JP7261883B2 - 創傷の評価、治癒予測および治療のための機械学習システム - Google Patents
創傷の評価、治癒予測および治療のための機械学習システム Download PDFInfo
- Publication number
- JP7261883B2 JP7261883B2 JP2021533805A JP2021533805A JP7261883B2 JP 7261883 B2 JP7261883 B2 JP 7261883B2 JP 2021533805 A JP2021533805 A JP 2021533805A JP 2021533805 A JP2021533805 A JP 2021533805A JP 7261883 B2 JP7261883 B2 JP 7261883B2
- Authority
- JP
- Japan
- Prior art keywords
- pixels
- image
- wound
- subset
- healing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/444—Evaluating skin marks, e.g. mole, nevi, tumour, scar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/445—Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4842—Monitoring progression or stage of a disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/7465—Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/135—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30088—Skin; Dermal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Dermatology (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Signal Processing (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Psychiatry (AREA)
- Quality & Reliability (AREA)
- Biodiversity & Conservation Biology (AREA)
- Computational Linguistics (AREA)
Description
本願は、「人工知能を使用した、最初の通院時の糖尿病性足部潰瘍の治癒予測」という名称で2018年12月17日に出願された米国仮出願第62/780,854号、「高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法」という名称で2018年12月14日に出願された米国仮出願第62/780,121号および「高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法」という名称で2019年3月14日に出願された米国仮出願第62/818,375号の利益を主張するものであり、これらの文献は引用によりその全体があらゆる目的で本明細書に明示的に援用される。
本開示に記載の発明の一部は、契約番号HHSO100201300022Cの下、米国保健福祉省の事前準備・対応担当次官補局内の米生物医学先端研究開発局(BARDA)により付与された米国政府の支援を受けてなされたものである。また、本開示に記載の発明の一部は、契約番号W81XWH-17-C-0170および/または契約番号W81XWH-18-C-0114の下、米国国防保健局(DHA)により付与された米国政府の支援を受けてなされたものである。米国政府は、本発明に関し一定の権利を保有する場合がある。
創傷を含む組織領域から反射された少なくとも第1の波長の光を収集するように構成された少なくとも1つの光検出素子;および
前記少なくとも1つの光検出素子と通信する1つ以上のプロセッサを含む。
前記1つ以上のプロセッサは、
前記組織領域から反射された第1の波長の光を示すシグナルを前記少なくとも1つの光検出素子から受信し;
前記シグナルに基づいて、前記組織領域を表す、複数の画素を有する画像を作成し;
前記シグナルに基づいて、前記複数の画素の少なくとも1つのサブセットにおいて、第1の波長における各画素の反射強度値を測定し;
前記サブセットにおける各画素の前記反射強度値に基づいて、前記複数の画素の前記サブセットの1つ以上の定量的特徴を決定し;
1つ以上の機械学習アルゴリズムを使用して、前記複数の画素の前記サブセットの前記1つ以上の定量的特徴に基づき、所定期間経過後における治癒予測パラメータまたは治癒評価パラメータに相当する少なくとも1つのスカラー値を生成するように構成されている。
創傷を含む組織領域から反射された少なくとも第1の波長の光を収集するように構成された少なくとも1つの光検出素子;および
前記少なくとも1つの光検出素子と通信する1つ以上のプロセッサを含む。
前記1つ以上のプロセッサは、
前記組織領域から反射された第1の波長の光を示すシグナルを前記少なくとも1つの光検出素子から受信し;
前記シグナルに基づいて、前記組織領域を表す、複数の画素を有する画像を作成し;
前記シグナルに基づいて、第1の波長における前記複数の画素のそれぞれの反射強度値を測定し;
機械学習アルゴリズムを使用して、前記複数の画素のそれぞれの反射強度値に基づき、該複数の画素のそれぞれを、少なくとも、創傷の画素を含む複数の画素の第1のサブセットと、創傷以外の画素を含む複数の画素の第2のサブセットとに自動的にセグメント化するように構成されている。
少なくとも第1の波長の光で組織領域を照射し、該組織領域において該光の少なくとも一部を反射させて少なくとも1つの光検出素子に入射させる工程;
創傷の治癒の評価用または予測用のシステムを使用して、少なくとも1つのスカラー値を生成する工程;および
所定期間経過後における治癒予測パラメータを決定する工程
を含む。
いくつかの実施形態において、前記方法は、
前記創傷の予測治癒量の決定から所定期間経過後に、該創傷の1つ以上の寸法を測定する工程;
前記所定期間経過後における前記創傷の実際の治癒量を測定する工程;および
少なくとも前記画像と前記創傷の実際の治癒量とを訓練データとして提供することにより、1つ以上の機械学習アルゴリズムのうちの少なくとも1つを更新する工程
をさらに含む。
いくつかの実施形態において、前記方法は、前記治癒予測パラメータに少なくとも部分的に基づいて、標準的な創傷ケア療法または高度な創傷ケア療法を選択する工程をさらに含む。いくつかの実施形態において、前記標準的な創傷ケア療法または高度な創傷ケア療法の選択工程は、前記治癒予測パラメータにより、30日後の創傷(好ましくは糖尿病性足部潰瘍)の治癒または閉鎖が50%を超えることが示された場合に、栄養状態の最適化、任意の手段により壊死組織を除去するためのデブリードマン、適切な湿潤被覆材を用いた清潔で湿った肉芽組織床の維持、罹患している可能性のある感染症の消散に必要とされる治療法、糖尿病性足部潰瘍を有する四肢への血管内灌流の不足に対する対処、糖尿病性足部潰瘍を原因とする圧力負荷の軽減、および適切な血糖管理からなる群から選択される1種以上の標準的な治療法を指示または適用することを含み、かつ前記治癒予測パラメータにより、30日後の創傷(好ましくは糖尿病性足部潰瘍)の治癒または閉鎖が50%を超えないことが示された場合に、高圧酸素療法、陰圧創傷療法、生物工学による代替皮膚、合成成長因子、細胞外マトリックスタンパク質、マトリックスメタロプロテイナーゼ調節因子、および電気刺激療法からなる群から選択される1種以上の高度な治療法を指示または適用することを含む。
本明細書で開示する、DFUおよびその他の創傷の評価方法、予測方法および治療方法に従って使用してもよい様々なスペクトルイメージングシステムおよびマルチスペクトルイメージングシステムについて以下で述べる。いくつかの実施形態において、創傷評価用の画像は、単一の波長帯域内の光を画像化するように構成されたスペクトルイメージングシステムで撮影してもよい。別の実施形態において、2個以上の波長帯域を撮影するように構成されたスペクトルイメージングシステムで画像を撮影してもよい。特定の一例において、市販のモバイル機器に備わっているような、単色イメージング装置、RGBイメージング装置、および/または赤外線イメージング装置で画像を撮影してもよい。さらに別の実施形態は、各アパーチャの上方に配置された湾曲したマルチバンドパスフィルタを備えたマルチアパーチャシステムを使用したスペクトルイメージングに関する。しかしながら、本発明の技術による創傷の評価方法、予測方法および治療方法は、本明細書で開示する特定の画像取得装置には限定されず、1個以上の公知の波長帯域において画像データを取得することができる何らかのイメージング装置を使用して同様に実装することができることは理解できるであろう。
本明細書において、電磁スペクトルの特定の色または特定の部分に言及し、以下、ISO21348「放射照度スペクトルの種類の定義」による定義に従って、これらの波長を説明する。以下で詳述するように、特定のイメージング用途において、特定の色の波長領域を一括して特定のフィルタに通過させることができる。
図3Aは、本開示による、湾曲したマルチバンドパスフィルタを備えるマルチアパーチャイメージングシステム200の一例の概略図を示す。ここに示した概略図は、第1のイメージセンサ領域225A(フォトダイオードPD1~PD3)および第2のイメージセンサ領域225B(フォトダイオードPD4~PD6)を含む。フォトダイオードPD1~PD6は、たとえば、半導体基板(たとえばCMOSイメージセンサ)に形成されたフォトダイオードであってもよい。通常、各フォトダイオードPD1~PD6は、何らかの材質、半導体、センサ素子または入射光を電流に変換できるその他の装置からなる単一ユニットであってもよい。この図では、マルチアパーチャイメージングシステムの構造およびその作動を説明することを目的として、マルチアパーチャイメージングシステム全体のごく一部のみを示しており、実装では、イメージセンサ領域は、何百個または何千個ものフォトダイオード(およびこれに対応するカラーフィルタ)を備えることができることは十分に理解できるであろう。第1のイメージセンサ領域225Aと第2のイメージセンサ領域225Bは、実装に応じて、別々のセンサとして実装してもよく、同じイメージセンサ上の別々の領域として実装してもよい。図3Aでは、2個のアパーチャとこれに対応する光路およびセンサ領域が示されているが、図3Aに示した光学設計原理は、実装に応じて、3個以上のアパーチャとこれに対応する光路およびセンサ領域を含む設計に拡大することができることは十分に理解できるであろう。
これらの透過曲線には、この例で使用したセンサによる量子効率の効果も含んでいる。図に示すように、この4台1組のカメラ全体で、8個の特有チャネルすなわち8個の特有周波数帯が撮影される。各フィルタは、各カメラに対して2つの共通周波数帯(左端の2つのピーク)と、別の2つの周波数帯を通過させる。この実装では、第1のカメラおよび第3のカメラは、第1の共有NIR周波数帯の光(右端のピーク)を受光し、第2のカメラおよび第4のカメラは、第2の共有NIR周波数帯の光(右から2番目のピーク)を受光する。各カメラは、約550nm~約800nmまたは550nm~800nmの範囲の特有周波数帯をそれぞれ1つずつ受光する。したがって、これらのカメラは、コンパクトな構成を使用して、8個の特有のスペクトルチャネルを撮影することができる。図11Bのグラフ1010は、図11Aに示した4台のカメラの照明として使用してもよい、図4Eに示したLEDボードの分光放射照度を示す。
図13は、図3A~10Bおよび図12に示したマルチスペクトル・マルチアパーチャイメージングシステムを使用して、画像データを撮影するプロセス1200の一例を示したフローチャートである。図13は、本明細書に記載のマルチスペクトルデータキューブの生成に使用可能な4種の露光、すなわち、可視光露光1205、追加の可視光露光1210、非可視光露光1215および環境光露光1220の一例を示す。これら露光はどのような順序で撮影してもよく、これらの露光のうちのいくつかは、後述する特定のワークフローから省いてもよく、後述する特定のワークフローに追加してもよいことは十分に理解できるであろう。以下、図11Aおよび図11Bに示した周波数帯を参照しながらプロセス1200を説明するが、別の1組の周波数帯に基づいて生成した画像データを使用して同様のワークフローを実装することもできる。さらに、様々な実施形態において、公知の様々なフラットフィールド補正技術に従って、フラットフィールド補正をさらに実装することによって、画像収集および/または視差補正を向上させてもよい。
図17は、図3A~10Bおよび図12に示したマルチスペクトル・マルチアパーチャイメージングシステムのいずれであってもよいマルチスペクトル・マルチアパーチャイメージングシステム1605を含む、分散コンピューティングシステム1600の一例の略ブロック図を示す。図に示すように、データキューブ分析サーバ1615は、恐らくはサーバクラスタまたはサーバファームとして配置される1つ以上のコンピュータを含んでいてもよい。これらのコンピュータを構成するメモリおよびプロセッサは、1つのコンピュータ内に配置されていてもよく、(互いに離れて設置されたコンピュータを含む)数多くのコンピュータに分散されていてもよい。
背景:
負傷した戦闘員やその医療従事者にとって、熱傷による罹患および死亡は課題となっている。過去の戦闘死傷者における熱傷の受傷率は5~20%であり、これらの死傷者の約20%は、米国陸軍外科研究所(ISR)熱傷センターなどでの複雑な熱傷外科手術が必要であった。熱傷外科手術は専門的な訓練を必要とすることから、米国陸軍病院のスタッフではなく、ISRのスタッフにより熱傷外科手術が行われる。熱傷専門医の数が限られていることから、熱傷を負った兵士に医療を提供するための兵站業務が非常に複雑となる。したがって、術前および術中に熱傷の深さを検出する新規な客観的方法を利用することによって、戦闘継続中の熱傷患者に対する医療の提供への従事が可能な、(ISR以外の組織に所属する人員を含む)医療スタッフの数をより多く確保することができる。医療従事者の人員確保が増強されることによって、熱傷を負った戦闘員への医療的役割の進展に向けて、より複雑な熱傷治療を拡充させることができる。
様々な重症度の熱傷を負った一般市民の患者において、熱傷受傷の72時間以内に画像化を実施し、熱傷受傷後の最長で7日間にわたりいくつかの時点でも画像化を実施した。各画像における正確な熱傷の重症度は、3週間にわたる治癒評価またはパンチ生検を使用して判定した。この装置での、I度熱傷、II度熱傷およびIII度熱傷における治癒過程の熱傷組織と非治癒熱傷組織の特定および判別の正確度は、画素単位で分析した。
データは、38人の一般市民の患者から収集し、合計で58個の熱傷および393個の画像を取得した。AIアルゴリズムにより、非治癒熱傷組織の予測において87.5%の感度と90.7%の特異度が達成された。
本発明の新規な装置およびそのAIアルゴリズムによる熱傷の治癒可能性の判定の正確度は、熱傷の専門医の臨床判断よりも優れていることが示された。将来的には、携帯を可能にするための本装置の再設計と術中の状況下での使用の評価に焦点を当てて検討を行う予定である。携帯を可能にするための設計変更としては、本装置のサイズを携帯型システムのサイズまで小さくすること、視野を広くすること、1回のスナップショットの取得時間を短くすること、およびブタモデルを使用して、術中の状況下での使用において本装置を評価することが挙げられる。これらの開発は、基本的な画像検査において同等の機能を示すベンチトップ型のマルチスペクトルイメージング(MSI)サブシステムを使用して実施した。
様々な実施形態において、本明細書で開示した実施形態のいずれかと1個以上の追加の光源とを併用して、画像の位置合わせの正確度を向上させてもよい。図21は、プロジェクター2105を含むマルチアパーチャスペクトル撮像装置2100の実施形態の一例を示す。いくつかの実施形態において、プロジェクター2105またはその他の適切な光源は、たとえば、図12に関して前述した複数の光源1165のうちの1個であってもよい。位置合わせ用のプロジェクター2105などの追加の光源を含む実施形態において、前記方法は、追加の露光をさらに含んでいてもよい。プロジェクター2105などの追加の光源は、撮像装置2100のすべてのカメラを通して個別にまたは累積的に可視化することが可能な、単一のスペクトル帯域、複数のスペクトル帯域または広帯域の、1つ以上の点、縞模様、グリッド、ランダムな斑点またはその他の適切な空間パターンを、撮像装置2100の視野内に投影することができる。たとえば、プロジェクター2105は、前述の共通帯域を利用したアプローチに基づいて計算された画像の位置合わせの正確度の確認に使用することが可能な、共有チャネルもしくは共通チャネルの光、広帯域照明または累積的に可視可能な照明を投影してもよい。本明細書において、「累積的に可視可能な照明」は、選択された複数の波長であり、マルチスペクトルイメージングシステムの各イメージセンサによりそのパターンが変換される波長を指す。たとえば、累積的に可視可能な照明として、複数の波長であって、すべてのチャネルに共通の波長がこの複数の波長に含まれていなくても、この複数の波長のうちの少なくとも1つが各チャネルにより変換される波長を挙げることができる。いくつかの実施形態において、プロジェクター2105により投影されるパターンの種類は、そのパターンが画像化されるアパーチャの数に基づいて選択してもよい。たとえば、1個のアパーチャのみでしかパターンを見ることができない場合、このパターンは比較的高密度であることが好ましい場合があり(たとえば、約1~10画素、約20画素、約50画素未満、約100画素未満などの、比較的狭い自己相関を有していてもよい)、一方、複数個のアパーチャによりパターンが画像化される場合は、より低密度のパターンまたは自己相関がそれほど狭くないパターンが有用である場合がある。いくつかの実施形態において、投影された空間パターンとともに撮影される追加の露光は、投影された空間パターンを含めずに露光が撮影される実施形態よりも位置合わせの正確度が向上されることを意図として、視差の計算に含められる。いくつかの実施形態において、追加の光源は、すべてのカメラを通して個別にまたは累積的に可視化することが可能な、単一のスペクトル帯域、複数のスペクトル帯域または広帯域(たとえば、共有チャネルもしくは共通チャネル、または広帯域照明など)の縞模様を撮像装置の視野内に投影し、これを利用することによって、縞模様の位相に基づいて画像の位置合わせを向上させることができる。いくつかの実施形態において、追加の光源は、すべてのカメラを通して個別にまたは累積的に可視化することが可能な、単一のスペクトル帯域、複数のスペクトル帯域または広帯域(たとえば、共有チャネルもしくは共通チャネル、または広帯域照明など)のドット、グリッドおよび/または斑点からなる複数の特有の空間配置を撮像装置の視野内に投影し、これを利用することによって、画像の位置合わせを向上させることができる。いくつかの実施形態において、前記方法は、1個のアパーチャまたは複数個のアパーチャを備えた追加のセンサをさらに含み、この追加のセンサによって、視野内の単一または複数の物体の形状を検出することができる。たとえば、この追加のセンサは、LIDAR技術、ライトフィールド技術または超音波技術を使用して、前述の共通帯域を利用したアプローチによる画像の位置合わせの正確度をさらに向上させてもよい。この追加センサは、ライトフィールド情報を検知可能な1個のアパーチャまたはマルチアパーチャセンサであってもよく、超音波やパルスレーザなどのその他のシグナルを検知可能であってもよい。
創傷の評価、治癒予測および治療法のための機械学習システムならびにその方法の実施形態の一例を以下で述べる。本明細書に記載の様々なイメージング装置、システム、方法、技術およびアルゴリズムはいずれも、創傷のイメージングおよび創傷の分析に関する分野に適用してもよい。以下で述べる実装は、1つ以上の公知の波長帯域において、創傷の1つ以上の画像を取得することを含んでいてもよく、この1つ以上の画像に基づいて、創傷部分および創傷以外の部分への画像のセグメンテーション、所定期間経過後の創傷の面積減少率(%)の予測、所定期間経過後の創傷の個々の部位の治癒可能性の予測、前述のようなセグメンテーションまたは予測に関連した視覚表示の表示、標準的な創傷ケア療法または高度な創傷ケア療法を選択すべきであるという指示、およびその他の機能のうちの1つ以上を実施することを含んでいてもよい。
治癒予測パラメータのいくつかの例として、
(1)30日以内(またはクリニカルスタンダードに従った別の所望の期間内)に、50%を超える潰瘍面積の減少(またはクリニカルスタンダードに従った別の所望の閾値(%))に至るまで潰瘍が治癒するか否かに関する二進法でのyes/no値;
(2)30日以内(またはクリニカルスタンダードに従った別の所望の期間内)に、50%を超える潰瘍面積の減少(またはクリニカルスタンダードに従った別の所望の閾値(%))に至るまで潰瘍が治癒する可能性を示すパーセンテージ;および
(3)潰瘍の治癒により、30日以内(またはクリニカルスタンダードに従った別の所望の期間内)に減少することが期待される実際の潰瘍面積に関する予測
が挙げられるが、これらに限定されない。
別の例では、本発明の技術によるシステムは、創傷の画像に含まれる個々の画素や画素のサブセットなどの、創傷のさらに小さな部分に関して、治癒する可能性を示す二進法でのyes/no値またはパーセンテージを提供するものであってもよく、治癒する可能性を示すこれらのyes/no値またはパーセンテージは、創傷の個々の部分が、所定期間経過後に治癒する可能性のある組織であるのか、それとも所定期間が経過しても治癒しない可能性のある組織であるのかということを示すものであってもよい。
人工ニューラルネットワークは、生物学的神経回路網に着想を得たものであるが、コンピュータ装置による実装を目的として改良された計算実体であるという意味で人工物である。入力と出力の間の依存性を見出すことは容易ではないが、人工ニューラルネットワークを使用することにより、入力と出力の間の複雑な関係をモデル化したり、データ中において一定のパターンを見つけたりすることができる。ニューラルネットワークは、通常、入力層、1層以上の中間層(「隠れ層」)および出力層を含み、各層には数多くのノードが含まれる。ノードの数は各層によって異なっていてもよい。2層以上の隠れ層を含むニューラルネットワークは、「深層」であると見なされる。各層のノードは、次の層のノードのすべてまたはその一部と結合しており、これらの結合の重みは、通常、訓練プロセス中の訓練データに基づいて学習され、たとえば、ニューラルネットワークのパラメータを調整して、ラベルを付けた訓練データ中の対応する入力から予想される出力を生成するバックプロパゲーション(誤差逆伝播法)を使用して行われる。したがって、人工ニューラルネットワークは、人工ニューラルネットワークを通して流れる情報に基づいて、訓練中にその構造(たとえば結合構成および/または重み)を変更するように構成された適応システムであってもよく、隠れ層の重みは、データ中の意味のあるパターンをコードするものであると見なすことができる。
本明細書で開示する機械学習システムおよび機械学習方法の応用例において、0日目にイメージングを行った後、前述の説明に従った機械学習アルゴリズムを使用して、画像化した創傷の30日目の面積減少率(%)(PAR)を予測した。この予測を行うため、マルチスペクトルイメージング(MSI)データと臨床変数を入力として取り、かつ予測される面積減少率(%)を示すスカラー値を出力するように機械学習アルゴリズムを訓練した。30日後に、個々の創傷を評価して真の面積減少率(%)を測定した。創傷に対して行った30日間にわたる治癒の評価において、予測された面積減少率(%)を、測定した真の面積減少率(%)と比較した。このアルゴリズムの性能は、決定係数(R2)を使用して点数化した。
前述の応用例では、画素の平均値、標準偏差および中央値の抽出について述べたが、その他の様々な特徴を画像データから抽出して、治癒予測パラメータの作成に使用してもよい。特徴の種類には、局所特徴量、半局所的な特徴量および全体特徴量が含まれる。局所特徴量は、画像パッチのテクスチャを示してもよく、全体特徴量は、輪郭の表現、形状の記述子およびテクスチャの特徴を含んでいてもよい。テクスチャの全体特徴量とテクスチャの局所特徴量は、テクスチャを算出する際のサポートが異なるため、特定の画像に関して異なる情報を提供する。場合によっては、全体特徴量により、物体全体を単一のベクトルで一般化することができる。一方、局所特徴量は、画像中の複数の点で算出されるため、一部が隠された画像や低画質な画像でもロバストな分析を行うことができる。しかしながら、1つ画像あたりの特徴ベクトルの数が変動する場合に対処するため、専用の分類アルゴリズムが必要であってもよい。
治癒予測パラメータを得るためのさらなる例として、写真用デジタルカメラなどから得たRGBデータに基づいて、同様のMSI法を使用してもよい。この場合、アルゴリズムは、RGB画像からデータを取得することができ、さらに対象の病歴またはその他の臨床変数からデータを取得してもよく、DFUが30日間にわたる標準的な創傷ケア療法に対して奏効を示すか否かを示す条件付き確率などの治癒予測パラメータを出力することができる。いくつかの実施形態において、この条件付き確率は、治療対象のDFUが非治癒性潰瘍である確率であり、パラメータθで特徴付けたモデルに対する入力データをxとした場合、次式で示される。
Pモデル(y=“非治癒性”│x;θ)
一例において、別々に訓練した教師なしアプローチを使用して画像を圧縮し、DFUの治癒を予測する機械学習を実施した。第2の例では、エンドツーエンドの教師ありアプローチを使用して、DFUの治癒を予測した。
さらなる例示的な実施形態において、本発明の技術によるシステムおよび方法は、創傷全体に対して1つの治癒確率を生成するだけでなく、さらに、個々の創傷において、標準的な創傷ケアを行っても30日後に治癒が見込めない組織の面積を予測することができる。この出力を得るため、MSIデータまたはRGBデータを入力として取り、かつ創傷の一部分(たとえば、創傷の画像中の個々の画素またはそのサブセット)に対する治癒予測パラメータを生成するように機械学習アルゴリズムを訓練した。本発明の技術は、30日以内に治癒する見込みがないと予測される潰瘍組織領域を強調表示した画像などの視覚表示を出力するようにさらに訓練することができる。
別の実装例において、MSI画像データやRGB画像データを使用せずに、単一の波長帯域の画像データに基づくことによっても、30日目の創傷の面積減少率(%)(PAR)の評価および/または条件付き確率マップの形態のセグメンテーションを実施できることが判明した。この方法を実施するため、単一の波長帯域の画像から抽出した特徴を入力として取り、かつ予測される面積減少率(%)を示すスカラー値を出力するように機械学習アルゴリズムを訓練した。
前述したように、本明細書に記載の機械学習技術を使用して、個々の波長または複数の波長における反射率のデータを含むスペクトル画像を分析することにより、創傷全体の治癒(たとえば面積減少率(%))および/または創傷の一部に関連する治癒(たとえば、創傷の画像の個々の画素または複数の画素のサブセットに関連した治癒の確率)などの、創傷の治癒に関連するパラメータを確実に予測することができる。さらに、本明細書で開示された方法の一部は、集約された定量的特徴に少なくとも部分的に基づいて、創傷治癒パラメータを予測することができ、定量的特徴とは、たとえば、胼胝、正常皮膚、背景またはその他の創傷以外の組織領域ではなく、創傷の組織領域に対応する画素すなわち「創傷の画素」であると判定された、創傷の画像中の画素のサブセットに基づいて計算された平均値、標準偏差、中央値などの統計数量である。したがって、創傷の画素のセットに基づいて、このような予測の正確度を改善または最適化するには、創傷の画像中の創傷の画素のサブセットを正確に選択することが好ましい。
本明細書に記載の方法およびタスクはすべてコンピュータシステムにより実行されてもよく、完全に自動化されていてもよい。場合によっては、このコンピュータシステムは、ネットワーク上で通信し相互運用して、本明細書で述べる機能を実行する別々の複数のコンピュータまたはコンピュータ装置(たとえば、物理サーバ、ワークステーション、ストレージアレイ、クラウドコンピューティングリソースなど)を含む。このようなコンピュータ装置は、いずれも、通常、メモリまたはその他の非一時的なコンピュータ可読記憶媒体もしくは非一時的なコンピュータ可読記憶装置(たとえば、ソリッドステート記憶装置、ディスクドライブなど)に格納されたプログラム命令またはプログラムモジュールを実行するプロセッサ(または複数のプロセッサ)を含む。本明細書で開示した様々な機能は、そのようなプログラム命令で具体化してもよく、コンピュータシステムの特定用途向け回路(たとえば、ASICやFPGA)の形態で実装してもよい。コンピュータシステムが複数のコンピュータ装置を含む場合、これらの装置は、同じ場所に配置してもよいし、別の場所に配置してもよい。本明細書で開示した方法およびタスクによる結果は、ソリッドステートメモリチップや磁気ディスクなどの物理的記憶装置を様々な形態に変換することによって、永続的に保存してもよい。いくつかの実施形態において、コンピュータシステムは、複数の別個の企業体またはその他のユーザにより処理リソースが共有されるクラウドベースのコンピューティングシステムであってもよい。
Claims (30)
- 創傷の治癒の評価用または予測用のシステムであって、
糖尿病性足部潰瘍を含む組織領域から反射された少なくとも第1の波長の光を収集するように構成された少なくとも1つの光検出素子;および
前記少なくとも1つの光検出素子と通信する1つ以上のプロセッサ
を含み、
該1つ以上のプロセッサが、
前記組織領域から反射された第1の波長の光を示すシグナルを前記少なくとも1つの光検出素子から受信し;
前記シグナルに基づいて、前記組織領域を表す、複数の画素を有する画像を作成し;
前記シグナルに基づいて、前記複数の画素の少なくとも1つのサブセットにおいて、第1の波長における各画素の反射強度値を測定し;
前記サブセットにおける各画素の前記反射強度値に基づいて、前記複数の画素の前記サブセットの1つ以上の定量的特徴を決定し;
1つ以上の機械学習アルゴリズムを使用して、前記複数の画素の前記サブセットの前記1つ以上の定量的特徴に基づき、前記画像の作成から所定期間経過後における前記糖尿病性足部潰瘍の予測治癒量に相当する少なくとも1つのスカラー値を生成するように構成されている、
システム。 - 前記予測治癒量が、前記糖尿病性足部潰瘍の予測される面積減少率(%)である、請求項1に記載のシステム。
- 前記少なくとも1つのスカラー値が、複数のスカラー値を含み、各スカラー値が、前記サブセットの個々の画素の治癒の可能性に相当するか、または前記サブセットの複数の画素からなるサブグループの治癒の可能性に相当する、請求項1または2に記載のシステム。
- 前記1つ以上のプロセッサが、前記複数のスカラー値の視覚表示を出力して、ユーザに表示するようにさらに構成されている、請求項3に記載のシステム。
- 前記視覚表示が、各画素の治癒の可能性に基づいて選択された特定の視覚表示により前記サブセットの各画素が表示された前記画像を含み、治癒の可能性が異なる画素が、異なる視覚表示で表示される、請求項4に記載のシステム。
- 前記1つ以上の機械学習アルゴリズムが、創傷、熱傷または潰瘍の画像データベースを使用して事前に訓練されたSegNetを含む、請求項3~5のいずれか1項に記載のシステム。
- 前記創傷の画像データベースが、糖尿病性足部潰瘍の画像データベースを含む、請求項6に記載のシステム。
- 前記創傷の画像データベースが、熱傷の画像データベースを含む、請求項6または7に記載のシステム。
- 前記所定期間が30日間である、請求項1~8のいずれか1項に記載のシステム。
- 前記1つ以上のプロセッサが、前記組織領域を有する患者に対応する少なくとも1つの患者健康測定値を特定するようにさらに構成されており、前記少なくとも1つのスカラー値が、前記複数の画素の前記サブセットの前記1つ以上の定量的特徴と、前記少なくとも1つの患者健康測定値とに基づいて生成される、請求項1~9のいずれか1項に記載のシステム。
- 前記少なくとも1つの患者健康測定値が、患者背景に関する変数、糖尿病性足部潰瘍の履歴に関する変数、コンプライアンスに関する変数、内分泌系に関する変数、心血管系に関する変数、筋骨格系に関する変数、栄養状態に関する変数、感染症に関する変数、腎臓に関する変数、産婦人科系に関する変数、薬剤の使用に関する変数、その他の疾患に関する変数および臨床検査値からなる群から選択される少なくとも1つの変数を含む、請求項10に記載のシステム。
- 前記少なくとも1つの患者健康測定値が、1つ以上の臨床的特徴を含む、請求項10に記載のシステム。
- 前記1つ以上の臨床的特徴が、患者の年齢、患者の慢性腎疾患の程度、前記画像が作成された日の前記糖尿病性足部潰瘍の長さ、および前記画像が作成された日の前記糖尿病性足部潰瘍の幅からなる群から選択される少なくとも1つの特徴を含む、請求項12に記載のシステム。
- 第1の波長が、420nm±20nm、525nm±35nm、581nm±20nm、620nm±20nm、660nm±20nm、726nm±41nm、820nm±20nmまたは855nm±30nmの範囲内にある、請求項1~13のいずれか1項に記載のシステム。
- 第1の波長が、620nm±20nm、660nm±20nmまたは420nm±20nmの範囲内にある、請求項1~14のいずれか1項に記載のシステム。
- 前記1つ以上の機械学習アルゴリズムが、ランダムフォレストアンサンブルを含む、請求項15に記載のシステム。
- 第1の波長が、726nm±41nm、855nm±30nm、525nm±35nm、581nm±20nmまたは820nm±20nmの範囲内にある、請求項1~14のいずれか1項に記載のシステム。
- 前記1つ以上の機械学習アルゴリズムが、分類器のアンサンブルを含む、請求項17に記載のシステム。
- 少なくとも第1の波長の光を通過させるように構成された光学バンドパスフィルタをさらに含む、請求項1~18のいずれか1項に記載のシステム。
- 前記1つ以上のプロセッサが、
前記画像中の複数の画素を、創傷の画素と創傷以外の画素へと自動的にセグメント化し;
該創傷の画素を含む前記複数の画素のサブセットを選択するようにさらに構成されている、請求項1~19のいずれか1項に記載のシステム。 - 前記1つ以上のプロセッサが、前記創傷以外の画素を、胼胝の画素と背景の画素へと自動的にセグメント化するようにさらに構成されている、請求項20に記載のシステム。
- 前記1つ以上のプロセッサが、前記創傷以外の画素を、胼胝の画素と、正常皮膚の画素と、背景の画素へと自動的にセグメント化するようにさらに構成されている、請求項20に記載のシステム。
- 前記1つ以上のプロセッサが、畳み込みニューラルネットワークを含むセグメンテーションアルゴリズムを使用して、前記複数の画素を自動的にセグメント化する、請求項20~22のいずれか1項に記載のシステム。
- 前記セグメンテーションアルゴリズムが、複数の畳み込み層を含むU-Netおよび複数の畳み込み層を含むSegNetのうちの少なくとも一方である、請求項23に記載のシステム。
- 前記複数の画素の前記サブセットの前記1つ以上の定量的特徴が、前記複数の画素の集約された1つ以上の定量的特徴を含む、請求項1~24のいずれか1項に記載のシステム。
- 前記複数の画素の前記サブセットの前記集約された1つ以上の定量的特徴が、前記サブセットの画素の前記反射強度値の平均値、前記サブセットの画素の前記反射強度値の標準偏差、および前記サブセットの画素の前記反射強度値の中央値からなる群から選択される、請求項25に記載のシステム。
- 前記1つ以上のプロセッサが、
畳み込みにより前記画像に複数のフィルタカーネルを個別に適用することにより、複数の変換画像を作成し;
前記複数の変換画像から三次元マトリックスを構築し;
前記三次元マトリックスの1つ以上の定量的特徴を決定するようにさらに構成されており、
前記少なくとも1つのスカラー値が、前記複数の画素の前記サブセットの前記1つ以上の定量的特徴に基づいて、および前記三次元マトリックスの前記1つ以上の定量的特徴に基づいて生成される、
請求項1~26のいずれか1項に記載のシステム。 - 前記三次元マトリックスの前記1つ以上の定量的特徴が、前記三次元マトリックスの数値の平均値、前記三次元マトリックスの数値の標準偏差、前記三次元マトリックスの中央値、および前記三次元マトリックスの平均値と中央値の積からなる群から選択される、請求項27に記載のシステム。
- 前記少なくとも1つのスカラー値が、前記サブセットの画素の前記反射強度値の平均値、前記サブセットの画素の前記反射強度値の標準偏差、前記サブセットの画素の前記反射強度値の中央値、前記三次元マトリックスの数値の平均値、前記三次元マトリックスの数値の標準偏差、および前記三次元マトリックスの中央値からなるいずれかの変数に基づいて生成される、請求項28に記載のシステム。
- 前記少なくとも1つの光検出素子が、前記組織領域から反射された少なくとも第2の波長の光を収集するようにさらに構成されており、
前記1つ以上のプロセッサが、
前記組織領域から反射された第2の波長の光を示す第2のシグナルを前記少なくとも1つの光検出素子から受信し;
前記第2のシグナルに基づいて、前記複数の画素の少なくとも1つのサブセットにおいて、第2の波長における各画素の反射強度値を測定し;
第2の波長における各画素の前記反射強度値に基づいて、前記複数の画素の前記サブセットの1つ以上の追加の定量的特徴を決定するようにさらに構成されており;
前記少なくとも1つのスカラー値が、前記複数の画素の前記サブセットの前記1つ以上の追加の定量的特徴に少なくとも部分的に基づいて生成される、
請求項1~29のいずれか1項に記載のシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023063250A JP7574354B2 (ja) | 2018-12-14 | 2023-04-10 | 創傷の評価、治癒予測および治療のための機械学習システム |
JP2024180995A JP2025013851A (ja) | 2018-12-14 | 2024-10-16 | 創傷の評価、治癒予測および治療のための機械学習システム |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862780121P | 2018-12-14 | 2018-12-14 | |
US62/780,121 | 2018-12-14 | ||
US201862780854P | 2018-12-17 | 2018-12-17 | |
US62/780,854 | 2018-12-17 | ||
US201962818375P | 2019-03-14 | 2019-03-14 | |
US62/818,375 | 2019-03-14 | ||
PCT/US2019/065820 WO2020123724A1 (en) | 2018-12-14 | 2019-12-11 | Machine learning systems and methods for assessment, healing prediction, and treatment of wounds |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023063250A Division JP7574354B2 (ja) | 2018-12-14 | 2023-04-10 | 創傷の評価、治癒予測および治療のための機械学習システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022513486A JP2022513486A (ja) | 2022-02-08 |
JP7261883B2 true JP7261883B2 (ja) | 2023-04-20 |
Family
ID=71075815
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021533805A Active JP7261883B2 (ja) | 2018-12-14 | 2019-12-11 | 創傷の評価、治癒予測および治療のための機械学習システム |
JP2023063250A Active JP7574354B2 (ja) | 2018-12-14 | 2023-04-10 | 創傷の評価、治癒予測および治療のための機械学習システム |
JP2024180995A Pending JP2025013851A (ja) | 2018-12-14 | 2024-10-16 | 創傷の評価、治癒予測および治療のための機械学習システム |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023063250A Active JP7574354B2 (ja) | 2018-12-14 | 2023-04-10 | 創傷の評価、治癒予測および治療のための機械学習システム |
JP2024180995A Pending JP2025013851A (ja) | 2018-12-14 | 2024-10-16 | 創傷の評価、治癒予測および治療のための機械学習システム |
Country Status (7)
Country | Link |
---|---|
US (2) | US11948300B2 (ja) |
EP (1) | EP3893733A4 (ja) |
JP (3) | JP7261883B2 (ja) |
KR (2) | KR102728475B1 (ja) |
CN (1) | CN113260303B (ja) |
BR (1) | BR112021011132A2 (ja) |
WO (1) | WO2020123724A1 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3212057B1 (en) | 2014-10-29 | 2021-12-01 | Spectral MD, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
EP3589191A4 (en) | 2017-03-02 | 2020-11-11 | Spectral MD Inc. | AUTOMATIC LEARNING SYSTEMS AND TECHNIQUES FOR MULTISPECTRAL ANALYSIS OF AMPUTATION SITES |
KR102728475B1 (ko) | 2018-12-14 | 2024-11-13 | 스펙트랄 엠디, 인크. | 상처들의 평가, 치유 예측 및 치료를 위한 머신 학습 시스템들 및 방법들 |
WO2020123722A1 (en) | 2018-12-14 | 2020-06-18 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
US10783632B2 (en) | 2018-12-14 | 2020-09-22 | Spectral Md, Inc. | Machine learning systems and method for assessment, healing prediction, and treatment of wounds |
US10740884B2 (en) | 2018-12-14 | 2020-08-11 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
WO2020163539A1 (en) * | 2019-02-05 | 2020-08-13 | University Of Virginia Patent Foundation | System and method for fully automatic lv segmentation of myocardial first-pass perfusion images |
WO2020173516A1 (de) * | 2019-02-28 | 2020-09-03 | FotoFinder Systems GmbH | Verfahren zur evaluierung von hautläsionen unter verwendung künstlicher intelligenz |
US20220212031A1 (en) * | 2020-03-19 | 2022-07-07 | Know Bio, Llc | Devices and systems for implementing therapeutic treatments of light |
US20210398676A1 (en) * | 2020-06-19 | 2021-12-23 | Neil Reza Shadbeh Evans | Machine learning algorithms for detecting medical conditions, related systems, and related methods |
EP4178426A4 (en) * | 2020-07-13 | 2024-07-31 | Spectral MD, Inc. | SPECTRAL IMAGING SYSTEMS AND METHODS FOR HISTOLOGICAL EVALUATION OF WOUNDS |
US12347337B2 (en) | 2020-12-10 | 2025-07-01 | Know Bio, Llc | Enhanced testing and characterization techniques for phototherapeutic light treatments |
US20240290487A1 (en) * | 2021-03-16 | 2024-08-29 | Cornell University | Systems and methods for using deep-learning algorithms to facilitate decision making in gynecologic practice |
DE102021113153A1 (de) * | 2021-05-20 | 2022-11-24 | cureVision GmbH | Mobile Dokumentationsvorrichtung für die Erfassung von Hautläsionen |
US20220398820A1 (en) * | 2021-06-11 | 2022-12-15 | University Of Southern California | Multispectral biometrics system |
KR102613052B1 (ko) | 2021-09-29 | 2023-12-12 | 삼성전자주식회사 | 멀티 스펙트럼 이미지 센서 및 이를 포함하는 전자 장치 |
CN113729638A (zh) * | 2021-09-30 | 2021-12-03 | 广州尚衡信息科技有限公司 | 一种双光谱手面诊健康评估设备 |
WO2023054768A1 (ko) * | 2021-09-30 | 2023-04-06 | 주식회사 피플앤드테크놀러지 | 욕창질환 포착과 단계결정을 위한 딥러닝 모델 시스템, 생성방법 및 이를 이용한 욕창진단 방법 |
CN113827234B (zh) * | 2021-11-25 | 2022-03-18 | 之江实验室 | 一种基于高光谱人脸视频的远程脉搏波重建方法 |
KR102713994B1 (ko) | 2022-01-18 | 2024-10-08 | 국립부경대학교 산학협력단 | 기계학습을 이용한 흉터 조직 영역 검출을 위한 장치 및 방법 |
ES2948438A1 (es) * | 2022-02-16 | 2023-09-12 | Woom Fertility S L | Método implementado por computador para obtener el estado de fertilidad de una mujer |
KR102781515B1 (ko) * | 2022-04-08 | 2025-03-14 | (주)파인헬스케어 | 병원에서 욕창 상태를 결정하고 치료하기 위한 장치 및 장치의 동작 방법 |
EP4540831A1 (en) * | 2022-06-14 | 2025-04-23 | Solventum Intellectual Properties Company | Artificial intelligence techniques for generating a predicted future image of a wound |
CN115072423B (zh) * | 2022-06-27 | 2025-02-14 | 无锡快仓智能科技有限公司 | 一种对接设备及对接方法 |
WO2024263797A1 (en) * | 2023-06-22 | 2024-12-26 | Wound Pros Technology, Inc. | Methods and systems for improving wound healing |
US20250142186A1 (en) * | 2023-10-31 | 2025-05-01 | Karl Storz Imaging, Inc. | Dual magnification fluorescence imaging camera |
CN117274242B (zh) * | 2023-11-17 | 2024-01-26 | 简阳市人民医院 | 一种基于图像识别的创面检测方法和系统 |
CN117854731B (zh) * | 2024-03-07 | 2024-05-17 | 简阳市人民医院 | 针对腋臭术后伤口延期愈合影响因素的预测方法和系统 |
CN117877691B (zh) * | 2024-03-13 | 2024-05-07 | 四川省医学科学院·四川省人民医院 | 一种基于图像识别的智能化伤口信息采集系统 |
KR102727591B1 (ko) * | 2024-03-28 | 2024-11-11 | 주식회사 이노야드 | 이미지 처리 기반 상처 객체의 경계 및 상처 정보 생성 방법 |
KR102707832B1 (ko) * | 2024-03-28 | 2024-09-25 | 주식회사 이노야드 | 이미지 처리 기반 얼굴 또는 신체의 3d 모델링 및 객체 추출 방법 |
KR102771267B1 (ko) * | 2024-08-30 | 2025-02-20 | 김충현 | 귀 켈로이드 치료 후 재발률 계산 방법 |
CN119540246B (zh) * | 2025-01-23 | 2025-04-08 | 中国人民解放军空军军医大学 | 基于三维模型的颅脑创伤预后预测分析系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011521237A (ja) | 2008-05-20 | 2011-07-21 | ユニバーシティー ヘルス ネットワーク | 螢光に基づく画像化およびモニタリング用装置ならびにその方法 |
US20150119721A1 (en) | 2013-10-30 | 2015-04-30 | Worcester Polytechnic Institute | System and method for assessing wound |
WO2017074505A1 (en) | 2015-10-28 | 2017-05-04 | Spectral Md, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
JP2017524935A (ja) | 2014-07-24 | 2017-08-31 | ユニバーシティー ヘルス ネットワーク | 診断目的のためのデータの収集および解析 |
WO2017202535A1 (en) | 2016-05-23 | 2017-11-30 | Bluedrop Medical Ltd | A skin inspection device for identifying abnormalities |
JP2018502677A (ja) | 2014-10-29 | 2018-02-01 | スペクトラル エムディー, インコーポレイテッドSpectral Md, Inc. | 組織分類用の反射モードマルチスペクトル−時間分解型光学イメージング方法および装置 |
WO2018018160A1 (en) | 2016-07-29 | 2018-02-01 | Novadaq Technologies ULC | Methods and systems for characterizing tissue of a subject utilizing machine learning |
WO2018160963A1 (en) | 2017-03-02 | 2018-09-07 | Spectral Md, Inc. | Machine learning systems and techniques for multispectral amputation site analysis |
JP2018534965A (ja) | 2015-09-23 | 2018-11-29 | ノバダック テクノロジーズ ユーエルシー | 組織の治癒を評価するための方法およびシステム |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4170987A (en) | 1977-11-28 | 1979-10-16 | California Institute Of Technology | Medical diagnosis system and method with multispectral imaging |
US4693255A (en) | 1985-04-22 | 1987-09-15 | Beall Harry C | Medical apparatus method for assessing the severity of certain skin traumas |
EP0505478B1 (en) | 1989-12-14 | 1996-11-27 | Elof Eriksson | A treatment system for wounds and other disorders |
US5074306A (en) | 1990-02-22 | 1991-12-24 | The General Hospital Corporation | Measurement of burn depth in skin |
US5701902A (en) | 1994-09-14 | 1997-12-30 | Cedars-Sinai Medical Center | Spectroscopic burn injury evaluation apparatus and method |
GB9521784D0 (en) | 1995-10-24 | 1996-01-03 | Rosslyn Medical Ltd | Diagnostic apparatus |
US6081612A (en) | 1997-02-28 | 2000-06-27 | Electro Optical Sciences Inc. | Systems and methods for the multispectral imaging and characterization of skin tissue |
US6008889A (en) | 1997-04-16 | 1999-12-28 | Zeng; Haishan | Spectrometer system for diagnosis of skin disease |
US6058352A (en) | 1997-07-25 | 2000-05-02 | Physical Optics Corporation | Accurate tissue injury assessment using hybrid neural network analysis |
US6353753B1 (en) | 1998-05-05 | 2002-03-05 | Stephen Thomas Flock | Optical imaging of deep anatomic structures |
US6352517B1 (en) | 1998-06-02 | 2002-03-05 | Stephen Thomas Flock | Optical monitor of anatomical movement and uses thereof |
US5982497A (en) | 1998-07-09 | 1999-11-09 | Optical Insights, Llc | Multi-spectral two-dimensional imaging spectrometer |
DE19850350C1 (de) | 1998-11-02 | 2000-09-28 | Jena Optronik Gmbh | Verfahren und Vorrichtung zur Erzeugung von Daten für die Diagnose des Schädigungsgrades von Hautgewebe eines Patienten |
US6381488B1 (en) | 1999-06-15 | 2002-04-30 | Sandia Corporation | Method and apparatus to measure the depth of skin burns |
US6640132B1 (en) | 1999-11-17 | 2003-10-28 | Hypermed, Inc. | Forensic hyperspectral apparatus and method |
AU2001229916A1 (en) | 2000-01-27 | 2001-08-07 | National Research Council Of Canada | Visible-near infrared spectroscopy in burn injury assessment |
AU2001259435A1 (en) | 2000-05-03 | 2001-11-12 | Stephen T Flock | Optical imaging of subsurface anatomical structures and biomolecules |
US6638668B2 (en) | 2000-05-12 | 2003-10-28 | Ocean Optics, Inc. | Method for making monolithic patterned dichroic filter detector arrays for spectroscopic imaging |
CN1543325A (zh) | 2001-07-16 | 2004-11-03 | ART�Ƚ��о��Ƽ���˾ | 高度混浊介质的多波长成像 |
MXPA04002498A (es) | 2001-09-19 | 2005-04-11 | Joule Microsystems Canada Inc | Un espectrometro que incorpora filtrado ajustado de senal. |
US20060072109A1 (en) | 2004-09-03 | 2006-04-06 | Andrew Bodkin | Hyperspectral imaging systems |
TW512058B (en) | 2001-12-24 | 2002-12-01 | Yung-Jian Yang | Spectral analysis system for burning and scalding injuries and device used in the system |
EP1532431A4 (en) | 2002-07-09 | 2010-03-31 | Medispectra Inc | METHODS AND APPARATUSES FOR CHARACTERIZING TISSUE SAMPLES |
ATE364173T1 (de) | 2002-12-02 | 2007-06-15 | River Diagnostics B V | Verwendung von hochwellenzahl-ramanspektroskopie zur messung von gewebe |
US20050033145A1 (en) | 2003-07-02 | 2005-02-10 | Graham John S. | Wearable tissue viability diagnostic unit |
US7693069B2 (en) | 2003-07-28 | 2010-04-06 | Alcatel-Lucent Usa Inc. | Method, apparatus and system for improved inter-domain routing convergence |
RU2372117C2 (ru) | 2003-09-18 | 2009-11-10 | Аркюо Медикал, Инк. | Способ опто-термо-механического воздействия на биологическую ткань и устройство для его осуществления |
US8634607B2 (en) * | 2003-09-23 | 2014-01-21 | Cambridge Research & Instrumentation, Inc. | Spectral imaging of biological samples |
US7920908B2 (en) | 2003-10-16 | 2011-04-05 | David Hattery | Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue |
JP4118916B2 (ja) | 2003-11-11 | 2008-07-16 | オリンパス株式会社 | マルチスペクトル画像撮影装置 |
US7433042B1 (en) | 2003-12-05 | 2008-10-07 | Surface Optics Corporation | Spatially corrected full-cubed hyperspectral imager |
US7648808B2 (en) | 2004-01-12 | 2010-01-19 | Ocean Thin Films, Inc. | Patterned coated dichroic filter |
US8583216B2 (en) | 2004-04-27 | 2013-11-12 | University Of Utah Research Foundation | Skin type assessment and nevi screening for skin cancer with a noninvasive, portable reflectance spectrophotometer |
US20070179482A1 (en) | 2004-05-07 | 2007-08-02 | Anderson Robert S | Apparatuses and methods to treat biological external tissue |
SE0402576D0 (sv) | 2004-10-25 | 2004-10-25 | Forskarpatent I Uppsala Ab | Multispectral and hyperspectral imaging |
US8548570B2 (en) | 2004-11-29 | 2013-10-01 | Hypermed Imaging, Inc. | Hyperspectral imaging of angiogenesis |
US8224425B2 (en) | 2005-04-04 | 2012-07-17 | Hypermed Imaging, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
AU2005327078A1 (en) | 2004-12-28 | 2006-08-17 | Hypermed Imaging, Inc. | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US7729750B2 (en) | 2005-01-20 | 2010-06-01 | The Regents Of The University Of California | Method and apparatus for high resolution spatially modulated fluorescence imaging and tomography |
US20060241495A1 (en) | 2005-03-23 | 2006-10-26 | Eastman Kodak Company | Wound healing monitoring and treatment |
WO2006107947A2 (en) | 2005-04-04 | 2006-10-12 | Hypermed, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
US8971984B2 (en) | 2005-04-04 | 2015-03-03 | Hypermed Imaging, Inc. | Hyperspectral technology for assessing and treating diabetic foot and tissue disease |
US8106956B2 (en) | 2005-06-27 | 2012-01-31 | Nokia Corporation | Digital camera devices and methods for implementing digital zoom in digital camera devices and corresponding program products |
US8081311B2 (en) | 2005-11-04 | 2011-12-20 | General Hospital Corporation | System for multispectral imaging |
JP5292104B2 (ja) | 2006-01-05 | 2013-09-18 | ユニバーシティ オブ バージニア パテント ファウンデーション | 自己監視データから糖尿病における血糖変動性を評価するためのコンピュータ実装方法、システム及びコンピュータ・プログラム |
JP4655991B2 (ja) | 2006-04-21 | 2011-03-23 | カシオ計算機株式会社 | 撮像装置及び電子ズーム方法と、プログラム |
US8644911B1 (en) * | 2006-06-30 | 2014-02-04 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US20080287808A1 (en) | 2006-09-12 | 2008-11-20 | The General Hospital Corporation | Apparatus, probe and method for providing depth assessment in an anatomical structure |
US20120321759A1 (en) | 2007-01-05 | 2012-12-20 | Myskin, Inc. | Characterization of food materials by optomagnetic fingerprinting |
CN101686819B (zh) | 2007-01-05 | 2014-08-13 | 迈斯金公司 | 皮肤成像的系统、装置和方法 |
US8639309B2 (en) | 2007-07-31 | 2014-01-28 | J&M Shuler, Inc. | Method and system for monitoring oxygenation levels of compartments and tissue |
US7879020B1 (en) | 2007-03-19 | 2011-02-01 | The United States Of America As Represented By The Secretary Of The Army | Decision-assist method for resuscitation of patients |
JP2008283442A (ja) | 2007-05-10 | 2008-11-20 | Olympus Corp | 撮像装置 |
US9226661B2 (en) | 2007-07-06 | 2016-01-05 | Industrial Research Limited | Laser speckle imaging systems and methods |
US20090072142A1 (en) | 2007-09-14 | 2009-03-19 | Forensicare Incorporated | Scanning system and techniques for medical and/or forensic assessment using the same |
US20090118600A1 (en) | 2007-11-02 | 2009-05-07 | Ortiz Joseph L | Method and apparatus for skin documentation and analysis |
US8509879B2 (en) | 2007-11-06 | 2013-08-13 | The Regents Of The University Of California | Apparatus and method for widefield functional imaging (WiFI) using integrated structured illumination and laser speckle imaging |
US20100210931A1 (en) | 2008-04-04 | 2010-08-19 | Modulate Imaging Inc. | Method for performing qualitative and quantitative analysis of wounds using spatially structured illumination |
CA2721941C (en) * | 2008-04-21 | 2018-06-26 | Drexel University | Methods for measuring changes in optical properties of wound tissue and correlating near infrared absorption (fnir) and diffuse reflectance spectroscopy scattering (drs) with tissue neovascularization and collagen concentration to determine whether wound is healing |
WO2010042253A2 (en) | 2008-04-30 | 2010-04-15 | Board Of Regents, The University Of Texas System | An apparatus and method for noninvasive evalution of a target versus a non- target |
WO2009135081A2 (en) | 2008-04-30 | 2009-11-05 | Board Of Regents, The University Of Texas System | Integrated patient bed system |
US20090318815A1 (en) | 2008-05-23 | 2009-12-24 | Michael Barnes | Systems and methods for hyperspectral medical imaging |
US8694266B2 (en) | 2008-06-05 | 2014-04-08 | The Regents Of The University Of Michigan | Multimodal spectroscopic systems and methods for classifying biological tissue |
US9572494B2 (en) | 2008-08-12 | 2017-02-21 | New Jersy Institute of Technology | Method and apparatus for multi-spectral imaging and analysis of skin lesions and biological tissues |
JP2010043979A (ja) | 2008-08-13 | 2010-02-25 | Yuichi Kamata | 分光画像計測装置 |
US8488863B2 (en) | 2008-11-06 | 2013-07-16 | Los Alamos National Security, Llc | Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials |
CA2753916C (en) | 2009-04-29 | 2020-08-25 | Genomedx Biosciences Inc. | Systems and methods for expression-based classification of thyroid tissue |
US8330832B2 (en) | 2009-06-23 | 2012-12-11 | Research In Motion Limited | Adjustment of sharpness during digital zoom in digital photography |
CN101627902B (zh) | 2009-07-15 | 2011-12-28 | 深圳先进技术研究院 | 基于环境光的低功耗、高精度光电容积描记信号前端处理模块 |
EP2467805B1 (en) | 2009-08-20 | 2020-08-05 | Koninklijke Philips N.V. | Method and system for image analysis |
EP3142067B1 (en) | 2009-10-06 | 2020-01-01 | Koninklijke Philips N.V. | Method and system for obtaining a first signal for analysis to characterize at least one periodic component thereof |
WO2011063306A1 (en) | 2009-11-19 | 2011-05-26 | Modulated Imaging Inc. | Method and apparatus for analysis of turbid media via single-element detection using structured illumination |
US9823127B2 (en) | 2010-01-22 | 2017-11-21 | Duke University | Systems and methods for deep spectroscopic imaging of biological samples with use of an interferometer and spectrometer |
US8692912B2 (en) | 2010-01-25 | 2014-04-08 | Pixelteq, Inc. | Multi-spectral camera |
JP2011188481A (ja) | 2010-02-10 | 2011-09-22 | Panasonic Corp | 撮像装置 |
US8294570B2 (en) | 2010-02-24 | 2012-10-23 | Clawson Jeffrey J | Burn diagnostic and intervention tool for emergency dispatch |
US20130051651A1 (en) | 2010-05-07 | 2013-02-28 | Purdue Research Foundation | Quantitative image analysis for wound healing assay |
US20120078088A1 (en) | 2010-09-28 | 2012-03-29 | Point of Contact, LLC. | Medical image projection and tracking system |
WO2012100090A2 (en) | 2011-01-19 | 2012-07-26 | The Regents Of The University Of California | Apparatus, systems, and methods for tissue oximetry and perfusion imaging |
US8761853B2 (en) | 2011-01-20 | 2014-06-24 | Nitto Denko Corporation | Devices and methods for non-invasive optical physiological measurements |
US8994819B2 (en) | 2011-02-04 | 2015-03-31 | Raytheon Company | Integrated optical detection system |
US8694067B2 (en) | 2011-02-15 | 2014-04-08 | General Electric Company | Sensor, apparatus and method for non-invasively monitoring blood characteristics of a subject |
US9372118B1 (en) | 2011-03-07 | 2016-06-21 | Fluxdata, Inc. | Apparatus and method for multispectral based detection |
AU2012225644B2 (en) | 2011-03-07 | 2017-05-04 | Wake Forest University Health Sciences | Delivery system |
JP5704984B2 (ja) | 2011-03-22 | 2015-04-22 | キヤノン株式会社 | 撮像装置 |
US20120288230A1 (en) | 2011-05-13 | 2012-11-15 | Kestrel Labs, Inc. | Non-Reflective Optical Connections in Laser-Based Photoplethysmography |
WO2012170963A1 (en) | 2011-06-08 | 2012-12-13 | Digital Light Innovations | System and method for hyperspectral imaging |
WO2012176106A2 (en) | 2011-06-24 | 2012-12-27 | Kla-Tencor Corporation | Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging |
KR101134770B1 (ko) | 2011-07-22 | 2012-04-13 | 양완석 | 휴대용 인체외시경 영상장치 |
US8942459B2 (en) | 2011-09-12 | 2015-01-27 | Perkinelmer Cellular Technologies Germany Gmbh | Methods and apparatus for fast identification of relevant features for classification or regression |
US9295402B1 (en) | 2012-01-17 | 2016-03-29 | University Of Washington Through Its Center For Commercialization | Methods and systems for assessing a burn injury |
WO2013110021A1 (en) | 2012-01-20 | 2013-07-25 | Harvard Bioscience, Inc. | Method for evaluating tissue injuries |
WO2013116316A1 (en) * | 2012-01-30 | 2013-08-08 | Scanadu Incorporated | Hyperspectral imaging systems, units, and methods |
US10575737B2 (en) | 2012-04-27 | 2020-03-03 | Novadaq Technologies ULC | Optical coherent imaging medical device |
US9031306B2 (en) | 2012-05-02 | 2015-05-12 | The Regents Of The University Of California | Diagnostic and prognostic histopathology system using morphometric indices |
US9593982B2 (en) | 2012-05-21 | 2017-03-14 | Digimarc Corporation | Sensor-synchronized spectrally-structured-light imaging |
RU2616653C2 (ru) | 2012-06-05 | 2017-04-18 | Хайпермед Имэджинг, Инк. | Способы и устройство для соосного формирования изображения с множеством длин волн |
US9766382B2 (en) | 2012-06-05 | 2017-09-19 | Hypermed Imaging, Inc. | Single-sensor hyperspectral imaging device |
US9036877B2 (en) | 2012-06-20 | 2015-05-19 | Xerox Corporation | Continuous cardiac pulse rate estimation from multi-channel source video data with mid-point stitching |
US9547178B2 (en) | 2012-08-15 | 2017-01-17 | Semrock. Inc. | Dichroic image splitter |
HUE047212T2 (hu) | 2012-09-13 | 2020-04-28 | Polyheal Ltd | Javított sebgyógyító kompozíciók, amelyek mikrogömböket tartalmaznak |
CA2889489C (en) | 2012-11-07 | 2021-05-11 | David Cuccia | Efficient modulated imaging |
WO2014110027A1 (en) | 2013-01-10 | 2014-07-17 | Caliper Life Sciences, Inc. | Multispectral imaging system and methods |
US20140213910A1 (en) | 2013-01-25 | 2014-07-31 | The Regents Of The University Of California | Method and apparatus for performing qualitative and quantitative analysis of burn extent and severity using spatially structured illumination |
WO2014118326A2 (en) | 2013-01-31 | 2014-08-07 | Ventana Medical Systems, Inc. | Systems and methods for calibrating, configuring and validating an imaging device or system for multiplex tissue assays |
US11653874B2 (en) * | 2013-02-01 | 2023-05-23 | Acceleritas Corporation | Method and system for characterizing tissue in three dimensions using multimode optical measurements |
EP2951301A4 (en) | 2013-02-01 | 2016-11-02 | Daniel Farkas | METHOD AND SYSTEM FOR CHARACTERIZING THREE-DIMENSIONAL FABRIC USING MULTIMODAL OPTICAL MEASUREMENTS |
GB201302451D0 (en) | 2013-02-12 | 2013-03-27 | Isis Innovation | Method and system for signal analysis |
AU2014224230A1 (en) * | 2013-03-06 | 2015-09-24 | Marika Pty Ltd | Assessing optical density gradients and variations |
WO2014143235A1 (en) | 2013-03-14 | 2014-09-18 | Integrated Plasmonics Corporation | Ambient light assisted spectroscopy |
CN112716471A (zh) | 2013-08-14 | 2021-04-30 | 佩德拉科技私人有限公司 | 用于评估血管重建的系统和方法 |
CN103815875B (zh) | 2013-10-28 | 2015-06-03 | 重庆西南医院 | 一种用于烧伤皮肤坏死深度和面积诊断的近红外光谱成像系统 |
US10258242B2 (en) | 2014-01-06 | 2019-04-16 | The Florida International University Board Of Trustees | Near-infrared optical imaging system for hemodynamic imaging, pulse monitoring, and mapping spatio-temporal features |
US20150208950A1 (en) | 2014-01-28 | 2015-07-30 | The Texas A&M University System | Arterial and Venous Oxygenation Method and Apparatus |
WO2015116823A1 (en) | 2014-01-29 | 2015-08-06 | The Johns Hopkins University | System and method for wound imaging and debridement |
DE102014002514B4 (de) | 2014-02-21 | 2015-10-29 | Universität Stuttgart | Vorrichtung und Verfahren zur multi- oder hyperspektralen Bildgebung und / oder zur Distanz- und / oder 2-D oder 3-D Profilmessung eines Objekts mittels Spektrometrie |
AU2015230939B2 (en) | 2014-03-21 | 2019-05-02 | Hypermed Imaging, Inc. | Compact light sensor |
CA3204935A1 (en) | 2014-05-01 | 2015-11-01 | Rebellion Photonics, Inc. | Dual-band divided-aperture infra-red spectral imaging system |
DE102014106974A1 (de) | 2014-05-16 | 2015-11-19 | Cubert GmbH | Räumlich und spektral auflösende Hyperspektralkamera und Verfahren |
US20170135646A1 (en) | 2014-06-04 | 2017-05-18 | University Of Massachusetts | Hyperspectral imaging for prediction of skin injury after exposure to thermal energy or ionizing radiation |
WO2016057633A1 (en) | 2014-10-08 | 2016-04-14 | Revealix, Inc. | Automated systems and methods for skin assessment and early detection of a latent pathogenic bio-signal anomaly |
US9717417B2 (en) | 2014-10-29 | 2017-08-01 | Spectral Md, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
US20220142484A1 (en) | 2014-10-29 | 2022-05-12 | Spectral Md, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
EP3228977A4 (en) | 2014-12-01 | 2018-07-04 | Sony Corporation | Image-processing device and image-processing method |
AU2015357088A1 (en) | 2014-12-03 | 2017-05-18 | Oregon Health & Science University | Methods, systems, and apparatuses for quantitative analysis of heterogeneous biomarker distribution |
US9990472B2 (en) | 2015-03-23 | 2018-06-05 | Ohio State Innovation Foundation | System and method for segmentation and automated measurement of chronic wound images |
US11037070B2 (en) | 2015-04-29 | 2021-06-15 | Siemens Healthcare Gmbh | Diagnostic test planning using machine learning techniques |
CA3241702A1 (en) | 2015-05-29 | 2016-12-08 | Rebellion Photonics, Inc. | Hydrogen sulfide imaging system |
KR20180018550A (ko) | 2015-06-15 | 2018-02-21 | 어그로잉 리미티드 | 다중스펙트럼 이미징 장치 |
WO2017026296A1 (ja) | 2015-08-10 | 2017-02-16 | 株式会社リコー | 試料測定装置 |
WO2017027839A1 (en) | 2015-08-13 | 2017-02-16 | Somagenics, Inc. | Methods and compositions of short small hairpin rnas and micrornas for wound healing |
WO2017053609A1 (en) | 2015-09-22 | 2017-03-30 | Hypermed Imaging, Inc. | Methods and apparatus for imaging discrete wavelength bands using a mobile device |
NL2015804B1 (en) | 2015-11-17 | 2017-06-02 | Quest Photonic Devices B V | Hyperspectral 2D imaging device. |
US10572997B2 (en) | 2015-12-18 | 2020-02-25 | Given Imaging Ltd. | System and method for detecting anomalies in an image captured in-vivo using color histogram association |
WO2017181200A1 (en) | 2016-04-15 | 2017-10-19 | The Regents Of The University Of California | Assessment of wound status and tissue viability via analysis of spatially resolved thz reflectometry maps |
US10013811B2 (en) | 2016-06-13 | 2018-07-03 | Umm-Al-Qura University | Hyperspectral image visualization in patients with medical conditions |
JP2019520574A (ja) | 2016-06-21 | 2019-07-18 | エスアールアイ インターナショナルSRI International | ハイパースペクトルイメージング方法および装置 |
US10223788B2 (en) | 2016-08-31 | 2019-03-05 | International Business Machines Corporation | Skin lesion segmentation using deep convolution networks guided by local unsupervised learning |
US10248713B2 (en) | 2016-11-30 | 2019-04-02 | Business Objects Software Ltd. | Time series analysis using a clustering based symbolic representation |
BR112019013184A2 (pt) | 2016-12-27 | 2019-12-10 | Urugus S A | aparelho de imageamento de múltiplos espectros, aparelho de imageamento e método de operar um sistema de imageamento hiperespectral |
US10145740B2 (en) | 2017-02-27 | 2018-12-04 | Visera Technologies Company Limited | Sensing multiple peak wavelengths using combination of dual-band filters |
US10806334B2 (en) | 2017-02-28 | 2020-10-20 | Verily Life Sciences Llc | System and method for multiclass classification of images using a programmable light source |
US11003933B2 (en) | 2017-08-15 | 2021-05-11 | Noblis, Inc. | Multispectral anomaly detection |
AU2017415626B2 (en) | 2017-10-17 | 2020-08-06 | Kronikare Pte Ltd | System and method for facilitating analysis of a wound in a target subject |
US10371627B2 (en) | 2017-11-16 | 2019-08-06 | MultiSensor Scientific, Inc. | Systems and methods for multispectral imaging and gas detection using a scanning illuminator and optical sensor |
US20190290117A1 (en) | 2018-03-22 | 2019-09-26 | Kabushiki Kaisha Topcon | Interferometric fundus imaging method |
KR102728475B1 (ko) | 2018-12-14 | 2024-11-13 | 스펙트랄 엠디, 인크. | 상처들의 평가, 치유 예측 및 치료를 위한 머신 학습 시스템들 및 방법들 |
WO2020123722A1 (en) | 2018-12-14 | 2020-06-18 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
US10783632B2 (en) | 2018-12-14 | 2020-09-22 | Spectral Md, Inc. | Machine learning systems and method for assessment, healing prediction, and treatment of wounds |
US10740884B2 (en) | 2018-12-14 | 2020-08-11 | Spectral Md, Inc. | System and method for high precision multi-aperture spectral imaging |
EP4110166A4 (en) | 2020-02-28 | 2024-03-27 | Spectral MD, Inc. | MACHINE LEARNING SYSTEMS AND METHODS FOR WOUND ASSESSMENT, HEALING PREDICTION AND TREATMENT |
EP4178426A4 (en) | 2020-07-13 | 2024-07-31 | Spectral MD, Inc. | SPECTRAL IMAGING SYSTEMS AND METHODS FOR HISTOLOGICAL EVALUATION OF WOUNDS |
EP4314739A4 (en) | 2021-03-30 | 2025-02-19 | Spectral MD, Inc. | SYSTEM AND METHOD FOR MULTISPECTRAL IMAGING WITH HIGH-PRECISION SNAPSHOT BASED ON MULTIPLEXED ILLUMINATION |
-
2019
- 2019-12-11 KR KR1020217021623A patent/KR102728475B1/ko active Active
- 2019-12-11 CN CN201980087443.XA patent/CN113260303B/zh active Active
- 2019-12-11 EP EP19894740.0A patent/EP3893733A4/en active Pending
- 2019-12-11 BR BR112021011132-8A patent/BR112021011132A2/pt unknown
- 2019-12-11 KR KR1020247036978A patent/KR20240163190A/ko active Pending
- 2019-12-11 WO PCT/US2019/065820 patent/WO2020123724A1/en unknown
- 2019-12-11 JP JP2021533805A patent/JP7261883B2/ja active Active
-
2023
- 2023-03-02 US US18/177,493 patent/US11948300B2/en active Active
- 2023-04-10 JP JP2023063250A patent/JP7574354B2/ja active Active
-
2024
- 2024-03-28 US US18/620,830 patent/US20240281966A1/en active Pending
- 2024-10-16 JP JP2024180995A patent/JP2025013851A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011521237A (ja) | 2008-05-20 | 2011-07-21 | ユニバーシティー ヘルス ネットワーク | 螢光に基づく画像化およびモニタリング用装置ならびにその方法 |
US20150119721A1 (en) | 2013-10-30 | 2015-04-30 | Worcester Polytechnic Institute | System and method for assessing wound |
JP2017524935A (ja) | 2014-07-24 | 2017-08-31 | ユニバーシティー ヘルス ネットワーク | 診断目的のためのデータの収集および解析 |
JP2018502677A (ja) | 2014-10-29 | 2018-02-01 | スペクトラル エムディー, インコーポレイテッドSpectral Md, Inc. | 組織分類用の反射モードマルチスペクトル−時間分解型光学イメージング方法および装置 |
JP2018534965A (ja) | 2015-09-23 | 2018-11-29 | ノバダック テクノロジーズ ユーエルシー | 組織の治癒を評価するための方法およびシステム |
WO2017074505A1 (en) | 2015-10-28 | 2017-05-04 | Spectral Md, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
WO2017202535A1 (en) | 2016-05-23 | 2017-11-30 | Bluedrop Medical Ltd | A skin inspection device for identifying abnormalities |
WO2018018160A1 (en) | 2016-07-29 | 2018-02-01 | Novadaq Technologies ULC | Methods and systems for characterizing tissue of a subject utilizing machine learning |
WO2018160963A1 (en) | 2017-03-02 | 2018-09-07 | Spectral Md, Inc. | Machine learning systems and techniques for multispectral amputation site analysis |
Also Published As
Publication number | Publication date |
---|---|
EP3893733A1 (en) | 2021-10-20 |
KR102728475B1 (ko) | 2024-11-13 |
WO2020123724A1 (en) | 2020-06-18 |
US20230222654A1 (en) | 2023-07-13 |
KR20210101285A (ko) | 2021-08-18 |
US11948300B2 (en) | 2024-04-02 |
JP7574354B2 (ja) | 2024-10-28 |
CN113260303B (zh) | 2024-07-05 |
KR20240163190A (ko) | 2024-11-18 |
EP3893733A4 (en) | 2022-10-12 |
CN113260303A (zh) | 2021-08-13 |
US20240281966A1 (en) | 2024-08-22 |
BR112021011132A2 (pt) | 2021-08-31 |
JP2025013851A (ja) | 2025-01-28 |
JP2022513486A (ja) | 2022-02-08 |
JP2023085517A (ja) | 2023-06-20 |
WO2020123724A4 (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7261883B2 (ja) | 創傷の評価、治癒予測および治療のための機械学習システム | |
US11599998B2 (en) | Machine learning systems and methods for assessment, healing prediction, and treatment of wounds | |
US20230181042A1 (en) | Machine learning systems and methods for assessment, healing prediction, and treatment of wounds | |
JP7529753B2 (ja) | 高精度マルチアパーチャスペクトルイメージングのためのシステムおよび方法 | |
US11182888B2 (en) | System and method for high precision multi-aperture spectral imaging | |
US20230148951A1 (en) | Spectral imaging systems and methods for histological assessment of wounds | |
US20250005761A1 (en) | System and method for topological characterization of tissue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210816 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7261883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |