[go: up one dir, main page]

JP7508873B2 - Hot working tools - Google Patents

Hot working tools Download PDF

Info

Publication number
JP7508873B2
JP7508873B2 JP2020100586A JP2020100586A JP7508873B2 JP 7508873 B2 JP7508873 B2 JP 7508873B2 JP 2020100586 A JP2020100586 A JP 2020100586A JP 2020100586 A JP2020100586 A JP 2020100586A JP 7508873 B2 JP7508873 B2 JP 7508873B2
Authority
JP
Japan
Prior art keywords
layer
alloy
overlay
hot
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020100586A
Other languages
Japanese (ja)
Other versions
JP2021194653A (en
Inventor
領介 後藤
宙也 青木
洋一 菅
聡志 古曵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2020100586A priority Critical patent/JP7508873B2/en
Publication of JP2021194653A publication Critical patent/JP2021194653A/en
Priority to JP2024094592A priority patent/JP2024133491A/en
Application granted granted Critical
Publication of JP7508873B2 publication Critical patent/JP7508873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、熱間鍛造等の熱間での塑性加工に使用される熱間加工用工具に関するものである。 The present invention relates to a hot working tool used for hot plastic processing such as hot forging.

従来、被加工材を熱間で塑性加工する熱間加工用工具が使用されている。例えば、熱間鍛造に用いられる熱間鍛造用金型は、金型の使用寿命を長くする目的で、その打撃面を構成する部分(以下、打撃面または作業面と記す)に高温強度が高く耐摩耗性に優れた合金を肉盛溶接して使用されている。
例えば、本願出願人は特開2001-71086号公報(特許文献1)において、金型の基材としてJIS-SKT4相当合金を使用し、前記基材上に析出強化型Ni基合金を肉盛溶接して打撃面を形成した熱間鍛造用金型を提案している。また、特開2001-62541号公報(特許文献2)において、基材を含めた金型全体を析出強化型Ni基合金にするか、Ni基合金でなる基材を使用しかつ析出強化型Ni基合金を肉盛溶接して打撃面を形成する方法を提案している。この特許文献1や特許文献2で提案した熱間鍛造用金型では、肉盛用溶接金属として析出強化型Ni基合金であるAlloy713C、Alloy718、Alloy U520等を挙げている。
ところで、上記の析出強化型Ni基合金よりもAlやTiなどの析出強化元素を増してさらに高温強度を向上させたNi基合金が、航空機エンジン用耐熱材料やガスタービン用耐熱材料として開発されている。しかしながら、Ni基合金の場合、析出強化元素が増加するほど肉盛溶接時の高温割れや再熱割れが発生しやすくなるとされており(非特許文献1)、溶接性の観点から、析出強化元素を過剰に含有したNi基合金は、熱間鍛造金型用の肉盛用溶接金属として一般的に適していないとされている。
Conventionally, hot working tools are used for hot plastic working of workpieces. For example, hot forging dies used in hot forging are used with an alloy having high high temperature strength and excellent wear resistance welded overlay on the part constituting the striking surface (hereinafter referred to as the striking surface or the working surface) in order to extend the service life of the dies.
For example, in Japanese Patent Application Laid-Open No. 2001-71086 (Patent Document 1), the applicant of the present application has proposed a hot forging die in which an alloy equivalent to JIS-SKT4 is used as the base material of the die, and a precipitation-strengthened Ni-based alloy is overlaid and welded onto the base material to form a striking surface. In addition, in Japanese Patent Application Laid-Open No. 2001-62541 (Patent Document 2), a method has been proposed in which the entire die including the base material is made of a precipitation-strengthened Ni-based alloy, or a base material made of a Ni-based alloy is used and a precipitation-strengthened Ni-based alloy is overlaid and welded to form a striking surface. In the hot forging die proposed in Patent Document 1 and Patent Document 2, precipitation-strengthened Ni-based alloys such as Alloy 713C, Alloy 718, and Alloy U520 are listed as overlaid weld metals.
Incidentally, Ni-based alloys in which the precipitation strengthening elements such as Al and Ti are increased to further improve high-temperature strength compared to the above-mentioned precipitation strengthened Ni-based alloys have been developed as heat-resistant materials for aircraft engines and heat-resistant materials for gas turbines. However, in the case of Ni-based alloys, it is said that the more the precipitation strengthening elements are increased, the more likely hot cracking and reheat cracking are to occur during overlay welding (Non-Patent Document 1), and from the viewpoint of weldability, Ni-based alloys containing excessive precipitation strengthening elements are generally not suitable as overlay weld metals for hot forging dies.

特開2001-71086号公報JP 2001-71086 A 特開2001-62541号公報JP 2001-62541 A

日本溶接協会特殊材料溶接研究委員会編、「スーパーアロイの溶接(耐熱・耐食合金の溶接ガイドブック)」、産報出版、p.36、p.46~48"Welding of Superalloys (Guidebook for Welding of Heat-Resistant and Corrosion-Resistant Alloys)" edited by the Special Materials Welding Research Committee of the Japan Welding Society, Sanpo Publishing, pp. 36, pp. 46-48

上述したAlloy U520などの析出強化型Ni基合金を肉盛溶接して打撃面を形成した熱間鍛造用金型は優れた高温強度を有するものの、被鍛造材がNi基合金などの難加工材である場合に、打撃面の耐摩耗性が不足し、鍛造時に打撃面が塑性変形して摩耗し金型の使用寿命が著しく短くなるという問題があった。打撃面が変形した状態で熱間鍛造用金型を使用した場合、被鍛造材の形状精度が極端に悪化する。そのため、塑性変形した打撃面の補修作業が必要となり、多大な工数とコストが発生し生産性が悪化することになる。
また、打撃面の耐摩耗性を向上する目的で、析出強化元素を増した合金を肉盛用溶接金属として用いた場合、上述のように高温強度は増すものの溶接性が悪化し肉盛用溶接金属として適さないといった問題があった。Ni基合金の場合、過剰に析出強化元素を含有させると肉盛溶接時に高温割れや再熱割れの発生が顕著となる。再熱割れは溶接後熱処理中や使用中に発生する割れであるが、肉盛用溶接金属の場合であても、肉盛時に下層の肉盛層が熱影響を受けるため再熱割れが発生することがある。
打撃面に僅かでも割れを含んだ熱間鍛造用金型を使用して熱間鍛造を行った場合、鍛造中に割れ部に応力が集中し、割れが金型の打撃面から基材に進展するため、進展した割れの程度によっては、基材を含めて金型ごと交換する必要が生じることになる。
以上の観点から、熱間鍛造用金型の打撃面の肉盛用溶接金属を用いた肉盛層に関して、良好な溶接性と耐摩耗性を両立することは従来の技術において困難であった。
本発明の目的は、肉盛層を構成する肉盛用溶接金属の化学組成を最適化して、肉盛溶接時の溶接性を悪化させずに、熱間鍛造用の金敷や金型の熱間加工用工具の作業面の肉盛層に使用する場合に優れた耐摩耗性を有する熱間加工用工具を提供することである。
Although the hot forging die having a striking surface formed by overlay welding of a precipitation-strengthened Ni-based alloy such as the above-mentioned Alloy U520 has excellent high-temperature strength, when the material to be forged is a difficult-to-process material such as a Ni-based alloy, the abrasion resistance of the striking surface is insufficient, and the striking surface is plastically deformed and worn during forging, resulting in a significantly shortened service life of the die. If the hot forging die is used with the striking surface deformed, the shape accuracy of the material to be forged is extremely deteriorated. Therefore, repair work for the plastically deformed striking surface is required, which requires a large number of steps and costs and reduces productivity.
In addition, when an alloy with increased precipitation strengthening elements is used as a weld metal for overlay welding in order to improve the wear resistance of the impact surface, the high-temperature strength is increased as described above, but the weldability is deteriorated, making it unsuitable as a weld metal for overlay welding. In the case of Ni-based alloys, if the alloy contains an excessive amount of precipitation strengthening elements, the occurrence of high-temperature cracking and reheat cracking during overlay welding becomes prominent. Reheat cracking is a type of cracking that occurs during heat treatment after welding or during use, but even in the case of weld metal for overlay welding, reheat cracking may occur because the underlying overlay layer is thermally affected during overlay welding.
If hot forging is performed using a hot forging die that contains even a small crack on its striking surface, stress will concentrate in the cracked area during forging, and the crack will propagate from the striking surface of the die to the base material. Depending on the extent of the propagated crack, it may become necessary to replace the entire die, including the base material.
From the above viewpoints, it has been difficult in the prior art to achieve both good weldability and wear resistance in an overlay layer using an overlay weld metal on the striking surface of a hot forging die.
An object of the present invention is to provide a hot working tool that has excellent wear resistance when used in an overlay layer on the working surface of a hot working tool such as an anvil or die for hot forging, by optimizing the chemical composition of the overlay weld metal that constitutes the overlay, without deteriorating the weldability during overlay welding.

本発明者は、熱間鍛造用金型や熱間鍛造用金敷の打撃面といった、熱間加工用工具の作業面に肉盛層を用いるときに、その肉盛層の耐摩耗性の不足と、耐摩耗性を向上させることによる溶接性悪化の問題を検討した。そして、肉盛用合金粉末の溶接性を悪化させない範囲で析出強化元素を合金に添加し、さらに従来の肉盛用溶接金属よりも固溶強化元素を多く合金中に含有させることで、打撃面の耐摩耗性を大きく改善できることを見出し本発明に到達した。
すなわち本発明は、作業面にNi基合金でなる肉盛層を有する熱間加工用工具において、前記肉盛層の組成が、質量%でC:0.010~0.030%、Cr:13.0~18.0%、W:3.0~5.0%、Mo:5.0~7.0%、Co:12.0~15.0%、Al:1.0~2.8%、Ti:2.0~3.7%、Nb:0.5~1.5%、B:0.0010~0.0070%、残部はNi及び不可避的不純物でなる熱間加工用工具である。
上記熱間加工用工具が熱間鍛造用金型または熱間鍛造用金敷であることが好ましい。
The present inventors have investigated the problem of insufficient wear resistance of the build-up layer and the deterioration of weldability caused by improving the wear resistance when the build-up layer is used on the working surface of a hot working tool such as the striking surface of a hot forging die or a hot forging anvil, and have found that the wear resistance of the striking surface can be greatly improved by adding precipitation strengthening elements to the alloy within a range that does not deteriorate the weldability of the build-up alloy powder, and further by making the alloy contain more solid solution strengthening elements than conventional build-up weld metals, thereby arriving at the present invention.
That is, the present invention relates to a hot working tool having an overlay made of a Ni-based alloy on its working surface, the overlay having a composition, in mass %, of C: 0.010-0.030%, Cr: 13.0-18.0%, W: 3.0-5.0%, Mo: 5.0-7.0%, Co: 12.0-15.0%, Al: 1.0-2.8%, Ti: 2.0-3.7%, Nb: 0.5-1.5%, B: 0.0010-0.0070%, and the balance being Ni and unavoidable impurities.
The hot working tool is preferably a hot forging die or a hot forging anvil.

本発明の熱間加工用工具の作業面に用いる肉盛層の合金組成は、溶接性と耐摩耗性の特性に優れているため、熱間加工用工具の作業面に肉盛溶接した際に割れの発生を抑制することが可能となる。また、この合金組成でなる肉盛層を有する熱間加工用工具は、難加工材を熱間加工する際の作業面の摩耗量が減少し熱間加工用工具の使用寿命を長くする効果を奏する。 The alloy composition of the build-up layer used on the working surface of the hot working tool of the present invention has excellent weldability and wear resistance properties, making it possible to suppress the occurrence of cracks when build-up welding is performed on the working surface of the hot working tool. In addition, a hot working tool having a build-up layer made of this alloy composition reduces the amount of wear on the working surface when hot working difficult-to-work materials, thereby extending the service life of the hot working tool.

本発明例と従来例の強度を比較する各温度における0.2%耐力を示す引張試験の結果である。1 shows the results of a tensile test showing 0.2% yield strength at various temperatures for comparing the strength of an example of the present invention with that of a conventional example.

上述したように本発明の重要な特徴は、溶接性を悪化させず、かつ、肉盛用合金として熱間鍛造用金型や熱間鍛造用金敷の作業面に使用した際に優れた耐摩耗性を有する合金組成を採用したところにある。
具体的には、溶接性を極端に悪化させない固溶強化元素を合金元素として含有させることで、広い温度範囲にわたって打撃面を構成する肉盛層の強度を増し、結果として熱間加工用工具の打撃面の耐摩耗性を向上できることを見出したことに特徴がある。
例えば、熱間加工用工具の中でも、熱間鍛造用金型(金敷)には高い耐摩耗性が求められ、熱間鍛造時の熱飽和状態において、被鍛造材が約1000℃である場合に熱間鍛造用金型の打撃面は最高温度が約800℃と高温域で使用される。しかしながら、鍛造初期の打撃面の温度はそれほど高くなく、鍛造時間の経過とともに初期温度から徐々に高温まで温度上昇し熱飽和状態となる。また、熱飽和時においても打撃面を構成する肉盛層の全域が最高温度に到達するわけではなく、被鍛造材との接触機会の少ない領域、放熱しやすい金型の外側の領域、表面より内側の領域では、打撃面を構成する肉盛層が最高到達温度よりも低い温度に維持される。そのため、熱間鍛造用金型の打撃面の耐摩耗性を向上するには、高温強度だけではなく、広い温度範囲で強度を高くする必要があるといえる。
そこで、本発明においては広い温度範囲において強度を増すことが可能なMo、Wなどの固溶強化元素を肉盛用合金粉末に従来の肉盛用溶接金属よりも多く含有させ、打撃面を構成する肉盛層の耐摩耗性を向上させた。析出強化元素と比較して固溶強化元素は、ガンマプライム相(以下、γ’相と記す)の析出によるひずみを原因とした再熱割れに寄与しない。また、凝固温度範囲を極端に拡大しないため、高温割れにも寄与し難い。ゆえに、従来の析出強化型Ni基合金からなる肉盛用溶接金属よりも固溶強化元素を多く含有させれば、溶接性を悪化させずに打撃面の耐摩耗性を向上することが可能となるものである。
As described above, an important feature of the present invention is the adoption of an alloy composition that does not deteriorate weldability and has excellent wear resistance when used as an overlay alloy on the working surfaces of hot forging dies and hot forging anvils.
Specifically, it has been discovered that by including, as an alloy element, a solid-solution strengthening element that does not excessively deteriorate weldability, it is possible to increase the strength of the build-up layer that constitutes the striking surface over a wide temperature range, thereby improving the wear resistance of the striking surface of a hot working tool.
For example, among hot working tools, hot forging dies (anvils) are required to have high wear resistance, and in the thermally saturated state during hot forging, when the material to be forged is about 1000°C, the striking surface of the hot forging die is used in a high temperature range with a maximum temperature of about 800°C. However, the temperature of the striking surface at the beginning of forging is not so high, and as the forging time progresses, the temperature gradually rises from the initial temperature to a high temperature and reaches a thermally saturated state. In addition, even at the time of thermal saturation, the entire area of the buildup layer constituting the striking surface does not reach the maximum temperature, and in areas with few opportunities for contact with the material to be forged, areas outside the die where heat is easily dissipated, and areas inside the surface, the buildup layer constituting the striking surface is maintained at a temperature lower than the maximum temperature. Therefore, in order to improve the wear resistance of the striking surface of the hot forging die, it can be said that it is necessary to increase not only the high temperature strength but also the strength over a wide temperature range.
Therefore, in the present invention, the alloy powder for overlay contains more solid solution strengthening elements such as Mo and W, which can increase the strength in a wide temperature range, than the conventional overlay weld metal, thereby improving the wear resistance of the overlay layer that constitutes the impact surface. Compared to precipitation strengthening elements, solid solution strengthening elements do not contribute to reheat cracking caused by strain due to the precipitation of gamma prime phase (hereinafter referred to as γ' phase). In addition, since they do not significantly expand the solidification temperature range, they are unlikely to contribute to high-temperature cracking. Therefore, if the alloy powder for overlay contains more solid solution strengthening elements than the conventional precipitation strengthened Ni-based alloy for overlay weld metal, it is possible to improve the wear resistance of the impact surface without deteriorating the weldability.

本発明の作業面に用いる肉盛層において、添加元素と各添加元素の範囲を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
<C:0.010~0.030%>
Cは、肉盛層中において炭化物を粒界に形成し、粒界を強化し肉盛層の強度を高めて耐摩耗性を向上させる効果がある。この効果を得るためには、Cを0.010~0.030%の範囲とする必要がある。Cが0.010%未満であると、肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、0.030%を超えると粗大な炭化物が形成されるため肉盛層が脆化し靭延性が低下する。そのため、Cを0.010~0.030%の範囲とした。Cの好ましい上限は0.025%であり、好ましい下限は0.015%である。
<Cr:13.0~18.0%>
Crは、肉盛層の表面にCrの被膜を形成し耐酸化性を向上し、さらに肉盛層の基地となるオーステナイト相(以下、γ相と記す)中に固溶して固溶強化により広い温度範囲において肉盛層の強度を高め、耐摩耗性を向上させる効果がある。この効果を得るためには、Crを13.0~18.0%の範囲とする必要がある。Crが13.0%未満であると、十分な耐酸化性が得られない。一方、18.0%を超えると脆化相であるシグマ相(以下、σ相と記す)を形成したり、粗大化するCr系炭化物を形成したりして肉盛層の靭延性を低下させる。そのため、Crを13.0~18.0%の範囲とした。Crの好ましい上限は17.0%であり、好ましい下限は14.0%である。
In the build-up layer used on the working surface of the present invention, the reasons for specifying the additive elements and the ranges of each additive element are as follows. Note that unless otherwise specified, the amounts are expressed as mass %.
<C: 0.010 to 0.030%>
C has the effect of forming carbides at grain boundaries in the build-up layer, strengthening the grain boundaries, increasing the strength of the build-up layer, and improving the wear resistance. To obtain this effect, C needs to be in the range of 0.010 to 0.030%. If C is less than 0.010%, the strength of the build-up layer is insufficient and sufficient wear resistance cannot be obtained. On the other hand, if C exceeds 0.030%, coarse carbides are formed, making the build-up layer embrittled and reducing toughness and ductility. Therefore, C is set to the range of 0.010 to 0.030%. The preferable upper limit of C is 0.025%, and the preferable lower limit is 0.015%.
<Cr: 13.0 to 18.0%>
Cr forms a Cr 2 O 3 film on the surface of the build-up layer to improve oxidation resistance, and further dissolves in the austenite phase (hereinafter referred to as γ phase) which is the base of the build-up layer to increase the strength of the build-up layer in a wide temperature range by solid solution strengthening, and has the effect of improving wear resistance. In order to obtain this effect, it is necessary to set Cr in the range of 13.0 to 18.0%. If Cr is less than 13.0%, sufficient oxidation resistance cannot be obtained. On the other hand, if it exceeds 18.0%, it forms a sigma phase (hereinafter referred to as σ phase), which is an embrittlement phase, or forms coarse Cr-based carbides, which reduce the toughness and ductility of the build-up layer. Therefore, Cr is set in the range of 13.0 to 18.0%. The preferable upper limit of Cr is 17.0%, and the preferable lower limit is 14.0%.

<W:3.0~5.0%>
Wは、肉盛層の基地となるγ相中に固溶して固溶強化により広い温度範囲において肉盛層の強度を高め、耐摩耗性を向上させる効果がある。この効果を得るには、Wを3.0~5.0%の範囲とする必要がある。Wが3.0%未満であると、肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、5.0%を超えると脆化相であるミュー相(以下、μ相と記す)を形成し肉盛層の靭延性が低下する。そのため、Wを3.0~5.0%の範囲とした。Wの好ましい上限は4.5%であり、好ましい下限は3.5%である。
<Mo:5.0~7.0%>
Moは、γ相中に固溶するため固溶強化により広い温度範囲において肉盛層の強度を高め、耐摩耗性を向上させる効果がある。この効果を得るには、Moを5.0~7.0%の範囲とする必要がある。Moが5.0%未満であると、肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、7.0%を超えると脆化相であるμ相やσ相を形成し肉盛層の靭延性が低下する。そのため、Moを5.0~7.0%の範囲とした。Moの好ましい上限は6.5%であり、好ましい下限は5.5%である。
<W: 3.0 to 5.0%>
W has the effect of increasing the strength of the build-up layer over a wide temperature range by dissolving in the γ phase, which is the base of the build-up layer, and improving the wear resistance through solid solution strengthening. To obtain this effect, W needs to be in the range of 3.0 to 5.0%. If W is less than 3.0%, the strength of the build-up layer is insufficient and sufficient wear resistance cannot be obtained. On the other hand, if W exceeds 5.0%, a brittle phase, the mu phase (hereinafter referred to as μ phase), is formed, and the toughness and ductility of the build-up layer are reduced. Therefore, W is set to the range of 3.0 to 5.0%. The preferable upper limit of W is 4.5%, and the preferable lower limit is 3.5%.
<Mo: 5.0 to 7.0%>
Mo has the effect of increasing the strength of the build-up layer over a wide temperature range by solid solution strengthening due to its solid solution dissolution in the γ phase, and improving the wear resistance. To obtain this effect, Mo needs to be in the range of 5.0 to 7.0%. If Mo is less than 5.0%, the strength of the build-up layer is insufficient and sufficient wear resistance cannot be obtained. On the other hand, if Mo exceeds 7.0%, the build-up layer forms brittle phases such as μ phase and σ phase, which reduce the toughness and ductility of the build-up layer. Therefore, Mo is set to the range of 5.0 to 7.0%. The preferred upper limit of Mo is 6.5%, and the preferred lower limit is 5.5%.

<Co:12.0~15.0%>
Coは、γ相中に固溶するため固溶強化により広い温度範囲において肉盛層の強度を高め、耐摩耗性を向上させる効果がある。この効果を得るには、Coを12.0~15.0%の範囲とする必要がある。Coが12.0%未満であると、肉盛層の強度が不足し十分な耐摩耗を得られない。一方、15.0%を超えると脆化相であるμ相やσ相を形成し肉盛層の靭延性が低下する。また、Coは高価な元素であるため肉盛用合金粉末の製造コストが高くなる。そのため、Coを12.0~15.0%の範囲とした。Coの好ましい上限は14.0%であり、好ましい下限は13.0%である。
<Al:1.0~2.8%>
Alは、Niと結合してNiAlからなるγ’相を整合析出し、析出強化により特に高温域において強度を高めて耐摩耗性を向上させる効果がある。この効果を得るには、Alを1.0~2.8%の範囲とする必要がある。Alが1.0%未満であると、高温域において肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、2.8%を超えると肉盛溶接時における高温割れや肉盛溶接時の下層側の再熱割れの感受性が高くなり溶接性が悪化する。そのため、Alを1.0~2.8%の範囲とした。Alの好ましい上限は2.5%であり、好ましい下限は2.0%である。
<Co: 12.0 to 15.0%>
Co is dissolved in the γ phase, and thus has the effect of increasing the strength of the build-up layer in a wide temperature range by solid solution strengthening, and improving the wear resistance. To obtain this effect, it is necessary to set Co in the range of 12.0 to 15.0%. If Co is less than 12.0%, the strength of the build-up layer is insufficient and sufficient wear resistance cannot be obtained. On the other hand, if Co exceeds 15.0%, the build-up layer is formed with brittle phases such as μ phase and σ phase, and the toughness and ductility of the build-up layer are reduced. In addition, since Co is an expensive element, the manufacturing cost of the alloy powder for build-up increases. Therefore, Co is set in the range of 12.0 to 15.0%. The preferable upper limit of Co is 14.0%, and the preferable lower limit is 13.0%.
<Al: 1.0 to 2.8%>
Al combines with Ni to form a coherent precipitation of the γ' phase consisting of Ni 3 Al, and has the effect of increasing strength and improving wear resistance, particularly in high temperature regions, through precipitation strengthening. To obtain this effect, it is necessary to set Al in the range of 1.0 to 2.8%. If Al is less than 1.0%, the strength of the overlay layer is insufficient in high temperature regions, and sufficient wear resistance cannot be obtained. On the other hand, if it exceeds 2.8%, the susceptibility to high temperature cracking during overlay welding and reheat cracking on the lower layer side during overlay welding increases, and weldability deteriorates. Therefore, Al is set in the range of 1.0 to 2.8%. The preferable upper limit of Al is 2.5%, and the preferable lower limit is 2.0%.

<Ti:2.0~3.7%>
Tiは、NiAlのγ’相のAlサイトに置換固溶し、析出強化により特に高温域における強度を増し耐摩耗性を向上させる効果がある。この効果を得るには、Tiを2.0~3.7%の範囲とする必要がある。Tiが2.0%未満であると、高温域において肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、3.7%を超えると肉盛溶接時における高温割れや肉盛溶接時の下層側の再熱割れの感受性が高くなり溶接性が悪化する。また、イータ相(η相)を析出して肉盛層の強度を低下させる。そのため、Tiを2.0~3.7%の範囲とした。Tiの好ましい上限は3.5%であり、好ましい下限は3.0%である。
<Nb:0.5~1.5%>
Nbは、NiAlのγ’相のAlサイトに置換固溶し、析出強化により特に高温域における強度を増し耐摩耗性を向上させる効果がある。この効果を得るには、Nbを0.5~1.5%の範囲とする必要がある。Nbが0.5%未満であると、高温域において肉盛層の強度が不足し十分な耐摩耗性が得られない。一方、1.5%を超えると肉盛溶接時の凝固の際に著しく偏析し、高温割れの感受性が高くなって溶接性が悪化する。また、デルタ相(δ相)を析出し肉盛層の強度を低下させる。そのため、Nbを0.5~1.5%の範囲とした。Nbの好ましい上限は1.3%であり、好ましい下限は0.8%である。
<Ti: 2.0 to 3.7%>
Ti has the effect of increasing the strength and improving the wear resistance, particularly in the high temperature range, by substitutional solid solution in the Al site of the γ' phase of Ni 3 Al and precipitation strengthening. To obtain this effect, Ti needs to be in the range of 2.0 to 3.7%. If Ti is less than 2.0%, the strength of the overlay layer is insufficient in the high temperature range and sufficient wear resistance cannot be obtained. On the other hand, if Ti exceeds 3.7%, the susceptibility to high temperature cracking during overlay welding and reheat cracking on the lower layer side during overlay welding increases, and weldability deteriorates. In addition, eta phase (η phase) is precipitated to reduce the strength of the overlay layer. Therefore, Ti is set to the range of 2.0 to 3.7%. The preferable upper limit of Ti is 3.5%, and the preferable lower limit is 3.0%.
<Nb: 0.5 to 1.5%>
Nb dissolves in the Al site of the γ' phase of Ni 3 Al, and has the effect of increasing the strength and improving the wear resistance, particularly in the high temperature range, by precipitation strengthening. To obtain this effect, it is necessary to set Nb in the range of 0.5 to 1.5%. If Nb is less than 0.5%, the strength of the overlay layer is insufficient in the high temperature range, and sufficient wear resistance cannot be obtained. On the other hand, if Nb exceeds 1.5%, it segregates significantly during solidification during overlay welding, increasing the sensitivity to hot cracking and deteriorating the weldability. In addition, it precipitates delta phase (δ phase) and reduces the strength of the overlay layer. Therefore, Nb is set in the range of 0.5 to 1.5%. The preferable upper limit of Nb is 1.3%, and the preferable lower limit is 0.8%.

<B:0.0010~0.0070%>
Bは、結晶粒界を強化し高温の強度と延性を高める効果がある。この効果を得るには、Bを0.0010~0.0070%の範囲とする必要がある。Bが0.0010%未満であると、十分な粒界強化の効果を得られない。一方、0.0070%を超えると肉盛溶接時の凝固の際に、粒界に過度に偏析して低融点化合物を形成し、高温割れの感受性が高くなり溶接性が悪化する。そのため、Bを0.0010~0.0070%の範囲とした。Bの好ましい上限は0.0050%であり、好ましい下限は0.0020%である。
<残部:Ni及び不可避的不純物>
残部は実質的にNiであるが、製造上不可避的に混入する不純物は含まれる。特にSi、Mn、P、S、Zrは高温割れの感受性の悪化、Feはγ’相の析出量の低下、Oは肉盛溶接時の酸化スケールの巻込み、Nはブローホール発生の原因となり、これらの不純物元素は少ない方が好ましい。以下に、前記の不純物元素と、それ以外の代表的な不可避的不純物元素の好ましい許容範囲を記す。
Si≦1.0%、Mn≦1.0%、P≦0.01%、S≦0.01%、Fe≦1.0%、Zr≦0.03%、Mg≦0.005%、O≦0.03%、N≦0.05%。
<B: 0.0010 to 0.0070%>
B has the effect of strengthening the grain boundaries and increasing the strength and ductility at high temperatures. To obtain this effect, B needs to be in the range of 0.0010 to 0.0070%. If B is less than 0.0010%, sufficient grain boundary strengthening effect cannot be obtained. On the other hand, if B exceeds 0.0070%, it will excessively segregate at the grain boundaries during solidification during overlay welding to form low-melting point compounds, which will increase the susceptibility to hot cracking and deteriorate the weldability. Therefore, B is set in the range of 0.0010 to 0.0070%. The preferred upper limit of B is 0.0050%, and the preferred lower limit is 0.0020%.
<Balance: Ni and inevitable impurities>
The balance is essentially Ni, but contains impurities that are inevitably mixed in during manufacturing. In particular, Si, Mn, P, S, and Zr increase the susceptibility to hot cracking, Fe reduces the amount of γ' phase precipitation, O causes oxide scale to be rolled in during overlay welding, and N causes blowholes, so it is preferable that the amount of these impurity elements is small. Below, the preferred allowable ranges of the above impurity elements and other representative unavoidable impurity elements are described.
Si≦1.0%, Mn≦1.0%, P≦0.01%, S≦0.01%, Fe≦1.0%, Zr≦0.03%, Mg≦0.005%, O≦0.03%, N≦0.05%.

以上、説明する本発明で用いる熱間加工用工具の作業面に用いる肉盛層は、その合金組成により肉盛溶接時における溶接性が良好であり、かつ、肉盛金属として耐摩耗性が良好であるといった効果を有することから、熱間加工用工具の作業面に肉盛溶接する溶接金属に好適である。
なお、本発明で言う「熱間加工用工具」とは、熱間加工温度に加熱された被加工材に接触して押圧し、前記被加工材を塑性変形させるときに用いる工具であり、圧延、延伸等に用いられる各種ロールもこれに含まれる。そして、本発明の熱間加工用工具の好ましい形態としては、自由鍛造やラジアル鍛造に用いる熱間鍛造用金敷や被加工材を部分的に押圧する治具、熱間型打鍛造に用いる熱間鍛造用金型等が挙げられる。そして、本発明に係る上記の肉盛層の合金組成は、特に、熱間鍛造用金型や熱間鍛造用金敷の打撃面を構成する部分に肉盛溶接する肉盛溶接金属に好適である。
The build-up layer used on the working surface of the hot working tool used in the present invention described above has an alloy composition that provides good weldability during build-up welding, and also has the effect of providing good wear resistance as an overlay metal, making it suitable as a weld metal to be overlay welded onto the working surface of a hot working tool.
In the present invention, the term "hot working tool" refers to a tool used to contact and press a workpiece heated to a hot working temperature to plastically deform the workpiece, and includes various rolls used for rolling, drawing, etc. Preferred forms of the hot working tool of the present invention include a hot forging die used in free forging or radial forging, a jig for partially pressing a workpiece, and a hot forging die used in hot die forging. The alloy composition of the buildup layer according to the present invention is particularly suitable for the buildup weld metal to be built up and welded to the part constituting the striking surface of a hot forging die or a hot forging die.

<熱間加工用工具の製造方法>
次に、前述の組成を有する肉盛層を形成して、熱間加工用工具とするための一例を説明する。以下は、熱間鍛造用金型や熱間鍛造用金敷とするためのものである。
熱間鍛造用金型や熱間鍛造用金敷は基材と打撃面を構成する肉盛層から構成される。熱間鍛造用金型の大部分である基材は高い剛性を有する合金工具鋼であり、その材質としては、例えば、JIS-G4404に記された「熱間金型用」の合金やその改良合金であればよい。基材となる合金工具鋼は例えば800~1100℃の焼入れと、500~700℃の焼戻しを実施し、通常330~380HBW程度の硬さに調整すると良い。
また、本発明では合金工具鋼からなる基材と、前記の組成を有する肉盛層との間に、一種または二種の固溶強化型Ni基合金中間層を設けることができる。この中間層を介することで、基材に直接に肉盛層を形成(肉盛溶接)するよりも、各層の合金組成および機械特性が急激に変化しないため溶接性を向上させることができる。さらに、基材と打撃面を構成する肉盛層との間に発生する応力を緩和する効果が得られ、熱間鍛造用金型の使用寿命をさらに向上させることができる。この中間層はMIG溶接法などの一般的な溶接法で積層させればよい。
<Method of manufacturing hot working tools>
Next, an example of forming a build-up layer having the above-mentioned composition to produce a hot working tool will be described. The following is for producing a hot forging die or hot forging anvil.
Hot forging dies and hot forging anvils are composed of a base material and a build-up layer that constitutes the striking surface. The base material, which is the majority of the hot forging die, is an alloy tool steel having high rigidity, and its material may be, for example, an alloy for "hot die" as described in JIS-G4404 or an improved alloy thereof. The alloy tool steel that is the base material is, for example, quenched at 800 to 1100°C and tempered at 500 to 700°C, and is usually adjusted to a hardness of about 330 to 380 HBW.
In addition, in the present invention, one or two types of solid solution strengthened Ni-based alloy intermediate layers can be provided between the base material made of alloy tool steel and the buildup layer having the above composition. By using this intermediate layer, the alloy composition and mechanical properties of each layer do not change abruptly compared to forming the buildup layer directly on the base material (buildup welding), so that weldability can be improved. Furthermore, the effect of mitigating the stress generated between the base material and the buildup layer constituting the striking surface can be obtained, and the service life of the hot forging die can be further improved. This intermediate layer can be laminated by a general welding method such as MIG welding.

本発明において、打撃面に肉盛層を形成する方法として幾つかの方法がある。第1の方法としては、組成の異なる2種類の合金粉末を準備して、その異種の合金粉末を混合しながら、または、混合した合金粉末を肉盛用溶接金属として用いて肉盛溶接し、肉盛層を上記組成に調整しながら肉盛層を形成する方法である。この第1の方法では、何れか1種の合金粉末を入手可能な既存合金の合金粉末とし、もう1種の合金粉末の組成調整や配合比率を調整することで肉盛溶接後の組成を調整することが可能であり、既存合金の合金粉末を用いる点において、原料コストを低減することができる。また、組成の異なる2種類の合金粉末を用いれば、それぞれの合金粉末が有する特性の相乗効果も期待できる。
また、第2の方法としては、上記の化学組成の範囲内に成分調整した合金粉末を準備して肉盛用溶接金属とし、肉盛溶接する方法である。この第1または第2の方法を適宜選択して肉盛層を形成すると良い。
In the present invention, there are several methods for forming an overlay on the striking surface. The first method is a method in which two types of alloy powders with different compositions are prepared, and the different types of alloy powders are mixed or the mixed alloy powder is used as a weld metal for overlay welding, and the overlay is formed while adjusting the composition of the overlay. In this first method, one type of alloy powder is an alloy powder of an available existing alloy, and the composition after overlay welding can be adjusted by adjusting the composition and blending ratio of the other type of alloy powder, and the raw material cost can be reduced by using the alloy powder of an existing alloy. In addition, by using two types of alloy powders with different compositions, a synergistic effect of the properties of each alloy powder can be expected.
The second method is to prepare an alloy powder having a chemical composition within the above range, and use the alloy powder as a weld metal for overlay welding. The overlay layer can be formed by appropriately selecting the first or second method.

本発明において、打撃面に肉盛層を形成するには、肉盛溶接を順次繰返して積層させ、所定の厚みとする。そのための肉盛溶接方法としては、粉体プラズマ溶接法などの公知の技術を採用することができる。粉体プラズマ溶接法はTIG溶接法やガス溶接法よりも高速溶接が可能であり溶接組織が微細かつ緻密になるため、溶接性が問題となりやすい本発明のような析出強化型Ni基合金の溶接方法として適している。また、析出強化型Ni基合金は高温強度に優れている反面で難加工材であるため、ワイヤなどの溶接材料の製造が困難であるが、粉末形態であればガスアトマイズ法により比較的容易に製造できるといったメリットがある。
肉盛溶接によって、打撃面(作業面)に肉盛層を形成した熱間鍛造用金型または熱間鍛造用金敷は、そのまま熱間鍛造に使用できる。但し、肉盛溶接時に発生した応力の低減を行う場合には、500~620℃で1~10時間の熱処理を行って、応力を低減することも可能である。
また、肉盛溶接時においては基材の焼鈍温度未満の温度であれば、ヒートクラックを防止する目的で基材を予熱した状態で肉盛溶接しても良い。
In the present invention, to form an overlay layer on the striking surface, overlay welding is sequentially repeated to build up a predetermined thickness. As the overlay welding method for this purpose, a known technique such as powder plasma welding can be adopted. Powder plasma welding allows for faster welding than TIG welding or gas welding, and the weld structure becomes fine and dense, so it is suitable as a welding method for precipitation hardened Ni-based alloys such as those of the present invention, whose weldability is likely to be a problem, since the powder plasma welding method allows for faster welding than TIG welding or gas welding, and the weld structure becomes fine and dense. In addition, although the precipitation hardened Ni-based alloy has excellent high-temperature strength, it is a difficult-to-process material, so it is difficult to manufacture welding materials such as wires. However, if it is in powder form, it has the advantage that it can be manufactured relatively easily by gas atomization.
The hot forging die or hot forging anvil with a buildup layer formed on the striking surface (working surface) by buildup welding can be used for hot forging as is. However, if stress generated during buildup welding is to be reduced, it is also possible to reduce the stress by performing heat treatment at 500 to 620°C for 1 to 10 hours.
In addition, in order to prevent heat cracks, overlay welding may be performed in a state where the base material is preheated, so long as the temperature is lower than the annealing temperature of the base material.

(実施例1)
以下の実施例で本発明を更に詳しく説明する。実施例1では溶接性について説明する。
ラジアル鍛造用の熱間鍛造用金敷の基材としてJIS-SKT4相当合金を用意し、330~380HBW程度の硬さになるように熱処理した。
次に、基材の上に中間層として固溶強化型Ni基合金のHastelloy(登録商標) C相当合金をMIG溶接法により肉盛溶接した。このとき、後の打撃面(作業面)となる肉盛層と中間層との溶接性を改善する目的で、中間層の表面の酸化スケールをグラインダーで除いた。
中間層上に肉盛溶接するための肉盛用溶接金属の合金粉末として、2種類の異種合金粉末の混合粉末を準備しそれぞれの配合比率を変化させた。準備したのは、市販のAlloy U520相当合金(C0.016%、Cr19.2%、W1.0%、Mo6.0%、Co12.3%、Al2.0%、Ti3.2%、Nb0.01%未満、B0.0067%、残部Ni及び不可避的不純物)と、合金A(C0.024%、Cr13.5%、W5.8%、Mo6.0%、Co14.2%、Al2.2%、Ti3.4%、Nb1.9%、B0.0005%、残部Ni及び不可避的不純物)である。
Example 1
The present invention will be described in more detail in the following examples. Example 1 illustrates weldability.
An alloy equivalent to JIS-SKT4 was prepared as the base material for a hot forging anvil for radial forging, and was heat-treated to have a hardness of about 330 to 380 HBW.
Next, an intermediate layer was formed on the substrate by MIG welding using a solid-solution strengthened Ni-based alloy equivalent to Hastelloy (registered trademark) C. At this time, the oxide scale on the surface of the intermediate layer was removed with a grinder in order to improve the weldability between the intermediate layer and the buildup layer, which will later become the striking surface (working surface).
As alloy powders for overlay welding on the intermediate layer, mixtures of two different alloy powders were prepared with different mixing ratios: a commercially available alloy equivalent to Alloy U520 (C 0.016%, Cr 19.2%, W 1.0%, Mo 6.0%, Co 12.3%, Al 2.0%, Ti 3.2%, Nb less than 0.01%, B 0.0067%, balance Ni and unavoidable impurities) and Alloy A (C 0.024%, Cr 13.5%, W 5.8%, Mo 6.0%, Co 14.2%, Al 2.2%, Ti 3.4%, Nb 1.9%, B 0.0005%, balance Ni and unavoidable impurities).

ガスアトマイズ法により表1に示す化学組成を有する肉盛層を中間層の上に粉体プラズマ溶接法による肉盛溶接により、1層を2mmとして積層して打撃面を構成する肉盛層とした。なお、ガスアトマイズ法で作製した合金粉末は、粉体プラズマ溶接法に適した粒度とするため分級を実施し、63~250μmの粒度範囲とした。中間層の上の肉盛層は3層を積層するように肉盛溶接し(厚み約6mm)、1層肉盛溶接するごとに、割れや酸化スケールの噛み込みを防止するため、肉盛層の表面の酸化スケールをグラインダーで研削し除いた。
この実施例では肉盛用溶接金属を粉体プラズマ溶接法にて3層目まで溶接する際、各層の表面に目視で確認できる割れを1か所でも確認した場合、その肉盛用溶接金属は溶接性が不良(表中記号「×」)であると判定した。一方、3層目まで割れを確認できなかった場合、その肉盛用溶接金属の溶接性が良好(表中記号「〇」)であると判定した。
A build-up layer having the chemical composition shown in Table 1 was formed by gas atomization on the intermediate layer by powder plasma welding, with each layer being 2 mm thick, to form the build-up layer that constitutes the striking surface. The alloy powder produced by gas atomization was classified to have a particle size suitable for powder plasma welding, with a particle size range of 63 to 250 μm. The build-up layer on the intermediate layer was build-up welded so that three layers were stacked (thickness: approximately 6 mm), and after each layer, the oxide scale on the surface of the build-up layer was ground off with a grinder to prevent cracking and inclusion of oxide scale.
In this example, when the overlay weld metal was welded up to the third layer by the powder plasma welding method, if even one visually visible crack was found on the surface of each layer, the overlay weld metal was judged to have poor weldability (symbol "x" in the table). On the other hand, if no crack was found up to the third layer, the overlay weld metal was judged to have good weldability (symbol "o" in the table).

本発明例、従来例、比較例の溶接性の判定結果を表2に示す。本発明例と従来例の肉盛層の表面に割れは確認されず、本発明例と従来例の溶接性は良好であると判定された。一方、比較例は、2層目もしくは3層目で割れが確認されており、溶接性は不良であると判定された。比較例の場合、溶接性を悪化する一部の元素が、本発明で規定する化学組成の範囲を超えて合金中に含有しているため、肉盛溶接時の高温割れもしくは再熱割れが発生したものと考えられる。
以上の結果より、本発明例の肉盛層となる肉盛用溶接金属を用いれば肉盛溶接時における溶接性は良好であることが分かった。
The results of the evaluation of the weldability of the inventive example, conventional example, and comparative example are shown in Table 2. No cracks were found on the surface of the overlay layer of the inventive example and conventional example, and the weldability of the inventive example and conventional example was evaluated to be good. On the other hand, cracks were found in the second or third layer of the comparative example, and the weldability was evaluated to be poor. In the case of the comparative example, it is believed that high-temperature cracking or reheat cracking occurred during overlay welding because some elements that deteriorate weldability are contained in the alloy in excess of the range of the chemical composition specified in the present invention.
From the above results, it was found that the use of the build-up weld metal for the build-up layer of the invention example provided good weldability during build-up welding.

Figure 0007508873000001
Figure 0007508873000001

Figure 0007508873000002
Figure 0007508873000002

(実施例2)
実施例2では耐摩耗性について説明する。
実施例1において、溶接性が良好であると判定されたNo.1と2の本発明例およびNo.11の従来例の組成を有する肉盛層を打撃面(作業面)に肉盛溶接した熱間鍛造用金敷を作製し、この金敷を用いて熱間鍛造を実施した。熱間鍛造用金敷の作製方法は実施例1と同様であるが、肉盛の溶接層数は2層とした。このときの打撃面の肉盛層の厚みは約4mmである。
熱間鍛造は高速四面鍛造機(ラジアル鍛造機)を用いて実施した。高速四面鍛造は被鍛造材を間欠回転しつつ、X字状の位置に配置された4つの金敷で4方向から同時に鍛造し、相対的に移動させることで、材料を軸方向のみに延伸させる鍛造方法である。
まずNo.1の本発明例とNo.11の従来例の肉盛用溶接金属を肉盛溶接した熱間鍛造用金敷の耐摩耗性を評価した。本発明例と従来例との耐摩耗性を正確に比較するため、高速四面鍛造機に配置される4つの熱間鍛造用金型のうち、対角線上の2つの金型(型1と型2)にNo.1の本発明例、もう2つの金型(型3と型4)にNo.11の従来例の肉盛層を有する金敷を配置した。
耐摩耗性は熱間鍛造用金敷の打撃面の摩耗量を測定することで評価した。このとき打撃面の最も摩耗した位置において、摩耗前の打撃面の表面位置を基準として摩耗深さを深さゲージにより測定し、摩耗量と定義した。
鍛造条件として、被鍛造材として析出強化型Ni基合金のAlloy718相当合金を4本鍛造し、続けて従来例と同一合金であるAlloy U520相当合金を15本鍛造した。鍛造時の鍛造荷重は700~750tonであった。また、熱間鍛造用金敷の打撃面の温度は鍛造時に初期温度から最高で約800℃まで上昇した。
鍛造後の各熱間鍛造用金敷の摩耗量の結果を表3に示す。なお、被鍛造材である析出強化型Ni基合金は合計で19本鍛造しており、本発明例と従来例の1本鍛造当りの摩耗量は、平均摩耗量を合計の鍛造本数で除して求めた。
Example 2
In Example 2, the wear resistance will be described.
In Example 1, an anvil for hot forging was prepared by overlay welding an overlay having the composition of the inventive examples No. 1 and 2 and the conventional example No. 11, which were judged to have good weldability, onto the striking surface (working surface), and hot forging was carried out using this anvil. The method of preparing the anvil for hot forging was the same as in Example 1, but the number of welded layers was two. The thickness of the overlay on the striking surface in this case was about 4 mm.
Hot forging was performed using a high-speed four-sided forging machine (radial forging machine). High-speed four-sided forging is a forging method in which the material to be forged is simultaneously forged from four directions with four anvils arranged in an X-shape while rotating intermittently, and the material is stretched only in the axial direction by moving the anvils relative to one another.
First, the wear resistance of hot forging anvils with overlay welded overlay weld metals of No. 1, an example of the present invention, and No. 11, a conventional example, was evaluated. In order to accurately compare the wear resistance of the examples of the present invention and the conventional examples, anvils with overlay layers of No. 1, an example of the present invention, were placed in two dies (dies 1 and 2) diagonally out of four hot forging dies arranged in a high-speed four-sided forging machine, and anvils with overlay layers of No. 11, a conventional example, were placed in the other two dies (dies 3 and 4).
The wear resistance was evaluated by measuring the amount of wear on the striking surface of the hot forging anvil. At the most worn position on the striking surface, the wear depth was measured with a depth gauge based on the surface position of the striking surface before wear, and this was defined as the amount of wear.
As for the forging conditions, four pieces of alloy equivalent to Alloy 718, a precipitation-strengthened Ni-based alloy, were forged as the forged material, followed by 15 pieces of alloy equivalent to Alloy U520, which is the same alloy as the conventional example. The forging load during forging was 700 to 750 tons. The temperature of the striking surface of the hot forging anvil rose from the initial temperature to a maximum of approximately 800°C during forging.
The results of the wear amount of each hot forging anvil after forging are shown in Table 3. A total of 19 pieces of precipitation hardened Ni-based alloy were forged as the forged material, and the wear amount per forging of the inventive example and the conventional example was calculated by dividing the average wear amount by the total number of forgings.

Figure 0007508873000003
Figure 0007508873000003

No.2の本発明例とNo.11の従来例との比較も同様に実施した。熱間鍛造用金敷の作製方法および摩耗量の評価方法は上述の方法と全く同様である。一方、鍛造条件は異なっており、この場合の被鍛造材は1種類であり析出強化型Ni基合金のAlloy718が13本であった。鍛造時の鍛造荷重は700~750tonであった。また、熱間鍛造用金敷の打撃面の温度は鍛造時に初期温度から最高で約800℃まで上昇した。鍛造後の各熱間鍛造用金敷の摩耗量の結果を表4に示す。 A comparison was also made between the example of the present invention (No. 2) and the conventional example (No. 11) in the same manner. The method of making the hot forging anvil and the method of evaluating the wear amount were exactly the same as those described above. However, the forging conditions were different, and in this case, only one type of material was forged, 13 pieces of Alloy 718, a precipitation-strengthened Ni-based alloy. The forging load during forging was 700 to 750 tons. In addition, the temperature of the impact surface of the hot forging anvil rose from the initial temperature to a maximum of approximately 800°C during forging. The results of the wear amount of each hot forging anvil after forging are shown in Table 4.

Figure 0007508873000004
Figure 0007508873000004

表3と表4の結果より、従来例と比較し本発明例の1本鍛造当りの摩耗量は減少しており、本発明例の耐摩耗性が良好であることが分かる。摩耗量が鍛造本数に比例すると考えると、熱間鍛造用金敷の使用寿命は大きく向上するといえる。
また、No.1とNo.2の本発明例を比較した場合、1本鍛造当りの摩耗量はNo.2の方がやや良好であり、No.1の固溶強化元素および析出強化元素の含有量がNo.2よりも高いことが影響していると考えられる。
From the results of Tables 3 and 4, it is clear that the wear amount per forging of the examples of the present invention is smaller than that of the conventional examples, and that the wear resistance of the examples of the present invention is good. Considering that the wear amount is proportional to the number of forgings, it can be said that the service life of the hot forging anvil is greatly improved.
In addition, when comparing No. 1 and No. 2, which are examples of the present invention, the wear amount per forging is slightly better in No. 2, which is thought to be influenced by the fact that No. 1 contains more solid solution strengthening elements and precipitation strengthening elements than No. 2.

(実施例3)
実施例3では本発明例と従来例の各温度における強度について説明する。
表1に示した化学組成のうち、No.1の本発明例とNo.11の従来例を、実施例1と同様の方法で20mmの厚さまで肉盛溶接した。この肉盛層より引張試験片を複数本採取し、常温(22℃)から高温(900℃)までの各温度で引張試験を実施した。引張試験による各温度における0.2%耐力の結果を図1に示す。
従来例と比較し、どの温度においても本発明例の0.2%耐力が高く、本発明例では広い温度範囲にわたって強度が増していることがわかる。従来例のAlloy U520相当合金も固溶強化元素であるMoを多く含有するため、高温域に強度ピークを持たず低温域から高い強度を有するが、本発明例はその強度をすべての測定温度において上回っている。
前述のように熱間鍛造用金型や熱間鍛造用金敷は、熱飽和時の高温域の強度だけではなく、熱飽和に至るまでの低温域においても高い強度を付与する必要があり、本発明例を用いればそれを達成できることが分かる。
Example 3
In Example 3, the strength at each temperature of an example of the present invention and a conventional example will be described.
Of the chemical compositions shown in Table 1, No. 1, the inventive example, and No. 11, the conventional example, were overlay welded to a thickness of 20 mm in the same manner as in Example 1. A number of tensile test pieces were taken from the overlay layer, and tensile tests were carried out at various temperatures from room temperature (22°C) to high temperature (900°C). The results of the 0.2% proof stress at each temperature from the tensile test are shown in Figure 1.
Compared to the conventional example, the 0.2% proof stress of the inventive example is higher at all temperatures, and it is clear that the inventive example has increased strength over a wide temperature range. The conventional alloy equivalent to Alloy U520 also contains a large amount of Mo, which is a solid solution strengthening element, so it does not have a strength peak in the high temperature range and has high strength from the low temperature range, but the inventive example exceeds that strength at all measurement temperatures.
As mentioned above, hot forging dies and hot forging anvils need to provide high strength not only in the high temperature range at the time of thermal saturation, but also in the low temperature range up to the time of thermal saturation, and it can be seen that this can be achieved by using the examples of the present invention.

以上の実施例の結果より、本発明例は肉盛溶接時において高温割れや再熱割れは確認されず溶接性が良好であることが確認された。また、本発明例の肉盛用溶接金属を熱間鍛造用金型の打撃面として使用した場合、従来例のAlloy U520相当合金よりも耐摩耗性が優れていることが確認された。さらに、引張試験の結果から、従来例のAlloy U520相当合金と比較して、広い温度範囲にわたって本発明例の強度が高いことがわかった。
したがって、本発明例の肉盛用溶接金属による肉盛溶接を作業面に適用した場合、肉盛溶接時の溶接性を悪化させず、広い温度範囲にわたって肉盛金属の強度を増して耐摩耗性を向上し、熱間鍛造用金型を初めとする、各種の熱間加工用工具の使用寿命を長くできると言える。

From the results of the above examples, it was confirmed that the examples of the present invention had good weldability with no hot cracking or reheat cracking observed during overlay welding. In addition, it was confirmed that when the overlay weld metal of the examples of the present invention was used as the striking surface of a hot forging die, it had better wear resistance than the alloy equivalent to Alloy U520 of the conventional example. Furthermore, the results of the tensile test showed that the strength of the examples of the present invention was higher over a wide temperature range than that of the alloy equivalent to Alloy U520 of the conventional example.
Therefore, when the overlay welding using the overlay weld metal of the present invention is applied to a work surface, it can be said that the weldability during overlay welding is not deteriorated, the strength of the overlay metal is increased over a wide temperature range, and the wear resistance is improved, thereby extending the service life of various hot working tools, including hot forging dies.

Claims (2)

作業面にNi基合金でなる肉盛層を有する熱間加工用工具において、前記肉盛層の組成が、質量%で、C:0.010~0.030%、Cr:13.0~18.0%、W:3.0~5.0%、Mo:5.0~7.0%、Co:12.0~15.0%、Al:1.0~2.8%、Ti:2.0~3.7%、Nb:0.5~1.5%、B:0.0010~0.0070%、残部はNi及び不可避的不純物でなる熱間加工用工具。 A hot working tool having a build-up layer made of a Ni-based alloy on the working surface, the build-up layer having a composition, in mass %, of C: 0.010-0.030%, Cr: 13.0-18.0%, W: 3.0-5.0%, Mo: 5.0-7.0%, Co: 12.0-15.0%, Al: 1.0-2.8%, Ti: 2.0-3.7%, Nb: 0.5-1.5%, B: 0.0010-0.0070%, with the balance being Ni and unavoidable impurities. 前記熱間加工用工具が熱間鍛造用金型または熱間鍛造用金敷である請求項1に記載の熱間加工用工具。

2. The hot working tool according to claim 1, wherein the hot working tool is a hot forging die or a hot forging anvil.

JP2020100586A 2020-06-10 2020-06-10 Hot working tools Active JP7508873B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020100586A JP7508873B2 (en) 2020-06-10 2020-06-10 Hot working tools
JP2024094592A JP2024133491A (en) 2020-06-10 2024-06-11 Method for manufacturing hot working tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100586A JP7508873B2 (en) 2020-06-10 2020-06-10 Hot working tools

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024094592A Division JP2024133491A (en) 2020-06-10 2024-06-11 Method for manufacturing hot working tools

Publications (2)

Publication Number Publication Date
JP2021194653A JP2021194653A (en) 2021-12-27
JP7508873B2 true JP7508873B2 (en) 2024-07-02

Family

ID=79196794

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020100586A Active JP7508873B2 (en) 2020-06-10 2020-06-10 Hot working tools
JP2024094592A Pending JP2024133491A (en) 2020-06-10 2024-06-11 Method for manufacturing hot working tools

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024094592A Pending JP2024133491A (en) 2020-06-10 2024-06-11 Method for manufacturing hot working tools

Country Status (1)

Country Link
JP (2) JP7508873B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126086A1 (en) 2013-02-13 2014-08-21 日立金属株式会社 Metal powder, tool for hot working and method for manufacturing tool for hot working
JP2015155115A (en) 2012-03-30 2015-08-27 日立金属株式会社 hot forging die

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155115A (en) 2012-03-30 2015-08-27 日立金属株式会社 hot forging die
WO2014126086A1 (en) 2013-02-13 2014-08-21 日立金属株式会社 Metal powder, tool for hot working and method for manufacturing tool for hot working

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大野丈博,III. 耐熱金属材料の開発動向 1.超耐熱合金,特殊鋼,60巻6号,日本,一般社団法人特殊鋼倶楽部,2011年11月01日,第26ページ-第30ページ

Also Published As

Publication number Publication date
JP2024133491A (en) 2024-10-02
JP2021194653A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
AU2007283164B2 (en) Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
JP5773070B2 (en) Hot forging die
JP5601607B1 (en) Metal powder, hot working tool, and method of manufacturing hot working tool
JP2009506220A (en) Steel composition, method for forming the same, and article formed therefrom
JP6719216B2 (en) α-β type titanium alloy
JP3580441B2 (en) Ni-base super heat-resistant alloy
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
EP3483295A1 (en) Repair-welding material for die
JP4877293B2 (en) Manufacturing method of anvil for forging
WO2023145423A1 (en) Precipitation-hardening-type austenitic alloy steel material and method for manufacturing same, and precipitation-hardening-type austenitic alloy heat-treated steel material and method for manufacturing same
JP5437669B2 (en) Hot and hot forging die
JP7508873B2 (en) Hot working tools
JP2013052441A (en) Anvil for hot forging and hot forging method
JP4645303B2 (en) Overlay welding material for hot forging die and hot forging die using the welding material
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP3357863B2 (en) Precipitation hardening stainless steel and method for producing the product
JPH0547611B2 (en)
JP3566162B2 (en) Hot tool steel with excellent weldability
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP3821974B2 (en) Cold work tool steel
WO2016152663A1 (en) α-β TITANIUM ALLOY
WO2025028641A1 (en) Method for producing precipitation hardening austenitic alloy steel material, hot-worked precipitation hardening austenitic alloy material, and precipitation hardening austenitic alloy steel material
JPH08260082A (en) Ni-be alloy for explosion-proof tool
JP2019111573A (en) Die repair weld material
WO2025028642A1 (en) Precipitation hardening type austenitic alloy steel material production method, precipitation hardening type austenitic alloy hot worked material, and precipitation hardening type austenitic alloy steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240603

R150 Certificate of patent or registration of utility model

Ref document number: 7508873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150