びSi含有量を適切に制御した上で、さらに不可避的不純物としてのMg含有量を抑えることで、加工性及び加工部耐食性の劣化を抑えることができる。同様の観点から、前記不可避的不純物中のMg含有量は、前記めっき皮膜の総質量に対して0.3質量%以下とすることが好ましく、0.1質量%以下とすることがより好ましい。このように、前記めっき皮膜中のMg含有量は、少ないほど本発明の溶融Al-Zn系めっき鋼板の耐食性に優れるため、特に下限値の限定がない。ただし、前記めっき皮膜中のMg含有量を完全に0.000質量%とすることは技術的に困難であるため、前記めっき皮膜中のMg含有量の下限値は、実質的には0.001質量%程度となる。 The hot-dip Al-Zn-plated steel sheet of the present invention is characterized in that the Mg content in the unavoidable impurities is less than 0.5 mass% with respect to the total mass of the plating film. Since Mg contained in the plating film may deteriorate the workability and corrosion resistance of the processed part of the hot-dip Al-Zn-plated steel sheet, the deterioration of the workability and corrosion resistance of the processed part can be suppressed by appropriately controlling the Al, Zn, and Si contents in the plating film described above and further suppressing the Mg content as an unavoidable impurity. From the same viewpoint, the Mg content in the unavoidable impurities is preferably 0.3 mass% or less with respect to the total mass of the plating film, and more preferably 0.1 mass% or less. Thus, the lower the Mg content in the plating film, the better the corrosion resistance of the hot-dip Al-Zn-plated steel sheet of the present invention is, so there is no particular lower limit. However, since it is technically difficult to make the Mg content in the plating film exactly 0.000% by mass, the lower limit of the Mg content in the plating film is essentially about 0.001% by mass.
なお、前記不可避的不純物中にMgを含有する場合、溶融Al-Zn系めっき鋼板のめっき皮膜中に不純物としてのMg-Zn系化合物が含まれることがある。ここで、前記Mg-Zn系化合物としては、MgZn2が形成する場合が殆どであるが、その他のMg2Zn11のような二元系の金属間化合物や、Mg21(Al,Zn)17やMg32(Al,Zn)49のような三元系の金属間化合物等、特に限定されるものではない。
また、より優れた加工性及び加工部耐食性を実現する観点からは、前記めっき皮膜中にこれらのMg-Zn系化合物を含まないことが好ましい。
When Mg is contained in the inevitable impurities, Mg-Zn compounds may be contained as impurities in the coating of the hot-dip Al-Zn plated steel sheet. In most cases, the Mg-Zn compounds are MgZn2 , but they are not particularly limited and may include other binary intermetallic compounds such as Mg2Zn11 , and ternary intermetallic compounds such as Mg21 (Al,Zn) 17 and Mg32 (Al,Zn) 49 .
From the viewpoint of realizing better workability and corrosion resistance of the worked portion, it is preferable that the plating film does not contain these Mg-Zn based compounds.
前記めっき皮膜中のMg-Zn系化合物の存在については、例えば、走査型電子顕微鏡を活用し、めっき皮膜を表面又は断面から二次電子像または反射電子像で観察し、エネルギー分散型X線分光法(EDS)で分析することで確認することができる。例えば、任意で100μmのめっき断面を5~10ヶ所程度選択し、それぞれ5kv以下の加速電圧で観察と元素マッピング分析を行い、Mgを検出した部分に対し更に点分析を行うことで、Mg-Zn系含有物の組成を確認することができる。この方法は、あくまでも一例であり、Mg-Zn系化合物の存在が確認できる方法であればどのような方法でも構わず、特に限定されるものではない。 The presence of Mg-Zn compounds in the plating film can be confirmed, for example, by using a scanning electron microscope to observe the plating film from the surface or cross section using secondary electron images or backscattered electron images, and analyzing it using energy dispersive X-ray spectroscopy (EDS). For example, 5 to 10 locations on a 100 μm plating cross section can be arbitrarily selected, and observation and element mapping analysis can be performed at an accelerating voltage of 5 kv or less, and further point analysis can be performed on the areas where Mg is detected to confirm the composition of Mg-Zn inclusions. This method is merely one example, and any method that can confirm the presence of Mg-Zn compounds can be used, and is not particularly limited.
また、前記めっき皮膜中にMg-Zn系化合物を含む場合には、該Mg-Zn系化合物の長径は小さくすることが好ましい。
前記めっき皮膜中に存在するMg-Zn系化合物は硬くて脆いため、厳しい曲げ加工や引張加工を行った際にクラックの起点となり、加工性及び加工部耐食性の劣化を引き起こすことがある。特に、前記めっき皮膜中に粗大なMg-Zn系化合物が存在する場合には、溶融Al-Zn系めっき鋼板の加工性及び加工部耐食性は著しく低下するおそれがある。そのため、より優れた加工性及び加工部耐食性を有する溶融Al-Zn系めっき鋼板を得るためには、めっき皮膜中に不純物として含まれるMg-Zn系化合物のサイズを小さく制御することが有効であり、具体的には、Mg-Zn系化合物の長径を10μm未満とすることが好ましい。同様の観点で、Mg-Zn系化合物の長径は可能な限り小さい方が好ましい。
前記Mg-Zn系化合物の長径は、例えば、走査型電子顕微鏡を活用し、めっき皮膜を断面から反射電子像で観察し、EDSでMg-Zn系化合物であることを確認した後、Mg-Zn系化合物を含む観察視野を拡大した反射電子像を観察することで測定することができる。
なお、本発明における前記Mg-Zn系化合物の長径とは、下地鋼板の表面と平行な方向に5mmの長さを有するめっき皮膜の連続断面において、確認されるMg-Zn系化合物の長径を全て測定し、上位5点の値を平均したものとする。
Furthermore, when the plating film contains an Mg-Zn based compound, it is preferable that the major axis of the Mg-Zn based compound is small.
Since the Mg-Zn compounds present in the plating film are hard and brittle, they may become the starting point of cracks when subjected to severe bending or stretching, which may cause deterioration of workability and corrosion resistance of the processed part. In particular, when coarse Mg-Zn compounds are present in the plating film, the workability and corrosion resistance of the processed part of the hot-dip Al-Zn-plated steel sheet may be significantly reduced. Therefore, in order to obtain a hot-dip Al-Zn-plated steel sheet having better workability and corrosion resistance of the processed part, it is effective to control the size of the Mg-Zn compounds contained as impurities in the plating film to be small, and specifically, it is preferable that the major axis of the Mg-Zn compounds is less than 10 μm. From the same viewpoint, it is preferable that the major axis of the Mg-Zn compounds is as small as possible.
The major axis of the Mg-Zn-based compound can be measured, for example, by observing a cross-section of the plating film using a scanning electron microscope to obtain a backscattered electron image, confirming that the compound is an Mg-Zn-based compound using EDS, and then observing a backscattered electron image with an enlarged observation field that includes the Mg-Zn-based compound.
In the present invention, the long diameter of the Mg-Zn based compounds is defined as the average of the top five long diameters of all the Mg-Zn based compounds observed in a continuous cross section of the plating film having a length of 5 mm in a direction parallel to the surface of the base steel sheet.
また、本発明の溶融Al-Zn系めっき鋼板では、前記めっき皮膜中のMgZn2のX線回折法による回折強度が、以下の関係(1)を満足することが好ましい。
MgZn2 (100)=0 ・・・(1)
MgZn2 (100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度、
In addition, in the hot-dip Al-Zn plated steel sheet of the present invention, it is preferable that the diffraction intensity of MgZn 2 in the plated film by an X-ray diffraction method satisfies the following relationship (1).
MgZn 2 (100)=0...(1)
MgZn 2 (100): Diffraction intensity of the (100) plane of MgZn 2 (plane spacing d = 0.4510 nm),
上述したように、溶融Al-Zn系めっき鋼板の加工性及び加工部耐食性を安定化させるために、不可避的不純物としてのMgの含有を抑制し、前記めっき皮膜中に形成するMg-Zn系化合物の形成を可能な限り少なく制御することが重要である。特に、熱力学に安定で溶融Al-Zn系めっき皮膜中においても形成しやすいMgZn2について、形成量を可能な限り少なくすること(MgZn2 (100)の回折強度をゼロとすること)により、加工性及び加工部耐食性をさらに安定的に実現できる。 As described above, in order to stabilize the workability and corrosion resistance of the processed part of the hot-dip Al-Zn-plated steel sheet, it is important to suppress the content of Mg as an inevitable impurity and to control the formation of Mg-Zn-based compounds in the plating film as little as possible. In particular, by minimizing the amount of MgZn 2 , which is thermodynamically stable and easily formed in the hot-dip Al-Zn-plated film (by making the diffraction intensity of MgZn 2 (100) zero), the workability and corrosion resistance of the processed part can be further stabilized.
ここで、前記関係(1)において、MgZn2(100)は、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度である。
前記X線回折によりMgZn2 (100)を測定する方法としては、前記めっき皮膜の一部を機械的に削り出し、粉末にした状態でX線回折を行うこと(粉末X線回折測定法)で算出することができる。回折強度の測定については、面間隔d=0.4510nmに相当するMgZn2 の回折ピーク強度を測定すればよい。
Here, in the above-mentioned relationship (1), MgZn 2 (100) is the diffraction intensity of the (100) plane of MgZn 2 (plane spacing d=0.4510 nm).
The method for measuring MgZn 2 (100) by X-ray diffraction can be calculated by mechanically scraping off a part of the plating film, powdering it, and then subjecting it to X-ray diffraction (powder X-ray diffraction measurement method). The diffraction intensity can be measured by measuring the diffraction peak intensity of MgZn 2 corresponding to the interplanar spacing d = 0.4510 nm.
なお、粉末X線回折測定を実施する際に必要なめっき皮膜の量(めっき皮膜を削り出す量)は、精度良くMgZn2 (100)を測定する観点から、0.1g以上あればよく、0.3g以上あることが好ましい。また、前記めっき皮膜を削り出す際に、めっき皮膜以外の鋼板成分が粉末に含まれる場合もあるが、これらの金属間化合物相はめっき皮膜のみに含まれるものであり、また前述したピーク強度に影響することはない。さらに、前記めっき皮膜を粉末にしてX線回折を行うのは、めっき鋼板に形成されためっき皮膜に対してX線回折を行うと、めっき皮膜凝固組織の面方位の影響を受け、特定の面間隔の回折強度で物質の存在量を評価することが困難なためである。 In addition, the amount of the plating film required for performing the powder X-ray diffraction measurement (amount of the plating film to be scraped off) is 0.1 g or more, preferably 0.3 g or more, from the viewpoint of measuring MgZn 2 (100) with high accuracy. In addition, when the plating film is scraped off, steel sheet components other than the plating film may be contained in the powder, but these intermetallic compound phases are contained only in the plating film and do not affect the above-mentioned peak intensity. Furthermore, the plating film is powdered and X-ray diffraction is performed because, when X-ray diffraction is performed on the plating film formed on the plated steel sheet, it is affected by the plane orientation of the plating film solidification structure, making it difficult to evaluate the amount of substance present from the diffraction intensity of a specific interplanar spacing.
ここで、上述した関係(1)を満たすための方法については、特に限定はされない。例えば、前記めっき皮膜中のMgの含有量を低く制御し、Znの含有量に対するMgの含有量の割合を下げる(例えば、Mg/Znを0.008以下、好ましくは0.006以下とする)ことで、MgZn2及びMg2Zn11の存在量(MgZn2 (100)及びMg2Zn11 (321)の回折強度)を低く制御できる。
さらに、前記めっき皮膜中のMgの含有量を制御する手法以外にも、前記めっき皮膜中のMgの含有量を特定の値に制御した上で、めっき皮膜形成時の条件(例えば、めっき後の冷却条件)を調整することによって、上記関係(1)を満たすようにすることもできる。
Here, the method for satisfying the above-mentioned relationship (1) is not particularly limited. For example, the amount of MgZn2 and Mg2Zn11 (diffraction intensity of MgZn2(100) and Mg2Zn11(321)) can be controlled to be low by controlling the Mg content in the plating film to be low and reducing the ratio of the Mg content to the Zn content (for example , Mg / Zn to be 0.008 or less, preferably 0.006 or less).
Furthermore, other than the method of controlling the Mg content in the plating film, the Mg content in the plating film can be controlled to a specific value and then the conditions for forming the plating film (e.g., cooling conditions after plating) can be adjusted to satisfy the above relationship (1).
また、前記めっき皮膜中の不可避的不純物は、前記Feの含有量に対する前記Mg含有量(Mg/Fe)が、1.0以下であることが好ましい。Fe-Al系及び/又はFe-Al-Si系の界面合金層中へのMg固溶量が低くなり、固溶強化による界面合金層の硬度上昇を抑制できるため、より優れた加工性及び加工部耐食性を実現できる。同様の観点から、前記Mg/Feは、0.6以下であることがより好ましい。 Furthermore, it is preferable that the Mg content relative to the Fe content (Mg/Fe) of the unavoidable impurities in the plating film is 1.0 or less. This reduces the amount of Mg dissolved in the Fe-Al and/or Fe-Al-Si interface alloy layers, suppressing the increase in hardness of the interface alloy layers due to solid solution strengthening, thereby achieving better workability and corrosion resistance of the processed parts. From the same perspective, it is more preferable that the Mg/Fe ratio is 0.6 or less.
なお、前記めっき皮膜は、B、Ca、Ti、V、Cr、Mn、Sr、Mo、In、Sn、Sb、Ce、及びBiのうちから選択される一種又は二種以上を合計で0.01~3.0質量%、さらに含有することもできる。これらの元素はめっき皮膜が腐食する際に腐食生成物の安定性を向上させて腐食の進行を遅延させる効果や、めっき表面のスパングルサイズを安定化させて表面外観を良好にする効果を得ることができる。 The plating film may further contain 0.01 to 3.0 mass% in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi. These elements have the effect of improving the stability of the corrosion products when the plating film corrodes, thereby delaying the progress of corrosion, and the effect of stabilizing the spangle size on the plating surface, thereby improving the surface appearance.
また、前記めっき皮膜の付着量は、各種特性を満足する観点から、片面あたり45~120 g/m2であることが好ましい。前記めっき皮膜の付着量が45g/m2以上の場合には、建材などの長期間耐食性が必要となる用途に対しても十分な耐食性が得られ、また、前記めっき皮膜の付着量が120g/m2以下の場合には、加工時のめっき割れ等の発生を抑えつつ、優れた耐食性を実現できるためである。同様の観点から、前記めっき皮膜の付着量は、45~100g/m2であることがより好ましい。 Moreover, from the viewpoint of satisfying various characteristics, the coating weight of the plating film is preferably 45 to 120 g/ m2 per side. When the coating weight of the plating film is 45 g/ m2 or more, sufficient corrosion resistance is obtained for applications requiring long-term corrosion resistance, such as building materials, and when the coating weight of the plating film is 120 g/m2 or less , excellent corrosion resistance can be achieved while suppressing the occurrence of plating cracks during processing. From the same viewpoint, the coating weight of the plating film is more preferably 45 to 100 g/ m2 .
前記めっき皮膜の付着量については、例えば、JIS H 0401:2013年に示される塩酸とヘキサメチレンテトラミンの混合液で特定面積のめっき皮膜を溶解剥離し、剥離前後の鋼板重量差から算出する方法で導出することができる。この方法で片面あたりのめっき付着量を求めるには、非対象面のめっき表面が露出しないようにテープでシーリングしてから前述した溶解を実施することで求めることができる。
また、前記めっき皮膜の成分組成は、上述しためっき付着量と同じく、めっき皮膜を塩酸溶液等に浸漬して溶解させ、その溶液をICP発光分光分析や原子吸光分析等で確認することができる。この方法はあくまでも一例であり、めっき皮膜の成分組成を正確に定量できる方法であればどのような方法でも良く、特に限定するものではない。
The coating weight of the plating film can be derived, for example, by a method in which a specific area of the plating film is dissolved and peeled off with a mixed solution of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401: 2013, and the coating weight is calculated from the difference in the weight of the steel sheet before and after peeling. To determine the coating weight per side using this method, the plating surface of the non-target side is sealed with tape so as not to be exposed, and then the above-mentioned dissolution is carried out.
Similarly to the above-mentioned plating weight, the composition of the plating film can be confirmed by immersing the plating film in a hydrochloric acid solution or the like to dissolve it, and subjecting the solution to ICP emission spectrometry, atomic absorption spectrometry, etc. This method is merely one example, and any method that can accurately quantify the composition of the plating film may be used, and is not particularly limited.
なお、本発明により得られた溶融Al-Zn系めっき鋼板のめっき皮膜は、全体としてはめっき浴の組成とほぼ同等となる。そのため、前記めっき皮膜の組成の制御は、めっき浴組成を制御することにより精度良く行うことができる。 The plating film of the hot-dip Al-Zn plated steel sheet obtained by the present invention has a composition that is almost equivalent to that of the plating bath as a whole. Therefore, the composition of the plating film can be controlled with high precision by controlling the plating bath composition.
また、本発明の溶融Al-Zn系めっき鋼板を構成する下地鋼板については、特に限定はされず、要求される性能や規格に応じて、冷延鋼板や熱延鋼板等を適宜使用することができる。
さらに、前記下地鋼板を得る方法についても、特に限定はされない。例えば、前記熱延鋼板の場合、熱間圧延工程、酸洗工程を経たものを使用することができ、前記冷延鋼板の場合には、さらに冷間圧延工程を加えて製造できる。さらに、鋼板の特性を得るために溶融めっき工程の前に、再結晶焼鈍工程等を経ることも可能である。
Furthermore, the base steel sheet constituting the hot-dip Al-Zn-plated steel sheet of the present invention is not particularly limited, and cold-rolled steel sheet, hot-rolled steel sheet, etc. can be used as appropriate depending on the required performance and standards.
Furthermore, the method for obtaining the base steel sheet is not particularly limited. For example, in the case of the hot-rolled steel sheet, one that has been subjected to a hot rolling process and a pickling process can be used, and in the case of the cold-rolled steel sheet, it can be manufactured by further adding a cold rolling process. Furthermore, in order to obtain the properties of the steel sheet, it is also possible to pass through a recrystallization annealing process or the like before the hot-dip plating process.
なお、本発明の溶融Al-Zn系めっき鋼板は、図1に示すように、下地鋼板10の上にめっき皮膜20が形成されているが、必要に応じて、該めっき皮膜上に、中間層や、塗膜をさらに形成することもできる。
前記塗膜の種類や、塗膜を形成する方法については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等の形成方法が挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱等の手段により加熱乾燥して塗膜を形成することが可能である。
また、前記中間層については、溶融Al-Zn系めっき鋼板のめっき皮膜と前記塗膜との間に形成される層であれば特に限定はされない。例えば、化成処理皮膜や、接着層等のプライマーが挙げられる。前記化成処理皮膜については、例えば、クロメート処理液又はクロムフリー化成処理液を塗布し、水洗することなく、鋼板温度として80~300℃となる乾燥処理を行うクロメート処理又はクロムフリー化成処理により形成することが可能である。これら化成処理皮膜は単層でも複層でもよく、複層の場合には複数の化成処理を順次行えばよい。
As shown in FIG. 1 , the hot-dip Al-Zn plated steel sheet of the present invention has a
The type of the coating film and the method for forming the coating film are not particularly limited and can be appropriately selected depending on the required performance. For example, the coating film can be formed by a method such as roll coater coating, curtain flow coating, spray coating, etc. After coating the coating material containing an organic resin, the coating film can be formed by heating and drying the coating film by means of hot air drying, infrared heating, induction heating, etc.
The intermediate layer is not particularly limited as long as it is a layer formed between the plating film of the hot-dip Al-Zn-plated steel sheet and the coating film. Examples include a chemical conversion coating film and a primer such as an adhesive layer. The chemical conversion coating film can be formed, for example, by a chromate treatment or a chromium-free chemical conversion treatment in which a chromate treatment liquid or a chromium-free chemical conversion coating liquid is applied, and then dried at a steel sheet temperature of 80 to 300°C without rinsing with water. These chemical conversion coating films may be single-layered or multi-layered, and in the case of multi-layered films, multiple chemical conversion treatments may be performed sequentially.
(溶融Al-Zn系めっき鋼板の製造方法)
本発明の溶融Al-Zn系めっき鋼板の製造方法は、めっき皮膜を備える溶融Al-Zn系めっき鋼板の製造方法である。
(Manufacturing method of hot-dip Al-Zn coated steel sheet)
The method for producing a hot-dip Al-Zn plated steel sheet of the present invention is a method for producing a hot-dip Al-Zn plated steel sheet provided with a plating film.
そして、本発明の溶融Al-Zn系めっき鋼板の製造方法は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴を用いて、下地鋼板に前記めっき皮膜を形成する工程を含む。 The manufacturing method of the hot-dip Al-Zn-plated steel sheet of the present invention includes a step of forming the plating film on the base steel sheet using a plating bath having a composition containing 45-65 mass% Al and 1.0-3.0 mass% Si, with the remainder being Zn and unavoidable impurities.
なお、前記めっき皮膜を形成する工程については、後述するめっき浴の条件以外、特に限定はされない。
例えば、連続式溶融めっき設備で、前記下地鋼板を、洗浄、加熱、めっき浴浸漬することによって製造できる。鋼板の加熱工程においては、前記下地鋼板自身の組織制御のために再結晶焼鈍などを施すとともに、鋼板の酸化を防止し且つ表面に存在する微量な酸化膜を還元するため、窒素-水素雰囲気等の還元雰囲気での加熱が有効である。
The step of forming the plating film is not particularly limited except for the plating bath conditions described below.
For example, the steel sheet can be produced by cleaning, heating, and immersing the base steel sheet in a coating bath in a continuous hot-dip galvanizing facility. In the steel sheet heating process, recrystallization annealing or the like is performed to control the structure of the base steel sheet itself, and heating in a reducing atmosphere such as a nitrogen-hydrogen atmosphere is effective in preventing oxidation of the steel sheet and reducing a small amount of oxide film present on the surface.
前記めっき皮膜を形成する工程に用いるめっき浴については、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有する。上述したように、前記めっき皮膜の組成が全体としてはめっき浴の組成とほぼ同等となるためである。 The plating bath used in the process of forming the plating film contains 45-65 mass% Al and 1.0-3.0 mass% Si, with the remainder consisting of Zn and unavoidable impurities. As mentioned above, this is because the composition of the plating film as a whole is almost the same as the composition of the plating bath.
そして、本発明の溶融Al-Zn系めっき鋼板の製造方法では、前記めっき浴の不可避的不純物中のMg含有量を、前記めっき浴の総質量に対して0.5質量%未満に制御することを特徴とする。
前記めっき皮膜中に含有されるMgは、上述したように、溶融Al-Zn系めっき鋼板の加工性及び加工部耐食性を劣化させる場合があることから、めっき浴中のAl、Zn及びSiの含有量を適切に制御した上で、さらに不可避的不純物としてのMg含有量を抑えることで、加工性及び加工部耐食性の劣化を抑えることができる。
The method for producing a hot-dip Al-Zn plated steel sheet of the present invention is characterized in that the Mg content in the unavoidable impurities in the coating bath is controlled to less than 0.5 mass % with respect to the total mass of the coating bath.
As described above, Mg contained in the plating film may deteriorate the workability and corrosion resistance of worked portions of the hot-dip Al-Zn plated steel sheet. Therefore, by appropriately controlling the contents of Al, Zn, and Si in the plating bath and further reducing the content of Mg as an unavoidable impurity, deterioration of the workability and corrosion resistance of worked portions can be suppressed.
また、前記めっき浴中の不可避的不純物としてのMgの含有量は、前記めっき浴の総質量に対して0.5質量%以下に制御することを要し、0.2質量%以下とすることが好ましい。前記めっき浴中のMg含有量が0.5質量%未満であれば、製造した溶融Al-Zn系めっき鋼板は十分に優れた加工性と加工部耐食性を有することができ、0.2質量%以下であれば、より優れた加工性及び加工部耐食性を実現することができる。このように、めっき浴中のMg含有量が少ないほど溶融Al-Zn系めっき鋼板の耐食性が優れるため、Mgの含有量について、特に下限値の限定はない。ただし、前記めっき浴中のMg含有量を完全に0.000質量%とすることは技術的に困難であるため、前記めっき中のMg含有量の下限値は、実質的には0.001質量%程度となる。 Furthermore, the content of Mg as an unavoidable impurity in the plating bath must be controlled to 0.5 mass% or less, preferably 0.2 mass% or less, based on the total mass of the plating bath. If the Mg content in the plating bath is less than 0.5 mass%, the produced hot-dip Al-Zn-plated steel sheet can have sufficiently excellent workability and corrosion resistance of the processed part, and if it is 0.2 mass% or less, even better workability and corrosion resistance of the processed part can be realized. Thus, the lower the Mg content in the plating bath, the better the corrosion resistance of the hot-dip Al-Zn-plated steel sheet, so there is no particular lower limit for the Mg content. However, since it is technically difficult to make the Mg content in the plating bath completely 0.000 mass%, the lower limit of the Mg content in the plating is substantially about 0.001 mass%.
なお、前記めっき浴中のMgの含有量を低減させる手段は、特に限定はされない。例えば、めっき浴中に意図的にMgを添加しないことや、Zn-Al-Mg系めっき鋼板やAl-Zn-Si-Mg系めっき鋼板のようなMgを意図的に添加するめっき鋼板の製造に使用したポットや浴中機器を、溶融Al-Zn系めっき鋼板の製造に用いないことが有効である。前記ポットや前記浴中機器に付着したMgを含有した金属塊が溶解し、めっき浴中へ混入することを抑制できるためである。
また、前記めっき浴中のMgの含有量を低減させる他の手段としては、不純物中のMgの含有量が少ない金属塊をめっき浴の原料として用いることが好ましい。
The means for reducing the Mg content in the coating bath is not particularly limited. For example, it is effective not to intentionally add Mg to the coating bath, or not to use pots or bath-immersed equipment used in the manufacture of coated steel sheets to which Mg is intentionally added, such as Zn-Al-Mg-based coated steel sheets or Al-Zn-Si-Mg-based coated steel sheets, in the manufacture of hot-dip Al-Zn-based coated steel sheets. This is because it is possible to prevent Mg-containing metal lumps adhering to the pots or bath-immersed equipment from dissolving and being mixed into the coating bath.
As another means for reducing the Mg content in the plating bath, it is preferable to use a metal block having a low Mg content among impurities as a raw material for the plating bath.
前記めっき浴の浴温は、特に限定はされないが、(融点+20℃)~650℃の温度範囲とすることが好ましい。
前記浴温の下限を、融点+20℃としたのは、溶融めっき処理を行うためには、前記浴温を凝固点以上にすることが必要であり、融点+20℃とすることで、前記めっき浴の局所的な浴温低下による凝固を防止するためである。一方、前記浴温の上限を650℃としたのは、650℃を超えると、前記めっき皮膜の急速冷却が難しくなり,めっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれがあるためである。
The temperature of the plating bath is not particularly limited, but is preferably in the range of (melting point + 20°C) to 650°C.
The reason why the lower limit of the bath temperature is set to the melting point + 20° C. is that the bath temperature needs to be equal to or higher than the solidification point in order to perform hot-dip plating, and by setting the temperature to the melting point + 20° C., solidification due to a local drop in the bath temperature of the plating bath is prevented. On the other hand, the reason why the upper limit of the bath temperature is set to 650° C. is that if the bath temperature exceeds 650° C., rapid cooling of the plating film becomes difficult, and there is a risk that the interfacial alloy layer formed between the plating film and the steel sheet becomes thick.
また、めっき浴に浸入する下地鋼板の温度(浸入板温)についても、特に限定はされないが、前記連続式溶融めっき操業におけるめっき特性の確保や浴温度の変化を防ぐ観点から、前記めっき浴の温度に対して±20℃以内に制御することが好ましい。 The temperature of the base steel sheet immersed in the coating bath (immersion sheet temperature) is not particularly limited, but it is preferable to control it to within ±20°C of the coating bath temperature in order to ensure the coating characteristics in the continuous hot-dip coating operation and to prevent changes in the bath temperature.
さらにまた、前記下地鋼板の前記めっき浴中の浸漬時間については、0.5秒以上であることが好ましい。これは0.5秒未満の場合、前記下地鋼板の表面に十分なめっき皮膜を形成できないおそれがあるためである。浸漬時間の上限については特に限定はされないが、浸漬時間を長くするとめっき皮膜と鋼板との間に形成する界面合金層が厚くなるおそれもあることから、8秒以内とすることがより好ましい。 Furthermore, it is preferable that the immersion time of the base steel sheet in the plating bath is 0.5 seconds or more. This is because if it is less than 0.5 seconds, there is a risk that a sufficient plating film will not be formed on the surface of the base steel sheet. There is no particular upper limit to the immersion time, but since a longer immersion time may result in a thicker interfacial alloy layer being formed between the plating film and the steel sheet, it is more preferable to keep it within 8 seconds.
なお、本発明の溶融Al-Zn系めっき鋼板の製造方法では、上述しためっき皮膜の形成工程及びめっき皮膜形成後の昇温加熱・冷却工程以外にも、通常のめっき鋼板で採用される工程を適宜実施することが可能である。 In addition, in the manufacturing method of the hot-dip Al-Zn-plated steel sheet of the present invention, in addition to the above-mentioned plating film formation process and the heating/cooling process after plating film formation, it is possible to appropriately carry out processes that are used in the manufacture of ordinary plated steel sheets.
[サンプル1~32]
常法で製造した板厚0.8mmの冷延鋼板を下地鋼板として用い、(株)レスカ製の溶融めっきシミュレーターで、焼鈍処理、めっき処理を行うことで、表1に示す条件の溶融めっき鋼板のサンプル1~32を作製した。
なお、溶融めっき鋼板の製造に用いためっき浴の組成については、表1に示す各サンプルのめっき皮膜の組成となるように、めっき浴の組成をAl:0.2~70質量%、Si:0.0~3.2質量%、B:0.00~0.02質量%、Ca:0.0~1.0質量%、Ti:0.0~0.1質量%、V:0.1~0.1質量%、Cr:0.0~0.2質量%、Mn:0.0~0.1質量%、Sr:0.0~0.1質量%、Mo:0.0~0.1質量%、In:0.0~0.5質量%、Sn:0.0~0.5質量%、Sb:0.0~0.1質量%、Ce:0.0~1.0質量%、Bi:0.00~0.05質量%の範囲で種々変化させた。また、めっき浴の浴温は、Al:0.2~5質量%の場合は460℃、Al:35~55質量%の場合は600℃、Al:60質量%超の場合は660℃とし、下地鋼板のめっき浸入板温がめっき浴温と同温度となるように制御した。さらに、Al:35~65質量%の場合は、板温が520~500℃の温度域に3秒で冷却する条件でめっき処理を実施した。
また、めっき皮膜の付着量は、サンプル1~29では片面あたり85±5g/m2、サンプル30では片面あたり50±5g/m2、サンプル31では片面あたり100±5g/m2、サンプル32では片面あたり125±5g/m2となるように制御した。
[Samples 1 to 32]
A cold-rolled steel sheet having a thickness of 0.8 mm produced by a conventional method was used as a base steel sheet, and annealing and plating were performed using a hot-dip plating simulator manufactured by Rhesca Corporation to produce hot-dip plated steel sheet samples 1 to 32 under the conditions shown in Table 1.
The composition of the plating bath used in producing the hot-dip plated steel sheets was changed in various ranges within the ranges of Al: 0.2 to 70 mass%, Si: 0.0 to 3.2 mass%, B: 0.00 to 0.02 mass%, Ca: 0.0 to 1.0 mass%, Ti: 0.0 to 0.1 mass%, V: 0.1 to 0.1 mass%, Cr: 0.0 to 0.2 mass%, Mn: 0.0 to 0.1 mass%, Sr: 0.0 to 0.1 mass%, Mo: 0.0 to 0.1 mass%, In: 0.0 to 0.5 mass%, Sn: 0.0 to 0.5 mass%, Sb: 0.0 to 0.1 mass%, Ce: 0.0 to 1.0 mass%, and Bi: 0.00 to 0.05 mass% so as to obtain the composition of the plating film of each sample shown in Table 1. The bath temperature of the coating bath was controlled to be 460°C when Al was 0.2-5% by mass, 600°C when Al was 35-55% by mass, and 660°C when Al was over 60% by mass, so that the temperature of the base steel sheet entering the coating was the same as the coating bath temperature. Furthermore, when Al was 35-65% by mass, the coating process was carried out under the condition that the sheet temperature was cooled to a temperature range of 520-500°C in 3 seconds.
In addition, the coating weight of the plating film was controlled to be 85±5 g/ m2 per side for samples 1 to 29, 50±5 g/ m2 per side for sample 30, 100±5 g/ m2 per side for sample 31, and 125±5 g/ m2 per side for sample 32.
[評価]
得られた溶融めっき鋼板の各サンプルについて、以下の評価を行った。評価結果を表1に示す。
[evaluation]
The following evaluations were carried out on each of the obtained hot-dip plated steel sheet samples. The evaluation results are shown in Table 1.
(1)めっき皮膜(組成、付着量、Mg系化合物)
作製しためっき鋼板の各サンプルについて、100mmΦを打ち抜き、非測定面をテープでシーリングした後、JIS H 0401:2013に示される塩酸とヘキサメチレンテトラミンの混合液でめっきを溶解剥離し、剥離前後のサンプルの質量差から、めっき皮膜の付着量を算出した。算出の結果、得られためっき皮膜の付着量を表1に示す。
その後、剥離液をろ過し、ろ液と固形分をそれぞれ分析した。具体的に、ろ液をICP発光分光分析することで、不溶Si以外の成分を定量化した。
また、固形分は650℃の加熱炉内で乾燥・灰化した後、炭酸ナトリウムと四ホウ酸ナトリウムを添加することで融解させた。さらに、塩酸で融解物を溶解し、溶解液をICP発光分光分析することで、不溶Siを定量化した。めっき皮膜中のSi濃度は、ろ液分析によって得た可溶Si濃度に、固形分分析によって得た不溶Si濃度を加算したものである。算出の結果、得られためっき皮膜の組成を表1に示す。
さらに、各サンプルについて、15mm×15mmのサイズに剪断後、鋼板の断面が観察できるように導電性樹脂に埋め込んだ状態で、機械研磨を行った後、走査型電子顕微鏡(Carl Zeiss社製ULTRA55)を用いて、下地鋼板の表面と平行な方向に5mmの長さを有する任意で選んだめっき皮膜の連続断面について、加速電圧3kvの条件で幅100μmの反射電子像を連続して撮影した。さらに、同装置内において、エネルギー分散型X線分光器(Oxford Instruments社製Ultim Extreme)を用いて、加速電圧3kvの条件で各断面の元素マッピング解析(Al、Zn、Si、Fe、及びMg)を行った。この解析でMg強度を高く検出した部分について、同分光器を用いて加速電圧3kvの条件で点分析を行い、Mg系化合物の形成有無、及び得られた成分の半定量値から物質を同定した。観察視野中に確認された全てのMg系化合物について長径を測定し、上位5点の値を平均したものを長径とした。算出された長径を表1に示す。
さらに、各サンプルについて、100mm×100mmのサイズに剪断後、評価対称面のめっき皮膜を下地鋼板が現れるまで機械的に削り出し、得られた粉末をよく混ぜ合わせた後、0.3gを取出し、X線回折線装置(株式会社リガク製「SmartLab」)を用いて、使用X線:Cu-Kα(波長=1.54178Å)、Kβ線の除去:Niフィルター、管電圧:40kV、管電流:30mA、スキャニング・スピード:4°/min、サンプリング・インターバル:0.020°、発散スリット:2/3°、ソーラースリット:5°、検出器:高速一次元検出器(D/teX Ultra)の条件で、削り出した粉末の定性分析を行った。各ピーク強度からベース強度を差し引いた強度を各回折強度(kcps)とし、MgZn2の(100)面(面間隔d=0.4510nm)の回折強度(kcps)の回折強度を測定した。回折強度の測定結果を表1に示す。
(1) Plating film (composition, coating amount, Mg-based compounds)
A 100 mm diameter sample was punched out from each of the prepared plated steel sheets, the non-measurement surfaces were sealed with tape, and the plating was then dissolved and stripped off using a mixture of hydrochloric acid and hexamethylenetetramine as specified in JIS H 0401: 2013, and the adhesion weight of the plating film was calculated from the difference in mass of the sample before and after stripping. The calculated adhesion weights of the plating film obtained are shown in Table 1.
The stripper solution was then filtered, and the filtrate and solid content were analyzed. Specifically, the filtrate was analyzed by ICP atomic emission spectrometry to quantify the components other than insoluble Si.
The solids were dried and incinerated in a 650°C heating furnace, and then melted by adding sodium carbonate and sodium tetraborate. The molten material was dissolved in hydrochloric acid, and the solution was analyzed by ICP emission spectroscopy to quantify the insoluble silicon. The silicon concentration in the plating film was calculated by adding the soluble silicon concentration obtained by filtrate analysis to the insoluble silicon concentration obtained by solid content analysis. The composition of the plating film obtained as a result of the calculation is shown in Table 1.
Furthermore, after each sample was sheared to a size of 15 mm x 15 mm, the steel sheet was embedded in a conductive resin so that the cross section of the steel sheet could be observed, and mechanical polishing was performed. Using a scanning electron microscope (ULTRA55 manufactured by Carl Zeiss), a backscattered electron image of a width of 100 μm was continuously taken at an accelerating voltage of 3 kv for a continuous cross section of an arbitrarily selected plating film having a length of 5 mm in a direction parallel to the surface of the base steel sheet. Furthermore, in the same device, an energy dispersive X-ray spectrometer (Ultim Extreme manufactured by Oxford Instruments) was used to perform element mapping analysis (Al, Zn, Si, Fe, and Mg) of each cross section at an accelerating voltage of 3 kv. For the parts where high Mg intensity was detected in this analysis, point analysis was performed using the same spectrometer at an accelerating voltage of 3 kv, and the substance was identified from the presence or absence of Mg-based compounds and the semi-quantitative values of the obtained components. The major axis of all Mg-based compounds confirmed in the observation field was measured, and the average of the top five values was taken as the major axis. The calculated major axis is shown in Table 1.
Furthermore, after shearing each sample to a size of 100 mm x 100 mm, the plating film on the evaluation target surface was mechanically scraped off until the base steel sheet was revealed, and the obtained powder was thoroughly mixed, and 0.3 g was taken out and qualitative analysis of the scraped powder was performed using an X-ray diffraction apparatus (Rigaku Corporation "SmartLab") under the following conditions: X-ray used: Cu-Kα (wavelength = 1.54178 Å), Kβ ray removal: Ni filter, tube voltage: 40 kV, tube current: 30 mA, scanning speed: 4°/min, sampling interval: 0.020°, divergence slit: 2/3°, solar slit: 5°, detector: high-speed one-dimensional detector (D/teX Ultra). The intensity obtained by subtracting the base intensity from each peak intensity was taken as each diffraction intensity (kcps), and the diffraction intensity (kcps) of the (100) plane of MgZn 2 (planar spacing d = 0.4510 nm) was measured. The measurement results of the diffraction intensity are shown in Table 1.
(2)加工性評価
得られた溶融めっき鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、同板厚の板を内側にn枚(n=8、10、12、14、16)挟み、150mmの頂点が得られるように180°曲げの加工(nT曲げ)をそれぞれ施した。折り曲げ後の曲げ部外面にセロテープ(登録商標)を強く貼りつけた後、引き剥がした。曲げ部の外面(頂点部)を走査型電子顕微鏡(Carl Zeiss社製ULTRA55)で加速電圧5kvの条件で観察することでクラックの発生形態を確認し、下記の基準で加工性を評価した。評価結果を表1に示す。
〇:開口幅が20μm以上の大きなクラックの発生が認められない
×:開口幅が20μm以上の大きなクラックの発生が認められる
(2) Workability Evaluation Each sample of the obtained hot-dip galvanized steel sheet was sheared to a size of 70 mm x 150 mm, and n sheets (n = 8, 10, 12, 14, 16) of the same thickness were sandwiched inside, and each was subjected to 180° bending (nT bending) so as to obtain a 150 mm apex. Cellophane tape (registered trademark) was firmly attached to the outer surface of the bent part after bending, and then peeled off. The outer surface (apex part) of the bent part was observed with a scanning electron microscope (ULTRA55 manufactured by Carl Zeiss) at an accelerating voltage of 5 kv to confirm the occurrence of cracks, and the workability was evaluated according to the following criteria. The evaluation results are shown in Table 1.
◯: No large cracks with an opening width of 20 μm or more were observed. ×: Large cracks with an opening width of 20 μm or more were observed.
(3)加工部耐食性評価
得られた溶融めっき鋼板の各サンプルについて、70mm×150mmのサイズに剪断後、各端面に対しテープでシーリングし、同板厚の板を内側に14枚又は16枚挟み、150mmの頂点が得られるように14T曲げ及び16T曲げをそれぞれ施した。
上記のように作製した各サンプルに対して、いずれも日本自動車規格の複合サイクル試験(JASO-CCT)を実施した。腐食促進試験を湿潤からスタートし、60サイクル後まで行った後、各サンプルの曲げ部の外面(頂点部)の外観を目視で確認し、下記の基準で判定した。確認結果及び判定結果を表1に示す。
〇: 16T曲げ加工を施したサンプルについて、赤錆及び白錆の発生が認められない
×: 16T曲げ加工を施したサンプルについて、赤錆又は白錆の発生が認められる
(3) Evaluation of corrosion resistance of processed parts Each sample of the obtained hot-dip plated steel sheet was sheared to a size of 70 mm x 150 mm, and then each end face was sealed with tape. 14 or 16 sheets of the same thickness were sandwiched inside, and a 14T bend or 16T bend was performed to obtain a vertex of 150 mm.
The samples prepared as described above were subjected to the Japanese Automotive Standard Combined Cyclic Test (JASO-CCT). The accelerated corrosion test was started from wet condition and continued for 60 cycles. After that, the appearance of the outer surface (vertex) of the bent part of each sample was visually inspected and judged according to the following criteria. The inspection results and the judgment results are shown in Table 1.
○: No red rust or white rust was observed on the sample that was bent at 16T. ×: Red rust or white rust was observed on the sample that was bent at 16T.
表1の結果から、本発明例の各サンプルは、比較例の各サンプルに比べて、加工性及び加工部耐食性がバランスよく優れていることがわかる。 The results in Table 1 show that the samples of the present invention have a good balance of workability and corrosion resistance of the processed parts compared to the samples of the comparative examples.
本発明によれば、確実且つ安定的に優れた加工性及び加工部耐食性を有する溶融Al-Zn系めっき鋼板及びその製造方法を提供できる。 The present invention provides a hot-dip Al-Zn-plated steel sheet and its manufacturing method that has reliable and stable excellent workability and corrosion resistance in the processed area.
10 素地鋼板
20 めっき皮膜
21 主層
22 界面合金層
211 デンドライト
212 インターデンドライト
10
Claims (7)
前記めっき皮膜は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有し、
前記不可避的不純物中のMg含有量が、前記めっき皮膜の総質量に対して0.5質量%未満であることを特徴とする、溶融Al-Zn系めっき鋼板。 A hot-dip Al-Zn-plated steel sheet having a plating film,
The plating film has a composition containing 45 to 65 mass% Al, 1.0 to 3.0 mass% Si, and the remainder being Zn and unavoidable impurities,
A hot-dip Al-Zn plated steel sheet, characterized in that the Mg content in the unavoidable impurities is less than 0.5 mass% with respect to a total mass of the plating film.
MgZn2 (100)=0 ・・・(1)
MgZn2(100):MgZn2の(100)面(面間隔d=0.4510nm)の回折強度 The hot-dip Al-Zn plated steel sheet according to any one of claims 1 to 4, characterized in that a diffraction intensity of MgZn 2 in the plated film by an X-ray diffraction method satisfies the following relationship (1):
MgZn 2 (100)=0...(1)
MgZn 2 (100): Diffraction intensity of the (100) plane of MgZn 2 (plane spacing d = 0.4510 nm)
前記めっき皮膜の形成は、Al:45~65質量%及びSi:1.0~3.0質量%を含有し、残部がZn及び不可避的不純物からなる組成を有するめっき浴を用いて、下地鋼板に前記めっき皮膜を形成する工程を含み、
前記めっき浴の不可避的不純物中のMg含有量を、前記めっき浴の総質量に対して0.5質量%未満に制御することを特徴とする、溶融Al-Zn系めっき鋼板の製造方法。 A method for producing a hot-dip Al-Zn-plated steel sheet having a plating film, comprising:
The formation of the plating film includes a step of forming the plating film on a base steel sheet using a plating bath having a composition containing 45 to 65 mass% Al and 1.0 to 3.0 mass% Si, with the balance being Zn and unavoidable impurities;
A method for producing a hot-dip Al-Zn plated steel sheet, comprising controlling a Mg content in unavoidable impurities in the plating bath to less than 0.5 mass% based on a total mass of the plating bath.
7. The method for producing a hot-dip Al-Zn coated steel sheet according to claim 6, characterized in that the coating bath further contains 0.01 to 3.0 mass % in total of one or more elements selected from B, Ca, Ti, V, Cr, Mn, Sr, Mo, In, Sn, Sb, Ce, and Bi.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023066644A JP2024152446A (en) | 2023-04-14 | 2023-04-14 | Hot-dip Al-Zn coated steel sheet and manufacturing method thereof |
JP2023-066644 | 2023-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024214328A1 true WO2024214328A1 (en) | 2024-10-17 |
Family
ID=93059302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040986 WO2024214328A1 (en) | 2023-04-14 | 2023-11-14 | Molten al-zn-based plated steel sheet and method for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024152446A (en) |
TW (1) | TW202442897A (en) |
WO (1) | WO2024214328A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010082678A1 (en) * | 2009-01-16 | 2010-07-22 | 新日本製鐵株式会社 | HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE |
WO2014119268A1 (en) * | 2013-01-31 | 2014-08-07 | Jfe鋼板株式会社 | HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME |
-
2023
- 2023-04-14 JP JP2023066644A patent/JP2024152446A/en active Pending
- 2023-11-14 WO PCT/JP2023/040986 patent/WO2024214328A1/en unknown
- 2023-11-24 TW TW112145521A patent/TW202442897A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010082678A1 (en) * | 2009-01-16 | 2010-07-22 | 新日本製鐵株式会社 | HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE |
WO2014119268A1 (en) * | 2013-01-31 | 2014-08-07 | Jfe鋼板株式会社 | HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME |
Also Published As
Publication number | Publication date |
---|---|
TW202442897A (en) | 2024-11-01 |
JP2024152446A (en) | 2024-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6433960B2 (en) | Molten Al-Zn-Mg-Si plated steel sheet and method for producing the same | |
JP6368730B2 (en) | Molten Al-Zn-Mg-Si plated steel sheet and method for producing the same | |
CN117026132A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
CN113508186B (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
JP6645273B2 (en) | Hot-dip Al-Zn-Mg-Si plated steel sheet and method for producing the same | |
JP7445128B2 (en) | Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance | |
JP7549965B2 (en) | Hot-dip Al-Zn-Mg-Si plated steel sheet and its manufacturing method, and coated steel sheet and its manufacturing method | |
JP7277822B2 (en) | plated steel | |
JP7417103B2 (en) | Hot-dip Zn-Al-Mg plated steel material | |
WO2024214328A1 (en) | Molten al-zn-based plated steel sheet and method for manufacturing same | |
JP2022073969A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET | |
JP7564133B2 (en) | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method | |
TWI787118B (en) | Molten Al-Zn system coated steel sheet and its manufacturing method | |
WO2024214329A1 (en) | MOLTEN Al-Zn-BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME | |
TWI787119B (en) | Molten Al-Zn system coated steel sheet and its manufacturing method | |
JP2023036982A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP2022140247A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP2023143893A (en) | HOT-DIP Al-Zn BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23933102 Country of ref document: EP Kind code of ref document: A1 |