JP3821974B2 - Cold work tool steel - Google Patents
Cold work tool steel Download PDFInfo
- Publication number
- JP3821974B2 JP3821974B2 JP00844099A JP844099A JP3821974B2 JP 3821974 B2 JP3821974 B2 JP 3821974B2 JP 00844099 A JP00844099 A JP 00844099A JP 844099 A JP844099 A JP 844099A JP 3821974 B2 JP3821974 B2 JP 3821974B2
- Authority
- JP
- Japan
- Prior art keywords
- carbides
- carbide
- steel
- tool steel
- equivalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000822 Cold-work tool steel Inorganic materials 0.000 title description 3
- 150000001247 metal acetylides Chemical group 0.000 claims description 30
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 238000005054 agglomeration Methods 0.000 claims description 9
- 230000002776 aggregation Effects 0.000 claims description 9
- 229910001315 Tool steel Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 9
- 238000005496 tempering Methods 0.000 description 8
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 239000002436 steel type Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金型寿命に優れた冷間工具鋼に関するものである。
【0002】
【従来の技術】
従来、冷間加工用工具には、JIS−SKD11が広く使用されている。しかし、近年、塑性加工技術の進歩や被加工材の高強度化にともない、使用される冷間加工用工具への負荷応力が大きくなっている。そのため、JIS−SKD11では硬度や靱性の不足により、対応できない場合が多くなっている。一方で、SKD11を改良した種々の冷間工具鋼が提案されており、最近では、炭化物の量、サイズを規定した冷間工具鋼も提案され、型寿命の向上が図られて、例えば特開平1−201442号公報、特開平2−247357号公報、特開平5−156407号公報、および特開昭59−179762号公報の発明が提案されている。
【0003】
この特開平1−201442号公報は、重量%で、C:0.90〜1.35%、Si:0.70〜1.40%、Mn:1.0%以下、S:0.004%以下、Cr:8.0〜10.0、MoとWの1種または2種をMo+W/2で1.5〜2.5%、VとNbの1種または2種をV+Nb/2で0.15〜2.5%を含み、残部Feおよび不可避的不純物からなり、さらに焼入れ焼もどし組織において、M7 C3 型炭化物の面積率を2%以上9%以下、MC炭化物の面積率を2.5%以下とした転造ダイス用鋼にある。確かに、この発明には、炭化物についての面積率、および粒径を規制しているが、しかし、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は金型寿命のばらつき、極度な低寿命をもたらす因子が炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかると言うものである。
【0004】
また、特開平2−247357号公報は、上述の特開平1−201442号公報に、さらに、不純物であるAs,Sn,Sb,Cu,B,Pb,Biの合計量が0.13%以下からなる転造ダイス用鋼にある。さらに、特開平5−156407号公報は、焼入焼もどし組織において、粒径2μm以上のMC型残留炭化物とM6 C型残留炭化物の1種または2種の合計の面積率が3%以下、粒径2μm以上のM7 C3 型残留炭化物の面積率が1%以下と規制したものである。いずれも、特開平1−201442号公報と同様に、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は、前述のように、炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかると言うものである。
【0005】
さらに、特開昭59−179762号公報は、C:0.75〜1.75%、Si:0.5〜3.0%、Mn:0.1〜2.0%、Cr:5.0〜11.0%、Mo:1.3〜5.0%、V:0.1〜5.0%を含有し、残部Feおよび不純物からなり、450℃以上の温度で焼もどしされてなる冷間工具鋼であり、また、特開平5−156407号公報は、主に靱性の向上、炭化物の連鎖状分布を経路とした亀裂伝播の抑制を目的としたものである。これに対し、本発明は前述同様に、炭化物の凝集に着目し、炭化物凝集サイズを規定することにより、金型寿命のばらつき、および極度な低寿命金型を低減し、金型の平均寿命の向上をはかることにある。
【0006】
【発明が解決しようとする課題】
上述した従来技術は、靱性また強度の点から炭化物サイズを規制したものである。この理由は、一次炭化物の欠落による微少欠損を生じたり、クラックの進展経路となることを防ぐためである。これに対し、近年の塑性加工技術の進歩や被加工材の高強度化に伴い、工具の耐摩耗性向上を目的に、さらに耐疲労性を兼ね供えた金型に適した工具鋼が必要とされることから、本発明は、十分な耐摩耗性を確保し、耐疲労性が劣化しない程度の炭化物を含有した強度の優れた高寿命が得られる冷間工具鋼を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
その発明の要旨とするところは、
(1)重量%で、C:0.65〜1.3%、Si:2.0%以下、Mn:0.1〜2.0%、Cr:5.0〜13.0%、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%、残部Feおよび不可避的不純物よりなり、b/a≦0.5である炭化物の凝集サイズ(円相当径)が100μm以下とすることを特徴とする冷間工具鋼。
ただし、a:隣り合う二個の炭化物の重心間距離
b:最短炭化物間距離
(2)前記(1)記載の鋼に、S:0.01〜0.10%添加することを特徴とする冷間工具鋼にある。
【0008】
【発明の実施の形態】
以下に、本発明鋼の各化学成分の作用およびその限定理由を説明する。
C:0.65〜1.3%
Cは、焼入焼戻により、十分なマトリックス硬さを与えると共に、Cr,Mo,V,Nbなどと結合して炭化物を形成し、硬さおよび耐摩耗性を与える元素である。しかし、添加量が多過ぎると、凝固時に粗大炭化物が過剰に析出し、靱性、耐疲労特性を劣化させることから、Cの上限を1.3%とした。一方、0.65%未満では、十分な二次硬化硬さが得られないので、その下限を0.65%としたが、強度と靱性の最適バランスを得るためには、0.75〜0.95%の範囲が望ましい。
【0009】
Si:2.0%以下
Siは、主に脱酸剤として添加されると共に、耐酸化性および焼入性に有効な元素であると共に、焼戻過程において炭化物の凝集を抑え二次硬化を促進する元素である。しかし、2.0%を越えて添加すると、靱性を低下させるので、その上限を2.0%とした。
Mn:0.1〜2.0%
Mnは、Siと同様に脱酸剤として添加し鋼の清浄度を高めると共に焼入れ性を高める元素である。しかしながら、2.0%を越えて添加すると、熱間加工性を阻害するうえに靱性を劣化させるので、その上限を2.0%とした。
【0010】
Cr:5.0〜13.0%
Crは、焼入れ性を高めると共に、焼戻軟化抵抗を高める有効な元素である。この効果を満足するためには、少なくとも5.0%以上必要である。従って、その下限を5.0%とした。一方、Crは、凝固時にCと結合して巨大一次炭化物を形成し易く、過剰な添加は、靱性および耐疲労特性を劣化させるため、その上限を13.0%、とした。好ましくは、7.5〜8.5%とした。
【0011】
MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、
MoおよびWは、共に微細な炭化物を形成し、二次硬化に寄与する重要な元素であると共に、耐軟化抵抗性を改善する元素である。ただし、その効果はMoの方がWよりも2倍強く、同じ効果を得るのに、WはMoの2倍必要である。この両元素の効果は、Mo当量(Mo+1/2W)で表すことができる。本発明成分系においては、Mo当量で少なくとも0.5%以上が必要である。逆に、Mo当量の過剰添加は、靱性の低下を招くので、その上限を5.0%とした。好ましくは1.5〜3.5%とした。
【0012】
VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%
V、Nbは、共に微細な炭化物を形成し二次硬化に寄与し、耐軟化抵抗性を改善する重要な元素であると共に、結晶粒微細化し、耐摩耗性を向上させる元素である。ただし、その効果はVの方がNbよりも2倍強く、同じ効果を得るのに、NbはVの2倍必要である。この両元素の効果はV当量(V+1/2Nb)で表すことができる。本発明成分系においては、高温焼戻し硬度を得るためには、V当量で少なくとも0.1%以上が必要である。過剰な添加は靱性を低下させ、硬質表面層との密着性を阻害するため、その上限を2.5%とした。
S:0.01〜0.10%
Sは快削性を確保するために必要な元素である。しかし、過剰な添加は靱性を低下させ、熱間加工性を劣化させるため、0.01〜0.10%とした。
【0013】
次に、冷間工具鋼において、凝固時に晶出する共晶炭化物であるが、従来は靱性、または強度の点から炭化物のサイズを規定していたものである。その理由は、一次炭化物の欠落による微小欠損を生じたり、クラックの進展経路となることを防ぐために規制したものである。しかし、この点を詳しく究明した結果、本発明の最大の特徴は、特に冷間工具鋼としての金型ダイス等の工具寿命を左右する要因としての炭化物の亀裂発生および亀裂伝播を抑制する必要から、炭化物の凝集サイズを100μm以下とすることにより、炭化物における亀裂発生および亀裂伝播が抑制される。
【0014】
図1は炭化物凝集サイズ距離関係を示す図である。図1に示すように、炭化物の規定方法としては、測定面を引張−圧縮または引張−引張疲労破面とし、隣り合う二個の炭化物の重心間距離をa、最短炭化物間距離をbとしたとき、b/a≦0.5となる箇所を炭化物凝集部とした。また、炭化物凝集サイズは、画像処理装置により、個々の炭化物の面積の和から算出した円相当径とした。図1(a)および図1(b)はb/a≦0.5の場合であり、、図1(c)はb/a>0.5の状態を示している。疲労特性に悪影響を及ぼすのは近接または隣接した炭化物の凝集部であり、面積的に同じであっても炭化物間距離が離れていれば、疲労に悪影響を及ぼさないものであることが判った。従って、炭化物間距離を表すb/aによって定め、b/a≦0.5であることを条件とした。
【0015】
【実施例】
以下に、本発明を実施例に基づいて具体的に説明する。
表1に示す組成の鋼600kgを電気溶解炉にて溶製し、角50mmへ鍛伸後焼なましを行い供試材とした。各試験片は1030〜1050℃に30分保持後、空冷し、500〜580℃で60分保持後空冷処理を2回施した。また、被削性については、鍛伸後焼なまし後NCフライス、φ13エンドミル、軸方向10mm×1.2mm切り込み、回転数1100rpm、切削速度35m/分、5m加工後のエンドミル摩耗量を測定、比較鋼Hの摩耗量を1として表2に示す。
【0016】
【表1】
【0017】
硬さ測定は、焼入焼戻後、常温、ロックウエルCスケールで測定した。また、抗折試験は、焼入焼戻しを施した縦5×横9×長さ60mmの試験片を用い、抗折力、たわみ量測定した。さらに、大越式摩耗試験は、SCM420(86HRB)を相手材とし、摩耗距離200m、最終荷重62Nの条件下で試験を行った。試験結果は比較鋼Hの摩耗量を100として表した。さらに、引張圧縮疲労試験は、焼入焼戻しを施した平行部:径5×15の試験片を用い、油圧サーボ試験機にて試験を行った。試験条件は、応力振幅1500MPa、応力比R=−1、室温にて行った。また、実機での金型試験は、径50×100mmの鍛造用金型を作製し、SCM420を被加工材として試験を行った。金型の寿命要因は、鋼種A〜Gは本発明であり、鋼種H,Iは比較例で鋼種Hは炭化物の割れに起因する廃却であり、鋼種Iは摩耗に起因する廃却であった。
【0018】
その結果を表2に示す。表2に示すように、本発明鋼A〜Gはいずれも炭化物凝集サイズが100μm以下であり、その場合の硬さ(HRC)は、いずれも59HRC以上の硬さを維持した上で、従来の冷間工具鋼H,Iよりもはるかに優れた引張圧縮疲労強度、金型寿命延長をはかることが出来た。
【0019】
【表2】
【0020】
【発明の効果】
以上述べたように、本発明鋼は、冷間工具鋼としての炭化物凝集サイズを規定することにより、極めて優れた型寿命を確保することが可能となり、金型用工具鋼として従来のものに比べて経済的で極めて有利なものとなった。
【図面の簡単な説明】
【図1】炭化物凝集サイズ距離関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold tool steel having an excellent mold life.
[0002]
[Prior art]
Conventionally, JIS-SKD11 has been widely used for cold working tools. However, in recent years, with the progress of plastic working technology and the increase in the strength of workpieces, the load stress on the cold working tool used is increasing. For this reason, in JIS-SKD11, there are many cases that cannot be handled due to lack of hardness and toughness. On the other hand, various cold tool steels with improved SKD11 have been proposed, and recently, cold tool steels with prescribed amounts and sizes of carbides have also been proposed to improve the mold life. Japanese Patent Laid-Open Nos. 1-201442, 2-247357, 5-156407, and 59-179762 have been proposed.
[0003]
In JP-A-1-2014442, C: 0.90 to 1.35%, Si: 0.70 to 1.40%, Mn: 1.0% or less, S: 0.004% by weight. Hereinafter, Cr: 8.0 to 10.0, one or two of Mo and W are 1.5 to 2.5% in Mo + W / 2, and one or two of V and Nb is 0 in V + Nb / 2. In the quenching and tempering structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is 2 It is in steel for rolling dies with 5% or less. Certainly, the present invention regulates the area ratio and particle size of carbides, but mainly aimed at improving toughness and suppressing crack propagation through the chain distribution of carbides. It is. On the other hand, the present invention focuses on the agglomeration of carbides, which is a factor that brings about variations in mold life and extremely low life. Is to improve the average life of the mold.
[0004]
Further, Japanese Patent Laid-Open No. 2-247357 discloses that the total amount of impurities As, Sn, Sb, Cu, B, Pb, Bi is 0.13% or less in addition to the above-mentioned Japanese Patent Laid-Open No. 1-201442. It is in steel for rolling dies. Further, JP-A-5-156407 discloses that in the quenching and tempering structure, the total area ratio of one or two of MC type residual carbide having a particle size of 2 μm or more and M 6 C type residual carbide is 3% or less, The area ratio of M 7 C 3 type residual carbide having a particle size of 2 μm or more is regulated to 1% or less. In any case, as in JP-A-1-2014442, the purpose is mainly to improve toughness and to suppress crack propagation through a chain distribution of carbides. On the other hand, as described above, the present invention pays attention to the agglomeration of carbides and regulates the agglomeration size of the carbide, thereby reducing the variation in mold life and the extremely low life mold, and the average of the molds. That is to improve the service life.
[0005]
Furthermore, JP-A-59-179762 discloses C: 0.75 to 1.75%, Si: 0.5 to 3.0%, Mn: 0.1 to 2.0%, Cr: 5.0 -11.0%, Mo: 1.3-5.0%, V: 0.1-5.0%, consisting of the balance Fe and impurities, tempered at a temperature of 450 ° C or higher Japanese Patent Application Laid-Open No. 5-156407 mainly aims at improving toughness and suppressing crack propagation through a chain distribution of carbides. On the other hand, as described above, the present invention pays attention to the agglomeration of carbides and regulates the agglomeration size of the carbide, thereby reducing variations in mold life and extremely low-life molds, and reducing the average life of the mold. The goal is to improve.
[0006]
[Problems to be solved by the invention]
The prior art described above regulates the carbide size in terms of toughness and strength. The reason for this is to prevent the occurrence of minute defects due to the loss of primary carbides and the path of crack propagation. On the other hand, with the recent progress in plastic working technology and the increased strength of workpieces, tool steel suitable for molds that also have fatigue resistance is required for the purpose of improving wear resistance of tools. Therefore, an object of the present invention is to provide a cold work tool steel that can secure sufficient wear resistance and can provide a long life with excellent strength and containing carbide to the extent that fatigue resistance does not deteriorate. To do.
[0007]
[Means for Solving the Problems]
The gist of the invention is that
(1) By weight, C: 0.65 to 1.3%, Si: 2.0% or less, Mn: 0.1 to 2.0%, Cr: 5.0 to 13.0%, Mo or Any one or two of W is Mo equivalent (Mo + 1 / 2W): 0.5 to 5.0%, and any one or two of V or Nb is V equivalent (V + 1 / 2Nb): 0.1 A cold tool steel comprising a carbide agglomerate size (equivalent circle diameter) of 100 μm or less, comprising ~ 2.5%, balance Fe and inevitable impurities, and b / a ≦ 0.5.
Where a: distance between the centers of gravity of two adjacent carbides
b: Shortest distance between carbides (2) In the cold work tool steel, S: 0.01 to 0.10% is added to the steel described in (1).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Below, the effect | action of each chemical component of this invention steel and its reason for limitation are demonstrated.
C: 0.65 to 1.3%
C is an element that imparts sufficient matrix hardness by quenching and tempering, and forms carbides by combining with Cr, Mo, V, Nb, etc., and imparts hardness and wear resistance. However, if the addition amount is too large, coarse carbides are excessively precipitated during solidification, and the toughness and fatigue resistance are deteriorated. Therefore, the upper limit of C is set to 1.3%. On the other hand, if it is less than 0.65%, sufficient secondary curing hardness cannot be obtained, so its lower limit was made 0.65%, but in order to obtain the optimum balance between strength and toughness, 0.75 to 0 A range of .95% is desirable.
[0009]
Si: 2.0% or less Si is mainly added as a deoxidizer, and is an element effective for oxidation resistance and hardenability, and suppresses agglomeration of carbides during the tempering process and promotes secondary hardening. Element. However, if added over 2.0%, the toughness is lowered, so the upper limit was made 2.0%.
Mn: 0.1 to 2.0%
Mn is an element that is added as a deoxidizer in the same way as Si to increase the cleanliness of steel and enhance the hardenability. However, if added over 2.0%, hot workability is impaired and toughness is deteriorated, so the upper limit was made 2.0%.
[0010]
Cr: 5.0 to 13.0%
Cr is an effective element that enhances hardenability and enhances temper softening resistance. In order to satisfy this effect, at least 5.0% or more is necessary. Therefore, the lower limit was made 5.0%. On the other hand, Cr is liable to bond with C during solidification to form a giant primary carbide, and excessive addition deteriorates toughness and fatigue resistance, so the upper limit was made 13.0%. Preferably, it was 7.5 to 8.5%.
[0011]
Any one or two of Mo or W is Mo equivalent (Mo + 1 / 2W): 0.5-5.0%,
Mo and W are both elements that form fine carbides and contribute to secondary hardening, and are elements that improve resistance to softening. However, the effect of Mo is twice as strong as that of W. To obtain the same effect, W needs to be twice that of Mo. The effect of both elements can be expressed by Mo equivalent (Mo + 1 / 2W). In the component system of the present invention, Mo equivalent of at least 0.5% is necessary. On the contrary, excessive addition of Mo equivalent causes a decrease in toughness, so the upper limit was made 5.0%. Preferably it was 1.5 to 3.5%.
[0012]
One or two of V or Nb is equivalent to V equivalent (V + 1 / 2Nb): 0.1 to 2.5%
V and Nb are both important elements that form fine carbides and contribute to secondary hardening, improve softening resistance, and refine crystal grains to improve wear resistance. However, the effect of V is twice as strong as that of Nb, and Nb needs to be twice that of V to obtain the same effect. The effect of both elements can be expressed in terms of V equivalent (V + 1 / 2Nb). In the component system of the present invention, in order to obtain high temperature tempering hardness, V equivalent is required to be at least 0.1% or more. Excessive addition reduces toughness and inhibits adhesion to the hard surface layer, so the upper limit was made 2.5%.
S: 0.01-0.10%
S is an element necessary for ensuring free machinability. However, excessive addition reduces toughness and deteriorates hot workability, so it was made 0.01 to 0.10%.
[0013]
Next, eutectic carbides that crystallize during solidification in cold tool steels are conventionally defined in terms of toughness or strength. The reason for this is to prevent the occurrence of minute defects due to the loss of primary carbides and to prevent cracks from developing. However, as a result of investigating this point in detail, the greatest feature of the present invention is that it is necessary to suppress crack initiation and crack propagation of carbides as a factor that affects tool life such as a die die as a cold tool steel. By making the aggregate size of the carbides 100 μm or less, crack generation and crack propagation in the carbides are suppressed.
[0014]
FIG. 1 is a diagram showing a relationship between carbide aggregate size distances. As shown in FIG. 1, as a method for defining carbides, the measurement surface is a tensile-compressed or tensile-tensile fatigue fracture surface, the distance between the centers of gravity of two adjacent carbides is a, and the shortest carbide distance is b. At that time, a part where b / a ≦ 0.5 was defined as a carbide aggregate part. The carbide aggregate size was an equivalent circle diameter calculated from the sum of the areas of individual carbides by an image processing apparatus. FIGS. 1A and 1B show the case of b / a ≦ 0.5, and FIG. 1C shows the state of b / a> 0.5. It has been found that adjacent or adjacent agglomerates of carbides adversely affect the fatigue characteristics, and even if the area is the same, if the distance between carbides is long, fatigue is not adversely affected. Therefore, it is determined by b / a representing the distance between carbides, and the condition is that b / a ≦ 0.5.
[0015]
【Example】
The present invention will be specifically described below based on examples.
600 kg of steel having the composition shown in Table 1 was melted in an electric melting furnace, subjected to forging and annealing to a corner of 50 mm, and used as test materials. Each test piece was air-cooled after being held at 1030 to 1050 ° C. for 30 minutes and then air-cooled twice after being held at 500 to 580 ° C. for 60 minutes. As for machinability, NC milling after forge annealing, φ13 end mill, axial direction 10 mm × 1.2 mm incision, rotational speed 1100 rpm, cutting speed 35 m / min, measuring end mill wear after 5 m machining, Table 2 shows the amount of wear of the comparative steel H as 1.
[0016]
[Table 1]
[0017]
The hardness was measured at room temperature and Rockwell C scale after quenching and tempering. In the bending test, a bending strength and a deflection amount were measured using a test piece of 5 × 9 × 60 mm in length subjected to quenching and tempering. Furthermore, the Ogoshi type wear test was conducted under the conditions of a wear distance of 200 m and a final load of 62 N using SCM420 (86HRB) as a counterpart material. The test results were expressed with the wear amount of the comparative steel H as 100. Further, the tensile and compression fatigue test was performed by a hydraulic servo tester using a test piece having a parallel part: diameter 5 × 15 subjected to quenching and tempering. The test conditions were a stress amplitude of 1500 MPa, a stress ratio R = -1, and room temperature. Moreover, the metal mold | die test by an actual machine produced the metal mold | die for forging with a diameter of 50x100mm, and tested it by using SCM420 as a workpiece. The life factors of the mold are steel types A to G of the present invention, steel types H and I are comparative examples, steel type H is a waste caused by cracking of carbide, and steel type I is a waste caused by wear. It was.
[0018]
The results are shown in Table 2. As shown in Table 2, the steels A to G of the present invention each have a carbide agglomeration size of 100 μm or less, and the hardness (HRC) in that case is maintained at a hardness of 59 HRC or higher, The tensile compression fatigue strength and mold life extension far superior to those of the cold tool steels H and I could be achieved.
[0019]
[Table 2]
[0020]
【The invention's effect】
As described above, the steel of the present invention can ensure a very good mold life by defining the carbide agglomeration size as a cold tool steel, and compared with the conventional tool steel for molds. It became economical and extremely advantageous.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a relationship between carbide aggregate size distances.
Claims (2)
C:0.65〜1.3%、
Si:2.0%以下、
Mn:0.1〜2.0%、
Cr:5.0〜13.0%、
MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.5〜5.0%、
VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.1〜2.5%、
残部Feおよび不可避的不純物よりなり、b/a≦0.5である炭化物の凝集サイズ(円相当径)が100μm以下とすることを特徴とする冷間工具鋼。
ただし、a:隣り合う二個の炭化物の重心間距離
b:最短炭化物間距離% By weight
C: 0.65 to 1.3%,
Si: 2.0% or less,
Mn: 0.1 to 2.0%,
Cr: 5.0 to 13.0%,
Any one or two of Mo or W is Mo equivalent (Mo + 1 / 2W): 0.5-5.0%,
V equivalent (V + 1 / 2Nb): 0.1-2.5% of any one or two of V or Nb,
A cold tool steel comprising the balance Fe and inevitable impurities, and having a b / a ≦ 0.5 carbide agglomeration size (equivalent circle diameter) of 100 μm or less.
Where a: distance between the centers of gravity of two adjacent carbides
b: Shortest distance between carbides
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00844099A JP3821974B2 (en) | 1999-01-14 | 1999-01-14 | Cold work tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00844099A JP3821974B2 (en) | 1999-01-14 | 1999-01-14 | Cold work tool steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000204446A JP2000204446A (en) | 2000-07-25 |
JP3821974B2 true JP3821974B2 (en) | 2006-09-13 |
Family
ID=11693199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00844099A Expired - Lifetime JP3821974B2 (en) | 1999-01-14 | 1999-01-14 | Cold work tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3821974B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6654328B2 (en) * | 2015-05-14 | 2020-02-26 | 山陽特殊製鋼株式会社 | High hardness and high toughness cold tool steel |
-
1999
- 1999-01-14 JP JP00844099A patent/JP3821974B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000204446A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2003220B1 (en) | Steel plate having excellent fine blanking processability and method for manufacture thereof | |
WO2012046779A1 (en) | Case hardened steel and method for producing the same | |
JP2020070457A (en) | Hot work tool steel having excellent thermal conductivity | |
KR20120015449A (en) | Machine structural steel | |
EP0930374B1 (en) | Production of cold working tool steel | |
JP3141735B2 (en) | Steel for plastic molding dies | |
JPH0148334B2 (en) | ||
JP2636816B2 (en) | Alloy tool steel | |
JP3883788B2 (en) | Cold tool steel for molds with excellent toughness and wear resistance | |
JPH0555585B2 (en) | ||
JP5474615B2 (en) | Martensitic stainless free-cutting steel bar wire with excellent forgeability | |
JP2000026933A (en) | Hot forging steel | |
JP2005336553A (en) | Hot tool steel | |
JPS61213350A (en) | High-speed tool steel having superior grindability | |
JP3821974B2 (en) | Cold work tool steel | |
JP3455407B2 (en) | Cold tool steel | |
KR101916262B1 (en) | Method for repairing shaft and shaft using the same | |
JP3566162B2 (en) | Hot tool steel with excellent weldability | |
JPH0353384B2 (en) | ||
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP7270420B2 (en) | Hot forged non-heat treated parts, manufacturing method thereof, and steel materials for hot forged non-heat treated parts | |
JP3499425B2 (en) | Manufacturing method of cold tool steel | |
JP2003253383A (en) | Steel for plastic molding die | |
JP4302480B2 (en) | High hardness steel with excellent cold workability | |
JPH11269603A (en) | Hot tool steel with excellent machinability and tool life |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060621 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140630 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |